Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 224
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Int Immunopharmacol ; 142(Pt B): 113221, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39321709

RESUMO

Programmed cell death ligand 1 (PDL1) has been implicated in immune evasion in various tumor types. The objective of this investigation was to assess the correlation between metastasis-associated interferon-induced transmembrane protein 2 (IFITM2) and PDL1, and explore their impact on tumor immunity in gastric cancer (GC). The expression of IFITM2 and PDL1 in human GC tissues was initially evaluated using The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, as well as immunohistochemistry (IHC). Subsequently, the relationship between IFITM2 and PDL1 was analyzed through Real-time quantitative PCR (RT-qPCR) and western blotting after cell transfection and inhibitor treatment in vitro. The role of IFITM2 and PDL1 in immune killing was further elucidated in both in vitro and in vivo settings. Our study revealed frequent overexpression of IFITM2 and PDL1 in GC. Notably, IFITM2 expression was significantly associated with lymphatic metastasis, clinical stage, and poor survival. Moreover, a positive correlation between PDL1 expression and IFITM2 expression in GC was identified. The activation of tumor-derived IFITM2 was found to enhance PDL1 expression via the JAK/STAT3 pathway in human GC cells (MKN28 and MKN45), leading to apoptosis of Jurkat T cells. Furthermore, IFITM2 induced PDL1 expression in a xenograft mouse model of GC. Based on our findings, we propose that IFITM2 modulates PDL1 expression and tumor immunity through the JAK/STAT3 pathway in GC cells, highlighting the potential of IFITM2 as a therapeutic target for GC immunotherapy.

2.
Int Immunopharmacol ; 140: 112904, 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39116489

RESUMO

One of the best antipsychotics for treating schizophrenia and bipolar disorders is olanzapine (OLA). However, its use is restricted owing to unfavorable adverse effects as liver damage, dyslipidemia, and weight gain. The primary objective of the present investigation was to examine the signaling mechanisms that underlie the metabolic disruption generated by OLA. Besides, the potential protective effect of sulforaphane (SFN) and ß-sitosterol (ßSS) against obesity and metabolic toxicity induced by OLA were inspected as well. A total of five groups of male Wistar rats were established, including the control, OLA, SFN+OLA, ßSS+OLA, and the combination + OLA groups. Hepatic histopathology, biochemical analyses, ultimate body weights, liver function, oxidative stress, and pro-inflammatory cytokines were evaluated. In addition to the relative expression of FOXO, the signaling pathways for PI3K/AKT, JAK/STAT3, and MAPK were assessed as well. All biochemical and hepatic histopathological abnormalities caused by OLA were alleviated by SFN and/or ßSS. A substantial decrease in systolic blood pressure (SBP), proinflammatory cytokines, serum lipid profile parameters, hepatic MDA, TBIL, AST, and ALT were reduced through SFN or/and ßSS. To sum up, the detrimental effects of OLA are mediated by alterations in the Akt/FOXO3a/ATG12, Ras/SOS2/Raf-1/MEK/ERK1/2, and Smad3,4/TGF-ß signaling pathways. The administration of SFN and/or ßSS has the potential to mitigate the metabolic deficit, biochemical imbalances, hepatic histological abnormalities, and the overall unfavorable consequences induced by OLA by modulating the abovementioned signaling pathways.


Assuntos
Isotiocianatos , Fígado , Olanzapina , Transdução de Sinais , Sitosteroides , Sulfóxidos , Animais , Masculino , Ratos , Antipsicóticos , Isotiocianatos/farmacologia , Isotiocianatos/uso terapêutico , Janus Quinases/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/metabolismo , Doenças Metabólicas/tratamento farmacológico , Doenças Metabólicas/induzido quimicamente , Estresse Oxidativo/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Sitosteroides/farmacologia , Sitosteroides/uso terapêutico , Sitosteroides/administração & dosagem , Fator de Transcrição STAT3/metabolismo
3.
Int Immunopharmacol ; 140: 112894, 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39126736

