RESUMO
BACKGROUND: Leptospirosis is a zoonotic disease caused by infection with spirochetes from Leptospira genus. It has been classified into at least 17 pathogenic species, with more than 250 serologic variants. This wide distribution may be a result of leptospiral ability to colonize the renal tubules of mammalian hosts, including humans, wildlife, and many domesticated animals. Previous studies showed that the expression of proteins belonging to the microbial heat shock protein (HSP) family is upregulated during infection and also during various stress stimuli. Several proteins of this family are known to have important roles in the infectious processes in other bacteria, but the role of HSPs in Leptospira spp. is poorly understood. In this study, we have evaluated the capacity of the protein GroEL, a member of HSP family, of interacting with host proteins and of stimulating the production of cytokines by macrophages. RESULTS: The binding experiments demonstrated that the recombinant GroEL protein showed interaction with several host components in a dose-dependent manner. It was also observed that GroEL is a surface protein, and it is secreted extracellularly. Moreover, two cytokines (tumor necrosis factor-α and interleukin-6) were produced when macrophages cells were stimulated with this protein. CONCLUSIONS: Our findings showed that GroEL protein may contribute to the adhesion of leptospires to host tissues and stimulate the production of proinflammatory cytokines during infection. These features might indicate an important role of GroEL in the pathogen-host interaction in the leptospirosis.
Assuntos
Chaperonina 60/imunologia , Citocinas/imunologia , Interações Hospedeiro-Patógeno/imunologia , Leptospira/metabolismo , Macrófagos/imunologia , Macrófagos/microbiologiaRESUMO
Background: Leptospirosis is a zoonotic disease caused by infection with spirochetes from Leptospira genus. It has been classified into at least 17 pathogenic species, with more than 250 serologic variants. This wide distribution may be a result of leptospiral ability to colonize the renal tubules of mammalian hosts, including humans, wildlife, and many domesticated animals. Previous studies showed that the expression of proteins belonging to the microbial heat shock protein (HSP) family is upregulated during infection and also during various stress stimuli. Several proteins of this family are known to have important roles in the infectious processes in other bacteria, but the role of HSPs in Leptospira spp. is poorly understood. In this study, we have evaluated the capacity of the protein GroEL, a member of HSP family, of interacting with host proteins and of stimulating the production of cytokines by macrophages. Results: The binding experiments demonstrated that the recombinant GroEL protein showed interaction with several host components in a dose-dependent manner. It was also observed that GroEL is a surface protein, and it is secreted extracellularly. Moreover, two cytokines (tumor necrosis factor-α and interleukin-6) were produced when macrophages cells were stimulated with this protein. Conclusions: Our findings showed that GroEL protein may contribute to the adhesion of leptospires to host tissues and stimulate the production of proinflammatory cytokines during infection. These features might indicate an important role of GroEL in the pathogen-host interaction in the leptospirosis.