RESUMO

Cardiac fibrosis is characterized by the over-proliferation, over-transdifferentiation and over-deposition of extracellular matrix (ECM) of cardiac fibroblasts (CFs). Cardiac sympathetic activation is one of the leading causes of myocardial fibrosis. Meanwhile, cardiac fibrosis is often together with cardiac inflammation, which accelerates fibrosis by mediating inflammatory cytokines secretion. Recently, the Janus kinase/signal transducer and activator of transcription (JAK/STAT3) signaling pathway has been confirmed by its vital role during the progression of cardiac fibrosis. Thus, JAK/STAT3 signaling pathway is thought to be a potential therapeutic target for cardiac fibrosis. Baricitinib (BR), a novel JAK1/2 inhibitor, has been reported excellent effects of anti-fibrosis in multiple fibrotic diseases. However, little is known about whether and how BR ameliorates cardiac fibrosis caused by chronic sympathetic activation. Isoproterenol (ISO), a ß-Adrenergic receptor (ß-AR) nonselective agonist, was used to modulate chronic sympathetic activation in mice. As expected, our results proved that BR ameliorated ISO-induced cardiac dysfunction. Meanwhile, BR attenuated ISO-induced cardiac fibrosis and cardiac inflammation in mice. Moreover, BR also inhibited ISO-induced cardiac fibroblasts activation and macrophages pro-inflammatory secretion. As for mechanism studies, BR reduced ISO-induced cardiac fibroblasts by JAK2/STAT3 and PI3K/Akt signaling, while reduced ISO-induced macrophages pro-inflammatory secretion by JAK1/STAT3 and NF-κB signaling. In summary, BR alleviates cardiac fibrosis and inflammation caused by chronic sympathetic activation. The underlying mechanism involves BR-mediated suppression of JAK1/2/STAT3, PI3K/Akt and NF-κB signaling.


Assuntos
Azetidinas , Fibroblastos , Fibrose , Camundongos Endogâmicos C57BL , Purinas , Pirazóis , Sulfonamidas , Animais , Fibrose/tratamento farmacológico , Azetidinas/farmacologia , Azetidinas/uso terapêutico , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Masculino , Fibroblastos/efeitos dos fármacos , Purinas/farmacologia , Purinas/uso terapêutico , Pirazóis/farmacologia , Pirazóis/uso terapêutico , Camundongos , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Miocárdio/patologia , Isoproterenol , Células Cultivadas , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/farmacologia , NF-kappa B/metabolismo , Inflamação/tratamento farmacológico , Citocinas/metabolismo , Humanos , Sistema Nervoso Simpático/efeitos dos fármacos
4.
J Nanobiotechnology ; 22(1): 409, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992688

RESUMO

OBJECTIVE: This study aimed to investigate the critical role of MDSCs in CRC immune suppression, focusing on the CSF1R and JAK/STAT3 signaling axis. Additionally, it assessed the therapeutic efficacy of LNCs@CSF1R siRNA and anti-PD-1 in combination. METHODS: Single-cell transcriptome sequencing data from CRC and adjacent normal tissues identified MDSC-related differentially expressed genes. RNA-seq analysis comprehensively profiled MDSC gene expression in murine CRC tumors. LNCs@CSF1R siRNA nanocarriers effectively targeted and inhibited CSF1R. Flow cytometry quantified changes in MDSC surface markers post-CSF1R inhibition. RNA-seq and pathway enrichment analyses revealed the impact of CSF1R on MDSC metabolism and signaling. The effect of CSF1R inhibition on the JAK/STAT3 signaling axis was validated using Colivelin and metabolic assessments. Glucose and fatty acid uptake were measured via fluorescence-based flow cytometry. The efficacy of LNCs@CSF1R siRNA and anti-PD-1, alone and in combination, was evaluated in a murine CRC model with extensive tumor section analyses. RESULTS: CSF1R played a significant role in MDSC-mediated immune suppression. LNCs@CSF1R siRNA nanocarriers effectively targeted MDSCs and inhibited CSF1R. CSF1R regulated MDSC fatty acid metabolism and immune suppression through the JAK/STAT3 signaling axis. Inhibition of CSF1R reduced STAT3 activation and target gene expression, which was rescued by Colivelin. Combined treatment with LNCs@CSF1R siRNA and anti-PD-1 significantly slowed tumor growth and reduced MDSC abundance within CRC tumors. CONCLUSION: CSF1R via the JAK/STAT3 axis critically regulates MDSCs, particularly in fatty acid metabolism and immune suppression. Combined therapy with LNCs@CSF1R siRNA and anti-PD-1 enhances therapeutic efficacy in a murine CRC model, providing a strong foundation for future clinical applications.


Assuntos
Neoplasias Colorretais , Células Supressoras Mieloides , RNA Interferente Pequeno , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos , Fator de Transcrição STAT3 , Animais , Células Supressoras Mieloides/metabolismo , Camundongos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/imunologia , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/antagonistas & inibidores , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Fator de Transcrição STAT3/metabolismo , Linhagem Celular Tumoral , Humanos , Transdução de Sinais/efeitos dos fármacos , Receptor de Morte Celular Programada 1/metabolismo , Feminino , Camundongos Endogâmicos BALB C , Janus Quinases/metabolismo , Imunomodulação/efeitos dos fármacos , Receptor de Fator Estimulador de Colônias de Macrófagos
5.
Pharmaceuticals (Basel) ; 17(7)2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39065818

RESUMO

Drug-induced liver injury (DILI) represents a significant clinical challenge characterized by hepatic dysfunction following exposure to diverse medications. Methotrexate (MTX) is a cornerstone in treating various cancers and autoimmune disorders. However, the clinical utility of MTX is overshadowed by its ability to induce hepatotoxicity. The current study aims to elucidate the hepatoprotective effect of the alcoholic extract of Egyptian Araucaria heterophylla resin (AHR) on MTX-induced liver injury in rats. AHR (100 and 200 mg/kg) significantly decreased hepatic markers (AST, ALT, and ALP), accompanied by an elevation in the antioxidant's markers (SOD, HO-1, and NQO1). AHR extract also significantly inhibited the TGF-ß/NF-κB signaling pathway as well as the downstream cascade (IL-6, JAK, STAT-3, and cyclin D). The extract significantly reduced the expression of VEGF and p38 with an elevation in the BCL2 levels, in addition to a significant decrease in the IL-1ß and TNF-α levels, with a prominent effect at a high dose (200 mg/kg). Using LC-HRMS/MS analysis, a total of 43 metabolites were tentatively identified, and diterpenes were the major class. This study presents AHR as a promising hepatoprotective agent through inhibition of the TGF-ß/NF-κB and JAK/STAT3 pathways, besides its antioxidant and anti-inflammatory effects.

6.
Arthritis Res Ther ; 26(1): 121, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879555

RESUMO

BACKGROUND: Janus kinase (JAK) inhibitors, such as baricitinib, are widely used to treat rheumatoid arthritis (RA). Clinical studies show that baricitinib is more effective at reducing pain than other similar drugs. Here, we aimed to elucidate the molecular mechanisms underlying the pain relief conferred by baricitinib, using a mouse model of arthritis. METHODS: We treated collagen antibody-induced arthritis (CAIA) model mice with baricitinib, celecoxib, or vehicle, and evaluated the severity of arthritis, histological findings of the spinal cord, and pain-related behaviours. We also conducted RNA sequencing (RNA-seq) to identify alterations in gene expression in the dorsal root ganglion (DRG) following baricitinib treatment. Finally, we conducted in vitro experiments to investigate the direct effects of baricitinib on neuronal cells. RESULTS: Both baricitinib and celecoxib significantly decreased CAIA and improved arthritis-dependent grip-strength deficit, while only baricitinib notably suppressed residual tactile allodynia as determined by the von Frey test. CAIA induction of inflammatory cytokines in ankle synovium, including interleukin (IL)-1ß and IL-6, was suppressed by treatment with either baricitinib or celecoxib. In contrast, RNA-seq analysis of the DRG revealed that baricitinib, but not celecoxib, restored gene expression alterations induced by CAIA to the control condition. Among many pathways changed by CAIA and baricitinib treatment, the interferon-alpha/gamma, JAK-signal transducer and activator of transcription 3 (STAT3), and nuclear factor kappa B (NF-κB) pathways were considerably decreased in the baricitinib group compared with the celecoxib group. Notably, only baricitinib decreased the expression of colony-stimulating factor 1 (CSF-1), a potent cytokine that causes neuropathic pain through activation of the microglia-astrocyte axis in the spinal cord. Accordingly, baricitinib prevented increases in microglia and astrocytes caused by CAIA. Baricitinib also suppressed JAK/STAT3 pathway activity and Csf1 expression in cultured neuronal cells. CONCLUSIONS: Our findings demonstrate the effects baricitinib has on the DRG in relation to ameliorating both inflammatory and neuropathic pain.


Assuntos
Artrite Experimental , Gânglios Espinais , Interleucina-6 , Neuralgia , Fator de Transcrição STAT3 , Transdução de Sinais , Animais , Masculino , Camundongos , Artrite Experimental/metabolismo , Artrite Experimental/tratamento farmacológico , Azetidinas/farmacologia , Gânglios Espinais/metabolismo , Gânglios Espinais/efeitos dos fármacos , Interleucina-6/metabolismo , Inibidores de Janus Quinases/farmacologia , Camundongos Endogâmicos DBA , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/patologia , Purinas/farmacologia , Pirazóis/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Sulfonamidas/farmacologia
7.
Biomedicines ; 12(6)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38927348

RESUMO

Idiopathic multicentric Castleman disease (iMCD) and TAFRO syndrome present a variety of symptoms thought to be caused by excessive inflammatory cytokines and chemokines, but the underlying mechanisms are unknown. iMCD is broadly classified into two types: iMCD-NOS and iMCD-TAFRO, which have distinct laboratory findings, pathological features, and responses to treatments. It is thought that iMCD-NOS, particularly the IPL type, responds favorably to IL-6 inhibitors due to its IL-6-centric profile. iMCD-TAFRO frequently progresses acutely and seriously, similar to TAFRO syndrome. Elevated levels of cytokines, including IL-1ß, TNF-α, IL-10, and IL-23, as well as chemokines like CXCL13 and CXCL-10 (especially in iMCD-TAFRO), SAA, and VEGF, have been linked to the disease's pathology. Recent research has identified key signaling pathways including PI3K/Akt/mTOR and JAK-STAT3, as well as those regulated by type I IFN, as crucial in iMCD-TAFRO. These results suggest that dominant pathways may vary between subtypes. Further research into the peripheral blood and lymph nodes is required to determine the disease spectrum of iMCD-NOS/iMCD-TAFRO/TAFRO syndrome.

8.
Artigo em Inglês | MEDLINE | ID: mdl-38822868

RESUMO

Methotrexate (MTX) is a folic acid reductase inhibitor that manages various malignancies as well as immune-mediated inflammatory chronic diseases. Despite being frequently prescribed, MTX's severe multiple toxicities can occasionally limit its therapeutic potential. Intestinal toxicity is a severe adverse effect associated with the administration of MTX, and patients are significantly burdened by MTX-provoked intestinal mucositis. However, the mechanism of such intestinal toxicity is not entirely understood, mechanistic studies demonstrated oxidative stress and inflammatory reactions as key factors that lead to the development of MTX-induced intestinal injury. Besides, MTX causes intestinal cells to express pro-inflammatory cytokines like interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), which activate nuclear factor-kappa B (NF-κB). This is followed by the activation of the Janus kinase/signal transducer and activator of the transcription3 (JAK/STAT3) signaling pathway. Moreover, because of its dual anti-inflammatory and antioxidative properties, nuclear factor erythroid-2-related factor 2/heme oxygenase-1 (Nrf2/HO-1) has been considered a critical signaling pathway that counteracts oxidative stress in MTX-induced intestinal injury. Several agents have potential protective effects in counteracting MTX-provoked intestinal injury such as omega-3 polyunsaturated fatty acids, taurine, umbelliferone, vinpocetine, perindopril, rutin, hesperidin, lycopene, quercetin, apocynin, lactobacillus, berberine, zinc, and nifuroxazide. This review aims to summarize the potential redox molecular mechanisms of MTX-induced intestinal injury and how they can be alleviated. In conclusion, studying these molecular pathways might open the way for early alleviation of the intestinal damage and the development of various agent plans to attenuate MTX-mediated intestinal injury.

9.
Phytomedicine ; 132: 155832, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38924928

RESUMO

BACKGROUND: Lung cancer has been considered as a serious problem for the public health system. NSCLC is the main type of lung cancer, and finding improved treatments for NSCLC is a pressing concern. In this study, we have explored the efficacy of isotoosendanin (ITSN) for the treatment of NSCLC, and also explored the potential underlying mechanisms. METHODS: NSCLC cells were cultured, and colony formation, cell cycle as well as apoptosis assays have been conducted for investigating the biological functions of ITSN on NSCLC cells. Furthermore, target genes of ITSN have been predicted via PharmMapper and SuperPred database, subsequently validated using the drug affinity responsive target stability (DARTS) approach, a cellular thermal shift assay (CETSA) as well as surface plasmon resonance (SPR) analysis. Additionally, ubiquitination experiments have been conducted for the level of ubiquitination of the NSCLC cells. Finally, a nude mouse xenograft model has been established for evaluating the anti-tumor effects of ITSN in vivo. RESULTS: ITSN has shown anti-NSCLC activities both in vitro and in vivo. Mechanistically, ITSN interacts with SHP-2 through enhancing its stability and decreases the level of ubiquitination. Notably, ITSN may regulate the behaviors of NSCLC cells via affecting the JAK/STAT3 signaling, and finally, the anti-tumor effects of ITSN was partially reversed by the application of SHP-2 inhibitor or siRNA of SHP-2. CONCLUSIONS: ITSN may exert its anti-tumor effects by directly targeting SHP-2, increasing its stability and minimizing its ubiquitination. These results imply that ITSN could be a revolutionary component for treating NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Camundongos Nus , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Fator de Transcrição STAT3 , Transdução de Sinais , Fator de Transcrição STAT3/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Humanos , Animais , Neoplasias Pulmonares/tratamento farmacológico , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Linhagem Celular Tumoral , Transdução de Sinais/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Antineoplásicos Fitogênicos/farmacologia , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Endogâmicos BALB C , Janus Quinases/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Ubiquitinação/efeitos dos fármacos
10.
Int Immunopharmacol ; 136: 112335, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38815349

RESUMO

Chlorpyrifos (CPF) is a widely used organophosphate insecticide in agriculture and homes. Exposure to organophosphates is associated with neurotoxicity. Fluoxetine (FLX) is a selective serotonin reuptake inhibitor (SSRI) that is widely prescribed for depression and anxiety disorders. Studies have shown that FLX has neuroprotective, anti-inflammatory, antioxidant, and antiapoptotic effects. The molecular mechanisms underlying FLX are not fully understood. This work aimed to investigate the potential neuroprotective effect of FLX on CPF-induced neurotoxicity and the underlying molecular mechanisms involved. Thirty-two rats were randomly divided into four groups: (I) the vehicle control group; (II) the FLX-treated group (10 mg/kg/day for 28 days, p.o); (III) the CPF-treated group (10 mg/kg for 28 days); and (IV) the FLX+CPF group. FLX attenuated CPF-induced neuronal injury, as evidenced by a significant decrease in Aß and p-Tau levels and attenuation of cerebral and hippocampal histological abrasion injury induced by CPF. FLX ameliorated neuronal oxidative stress, effectively reduced MDA production, and restored SOD and GSH levels through the coactivation of the PPARγ and SIRT1 proteins. FLX counteracted the neuronal inflammation induced by CPF by decreasing MPO, NO, TNF-α, IL-1ß, and IL-6 levels by suppressing NF-κB and JAK1/STAT3 activation. The antioxidant and anti-inflammatory properties of FLX help to prevent CPF-induced neuronal intoxication.


Assuntos
Clorpirifos , Fluoxetina , Janus Quinase 1 , NF-kappa B , Fármacos Neuroprotetores , PPAR gama , Fator de Transcrição STAT3 , Transdução de Sinais , Sirtuína 1 , Animais , Fator de Transcrição STAT3/metabolismo , Sirtuína 1/metabolismo , NF-kappa B/metabolismo , PPAR gama/metabolismo , Janus Quinase 1/metabolismo , Masculino , Fluoxetina/farmacologia , Fluoxetina/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Clorpirifos/toxicidade , Ratos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Neurônios/efeitos dos fármacos , Neurônios/patologia , Estresse Oxidativo/efeitos dos fármacos , Inseticidas/toxicidade , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Ratos Sprague-Dawley , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Síndromes Neurotóxicas/tratamento farmacológico , Síndromes Neurotóxicas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA