Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
1.
Pest Manag Sci ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38676657

RESUMO

BACKGROUND: Cockroaches are widely acknowledged as significant vectors of pathogenic microorganisms. The Periplaneta fuliginosa densovirus (PfDNV) infects the smoky-brown cockroach P. fuliginosa and causes host mortality, which identifies the PfDNV as a species-specific and environmentally friendly biopesticide. However, although the biochemical characterization of PfDNV has been extensively studied, the immune response against PfDNV remains largely unclear. RESULTS: Here, we investigated the replication of PfDNV and its associated pathological phenotype in the foregut and hindgut. Consequently, we dissected and performed transcriptome sequencing on the foregut, midgut, and hindgut separately. We revealed the up-regulation of immune response signaling pathway c-Jun N-terminal kinase (JNK) and apoptosis in response to viral infection. Furthermore, knockdown of the JNK upstream gene Ben resulted in a decrease in virus titer and delayed host mortality. CONCLUSION: Taken together, our findings provide evidence that the Ben-JNK signaling plays a crucial role in PfDNV infection, leading to excessive apoptosis in intestinal tissues and ultimately resulting in the death of the host. Our results indicated that the host response to PfDNV fosters viral infection, thereby increasing host lethality. This underscores the potential of PfDNV as a viable, environmentally friendly biopesticide. © 2024 Society of Chemical Industry.

2.
BMC Cancer ; 24(1): 385, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532312

RESUMO

Gliomas are the most common primary intracranial tumor worldwide. The maintenance of telomeres serves as an important biomarker of some subtypes of glioma. In order to investigate the biological role of RTEL1 in glioma. Relative telomere length (RTL) and RTEL1 mRNA was explored and regression analysis was performed to further examine the relationship of the RTL and the expression of RTEL1 with clinicopathological characteristics of glioma patients. We observed that high expression of RTEL1 is positively correlated with telomere length in glioma tissue, and serve as a poor prognostic factor in TERT wild-type patients. Further in vitro studies demonstrate that RTEL1 promoted proliferation, formation, migration and invasion ability of glioma cells. In addition, in vivo studies also revealed the oncogene role of RTEL1 in glioma. Further study using RNA sequence and phospho-specific antibody microarray assays identified JNK/ELK1 signaling was up-regulated by RTEL1 in glioma cells through ROS. In conclusion, our results suggested that RTEL1 promotes glioma tumorigenesis through JNK/ELK1 cascade and indicate that RTEL1 may be a prognostic biomarker in gliomas.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Glioma/patologia , Neoplasias Encefálicas/genética , Transformação Celular Neoplásica/genética , Oncogenes , Biomarcadores , Proliferação de Células , Proteínas Elk-1 do Domínio ets/genética , DNA Helicases/genética
3.
Mol Cell Biochem ; 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38353878

RESUMO

This study aimed to explore the role of melatonin in oxidative stress-induced injury on retinal ganglion cells and the underlying mechanisms. The immortalized RGC-5 cells were treated with H2O2 to induce oxidative injury. Cell viability was measured by Cell Counting Kit-8, and apoptosis was determined by flow cytometry and western blot assays. Reactive oxygen species (ROS), lactate dehydrogenase (LDH), and malondialdehyde (MDA) levels were examined to evaluate oxidative stress levels. In addition, Thioredoxin-1 (Trx1) was silenced in RGC-5 cells using small interfering RNA followed by signaling pathway examination to explore the underlying mechanisms of melatonin in alleviating oxidative injury. Melatonin pre-treatment significantly alleviated H2O2-induced apoptosis in RGC-5 cells. Melatonin also markedly reversed the upregulation of cleaved-caspase 3, cleaved-caspase 9, and Bax expression and downregulation of Bcl-2 expression induced by H2O2. Further analyses presented that melatonin significantly attenuated the increase of ROS, LDH, and MDA levels in RGC-5 cells after H2O2 treatment. Melatonin also abolished the downregulated expression of Superoxide dismutase type 1, Trx1, and Thioredoxin reductase 1, and the reduced activity of thioredoxin reductase in RGC-5 cells after H2O2 treatment. Notably, Trx1 knockdown significantly mitigated the protective effect of melatonin in alleviating H2O2-induced apoptosis and oxidative stress, while administration of compound C, a common inhibitor of c-Jun N-terminal kinase (JNK) signaling, partially reversed the effect of Trx1 silencing, thereby ameliorating the apoptosis and oxidative injury induced by H2O2 in RGC-5 cells. Melatonin could significantly alleviate oxidative stress-induced injury of retinal ganglion cells via modulating Trx1-mediated JNK signaling pathway.

4.
Int J Nanomedicine ; 19: 1097-1108, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38327597

RESUMO

Introduction: Osteosarcoma is a prevalent and highly malignant primary bone tumor. However, current clinical therapeutic drugs for osteosarcoma are not suitable for long-term use due to significant side effects. Therefore, there is an urgent need to develop new drugs with fewer side effects. Dipsacus asperoides C. Y. Cheng et T. M. Ai, a traditional Chinese medicine, is commonly used for its anti-inflammatory, anti-pain, bone fracture healing, and anti-tumor effects. In this study, we investigated the effects of exosome-like nanoparticles derived from Dipsacus asperoides (DAELNs) on osteosarcoma cells in vitro and in vivo. Methods: DAELNs were isolated and purified from Dipsacus asperoides and their physical and chemical properties were characterized using transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA). The cellular uptake of DAELNs in osteosarcoma cells was analyzed by PKH26 staining. The proliferation, invasion, migration, and apoptosis of osteosarcoma cells were assessed using CCK8 assay, EdU assay, colony-formation assay, transwell assay, wound healing assay, and mitochondrial membrane potential measurement, respectively. The regulatory mechanism of DAELNs inhibiting the progression of osteosarcoma via activating P38/JNK signaling pathway was investigated using Western blotting and immunohistochemistry. Moreover, the therapeutic effects of DAELNs were evaluated using in vivo small animal imaging assay, HE staining, and immunohistochemistry. Results: Our results showed that DAELNs inhibited the proliferation, invasion, migration, and fostered the apoptosis of osteosarcoma cells in vitro and suppressed the tumor growth of osteosarcoma cells in a xenograft nude mouse model. Furthermore, the bio-distribution of DiD-labeled DAELNs showed preferential targeting of osteosarcoma tumors and excellent biosafety in histological analysis of the liver and kidney. Mechanistically, DAELNs activated the P38/JNK signaling pathway-induced apoptosis. Conclusion: Taken together, DAELNs are novel, natural, and osteosarcoma-targeted agents that can serve as safe and effective therapeutic approaches for the treatment of osteosarcoma.


Assuntos
Neoplasias Ósseas , Dipsacaceae , Exossomos , Osteossarcoma , Humanos , Camundongos , Animais , Sistema de Sinalização das MAP Quinases , Dipsacaceae/química , Exossomos/metabolismo , Apoptose , Osteossarcoma/patologia , Linhagem Celular Tumoral , Neoplasias Ósseas/patologia , Modelos Animais de Doenças , Proliferação de Células , Movimento Celular
5.
Front Biosci (Landmark Ed) ; 29(1): 40, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38287817

RESUMO

BACKGROUND: The benzophenanthridine Sanguinarine (Sng) is one of the most abundant root alkaloids with a long history of investigation and pharmaceutical applications. The cytotoxicity of Sng against various tumor cells is well-established; however, its antiproliferative and apoptotic potential against the cutaneous squamous cell carcinoma (cSCC) cells remains unknown. In the present study, we investigated the anti-cancer potential of Sng against cSCC cells and elucidated the underlying mechanisms relevant to the drug action. METHODS: The inhibitory effect of Sng on cSCC cells was evaluated by analyzing cell viability, colony-forming ability and multi-caspase activity. Apoptosis was quantified through Annexin-V/Propidium iodide flow cytometric assay and antagonized by pan-caspase inhibitor z-VAD-FMK. Mitochondrial membrane potential (ΔΨm) dysfunction was analyzed by JC-1 staining, whereas reactive oxygen species (ROS) generation was confirmed by pretreatment with N-acetylcysteine (NAC) and fluorogenic probe-based flow cytometric detection. The expression of cell cycle regulatory proteins, apoptotic proteins and MAPK signaling molecules was determined by Western blotting. Involvement of JNK, p38-MAPK and MEK/ERK in ROS-mediated apoptosis was investigated by pretreatment with SP600125 (JNK inhibitor), SB203580 (p38 inhibitor) and U0126 (ERK1/2 inhibitor), respectively. The stemness-targeting potential of Sng was assessed in tumor cell-derived spheroids. RESULTS: Treatment with Sng decreased cell viability and colony formation in primary (A431) and metastatic (A388) cSCC cells in a time- and dose-dependent manner. Sng significantly inhibited cell proliferation by inducing sub-G0/G1 cell-cycle arrest and apoptosis in cSCC cells. Sng evoked ROS generation, intracellular glutathione (GSH) depletion, ΔΨm depolarization and the activation of JNK pathway as well as that of caspase-3, -8, -9, and PARP. Antioxidant NAC inhibited ROS production, replenished GSH levels, and abolished apoptosis induced by Sng by downregulating JNK. Pretreatment with z-VAD-FMK inhibited Sng-mediated apoptosis. The pharmacological inhibition of JNK by SP600125 mitigated Sng-induced apoptosis in metastatic cSCC cells. Finally, Sng ablated the stemness of metastatic cSCC cell-derived spheroids. CONCLUSION: Our results indicate that Sng exerts a potent cytotoxic effect against cSCC cells that is underscored by a mechanism involving multiple levels of cooperation, including cell-cycle sub-G0/G1 arrest and apoptosis induction through ROS-dependent activation of the JNK signaling pathway. This study provides insight into the potential therapeutic application of Sng targeting cSCC.


Assuntos
Antracenos , Carcinoma de Células Escamosas , Isoquinolinas , Neoplasias Cutâneas , Humanos , Espécies Reativas de Oxigênio/metabolismo , Benzofenantridinas/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Carcinoma de Células Escamosas/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Transdução de Sinais , Apoptose , Sistema de Sinalização das MAP Quinases , Linhagem Celular Tumoral
6.
J Endocrinol Invest ; 47(1): 149-166, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37477865

RESUMO

PURPOSE: To explore the key genes and molecular pathways in the progression of thyroid papillary carcinoma (PTC) promoted by testosterone using RNA-sequencing technology, and to provide new drug targets for improving the therapeutic effect of PTC. METHODS: Orchiectomy (ORX) was carried out to construct ORX mouse models. TPC-1 cells were subcutaneously injected for PTC formation in mice, and the tumor tissues were collected for RNA-seq. The key genes were screened by bioinformatics technology. Tnnt1 expression in PTC cells was knocked down or overexpressed by transfection. Cell counting kit-8 (CCK-8), colony formation assay, scratch assay and transwell assay were adopted, respectively, for the detection of cell proliferation, colony formation, migration and invasion. Besides, quantification real-time polymerase chain reaction (qRT-PCR) and western blot were utilized to determine the mRNA and protein expression levels of genes in tissues or cells. RESULTS: Both estradiol and testosterone promoted the growth of PTC xenografts. The key gene Tnnt1 was screened and obtained by bioinformatics technology. Functional analysis revealed that overexpression of Tnnt1 could markedly promote the proliferation, colony formation, migration, invasion, and epithelial-to-mesenchymal transition (EMT) process of PTC cells, as well as could activate p38/JNK pathway. In addition, si-Tnt1 was able to inhibit the cancer-promoting effect of testosterone. CONCLUSION: Based on the outcomes of bioinformatics and basic experiments, it is found that testosterone can promote malignant behaviors such as growth, migration, invasion and EMT process of PTC by up-regulating Tnnt1 expression. In addition, the function of testosterone may be achieved by activating p38/JNK signaling pathway.


Assuntos
MicroRNAs , Neoplasias da Glândula Tireoide , Humanos , Animais , Camundongos , Câncer Papilífero da Tireoide/patologia , Neoplasias da Glândula Tireoide/patologia , Testosterona/farmacologia , Proliferação de Células/genética , Linhagem Celular Tumoral , Movimento Celular/genética , MicroRNAs/genética , Regulação Neoplásica da Expressão Gênica
7.
Neuroscience ; 537: 1-11, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38036060

RESUMO

Cerebral ischemia (CI) is the main cause of stroke morbidity and disability. This study aims to identify the early molecular regulation responsible for the therapeutic effectiveness of the Herb pair Danshen-Honghua (DH) for CI. The major targets of DH were identified by searching the public database of traditional Chinese medicine (TCM). In addition, GeneCards, Disgenet, and GeneMap databases in OMIM were used to determine the disease targets of CI. A total of 88 common targets of DH and CI were selected, a protein-protein interaction (PPI) network was established by Cytoscape, and 19 core targets were screened. These genes were primarily enriched in biological processes including wound healing, reaction to oxidative stress, and response to peptides, lipid and atherosclerosis, Age-rage signaling pathway, and TNF signaling pathway by KEGG and GO enrichments. The effective components of DH had stable binding to these key targets by molecular docking. Finally, it was verified that the mechanism of DH on CI treatment may be related to the activation of the TNF-α/JNK signaling pathway by establishing the middle cerebral artery occlusion (MCAO) rat model.


Assuntos
Carthamus tinctorius , Medicamentos de Ervas Chinesas , Traumatismo por Reperfusão , Salvia miltiorrhiza , Animais , Ratos , Simulação de Acoplamento Molecular , Infarto Cerebral , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Traumatismo por Reperfusão/tratamento farmacológico
8.
Chinese Pharmacological Bulletin ; (12): 256-262, 2024.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1013618

RESUMO

Aim To study the mechanism of quereetin (Que) inhibiting mitochondrial damage induced by Aβ

9.
FASEB J ; 38(1): e23347, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38095503

RESUMO

The pathogenesis of osteoarthritis (OA) is still unclear. Fatty acid binding protein 4 (FABP4), a novel adipokine, has been found to play a role in OA. This study aimed to explore the role of NF-κB in FABP4-induced OA. In the in vivo study, four pairs of 12-week-old male FABP4 knockout (KO) and wild-type (WT) mice were included. The activation of NF-κB was assessed. In parallel, 24 6-week-old male C57/Bl6 mice were fed a high-fat diet (HFD) and randomly allocated to four groups: daily oral gavage with (1) PBS solution; (2) QNZ (NF-κB-specific inhibitor, 1 mg/kg/d); (3) BMS309403 (FABP4-specific inhibitor, 30 mg/kg/d); and (4) BMS309403 (30 mg/kg/d) + QNZ (1 mg/kg/d). The diet and treatment were sustained for 4 months. The knee joints were obtained to assess cartilage degradation, NF-κB activation, and subchondral bone sclerosis. In the in vitro study, a mouse chondrogenic cell line (ATDC5) was cultured. FABP4 was supplemented to stimulate chondrocytes, and the activation of NF-κB was investigated. In parallel, QNZ and NF-κB-specific siRNA were used to inhibit NF-κB. In vivo, the FABP4 WT mice had more significant NF-κB activation than the KO mice. Dual inhibition of FABP4 and NF-κB alleviated knee OA in mice. FABP4 has no significant effect on the activation of the JNK signaling pathway. In vitro, FABP4 directly activated NF-κB in chondrocytes. The use of QNZ and NF-κB-siRNA significantly alleviated the expression of catabolic markers of chondrocytes induced by FABP4. FABP4 induces chondrocyte degeneration by activating the NF-κB pathway.


Assuntos
NF-kappa B , Osteoartrite do Joelho , Animais , Masculino , Camundongos , Condrócitos/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Interleucina-1beta/metabolismo , NF-kappa B/metabolismo , Osteoartrite do Joelho/metabolismo , Osteoartrite do Joelho/patologia , RNA Interferente Pequeno/genética , Transdução de Sinais
10.
Food Chem Toxicol ; 182: 114110, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37879531

RESUMO

Zearalenone (ZEA) is widely present in food and feed, and pigs are susceptible to its effects. This study explored the underlying function of ZEA-induced apoptosis in porcine endometrial stromal cells (ESCs) through activation of the JNK signaling pathway and mitochondrial division. This study utilized ESCs to explore the impact of exposure to ZEA. A mitochondrial division inhibitor (Mdivi) was also included as a reference. The results indicated a gradual decrease in cell viability with increasing ZEA concentration. In addition, ZEA can modify the growth status of porcine ESCs, disrupt their ultrastructure, and lead to apoptosis of porcine ESCs via the mitochondrial division pathway and JNK signaling pathway. In summary, our study found the critical targets of ZEA infected with pig ESCs, which provided a conceptual foundation to prevent and control ZEA.


Assuntos
Zearalenona , Animais , Suínos , Zearalenona/toxicidade , Zearalenona/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Apoptose , Células Estromais
11.
Clin. transl. oncol. (Print) ; 25(10): 2938-2949, oct. 2023. graf
Artigo em Inglês | IBECS | ID: ibc-225075

RESUMO

Renal cell carcinoma (RCC) with poor prognosis and high incidence rate is a common malignant disease. Current therapies could bring little benefit for the patients with advanced-stage RCC. PDIA2 is an isomerase responsible for protein folding and its role in cancer including RCC is under investigation. In this study, we found that PDIA2 was expressed much higher in RCC tissues than the control but the methylation level of PDIA2 promoter was lower based on the TCGA data. Patients with higher PDIA2 expression exerted worse survival. In clinical specimen, PDIA2 expression was correlated to patients’ clinical factors such as TNM stage (I/II vs III/IV, p = 0.025) and tumor size (≤ 7 cm vs > 7 cm, p = 0.004). Moreover, K-M analysis showed that PDIA2 was associated with patients’ survival in RCC. PDIA2 was expressed much higher in cancer cells A498 than 786-O than that in 293 T cells. After PDIA2 was knocked down, cell proliferation, migration and invasion was potently inhibited. But cell apoptotic rate increased reversely. Furthermore, the efficacy of Sunitinib on RCC cells was strengthened after PDIA2 knockdown. In addition, knockdown of PDIA2 gene leaded to downregulation of levels of JNK1/2, phosphorylated JNK1/2, c-JUN, and Stat3. But this inhibition was partially released when JNK1/2 was overexpressed. In consistent, cell proliferation was also partially recovered. In summary, PDIA2 plays important role in progression of RCC and JNK signaling pathway might be regulated by PDIA2. This study suggests PDIA2 as a candidate target for therapy of RCC (AU)


Assuntos
Humanos , Sistema de Sinalização das MAP Quinases/genética , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/genética , Neoplasias Renais/patologia , Neoplasias Renais/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Prognóstico
12.
Int J Biol Macromol ; 250: 126172, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37558018

RESUMO

Obesity has emerged as a crucial factor impacting people's lives, and gut microbiota disorders contribute to its development and progression. Auricularia auricula-judae (Bull.) polysaccharides (AAPs), a traditional functional food in Asia, exhibit potential anti-obesity effects. However, the specific mechanism still needs to be further confirmed. This study investigated the beneficial effects and specific mechanisms of AAPs on obesity. Firstly, AAPs showed significant improvements in overweight, insulin resistance, glucose and lipid metabolism disorders, and liver damage in obese mice. Additionally, AAPs ameliorated gut microbiota disorders, promoting the proliferation of beneficial bacteria like Lactobacillus and Roseburia, resulting in increased levels of SCFAs, folate, and cobalamin. Simultaneously, AAPs inhibited the growth of harmful bacteria, thereby protecting intestinal barrier function, improving endotoxemia, and decreasing the levels of inflammatory factors such as TNF-α and IL-6. Furthermore, AAPs can inhibit the TLR4/JNK signaling pathway while promoting the activation of AKT and AMPK. Importantly, our study underscored the pivotal role of gut microbiota in the anti-obesity effects of AAPs, as evidenced by fecal microbiota transplantation experiments. In conclusion, our findings elucidated that AAPs improve obesity by regulating gut microbiota and TLR4/JNK signaling pathway, offering novel perspectives for further conclusion the anti-obesity potential of AAPs.


Assuntos
Microbioma Gastrointestinal , Receptor 4 Toll-Like , Humanos , Camundongos , Animais , Receptor 4 Toll-Like/metabolismo , Sistema de Sinalização das MAP Quinases , Polissacarídeos/farmacologia , Obesidade/metabolismo
13.
Cell Mol Life Sci ; 80(8): 211, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37462735

RESUMO

Esophageal squamous cell carcinoma (ESCC) is a common malignancy worldwide with a low survival rate due to a lack of therapeutic targets. Here, our results showed that nuclear mitotic apparatus protein 1 (NUMA1) transcript and protein levels are significantly upregulated in ESCC patient samples and its high expression predicated poor prognosis. Knock-down of NUMA1 promoted cell apoptosis and suppressed cell proliferation and colony formation. By using cell-derived xenograft (CDX) and patient-derived xenograft (PDX) mice models, we found silencing the NUMA1 expression suppressed tumor progression. In addition, conditional knocking-out of NUMA1 reduced 4NQO-induced carcinogenesis in mice esophagus, which further confirmed the oncogenic role of NUMA1 in ESCC. Mechanistically, from the immunoprecipitation assay we revealed that NUMA1 interacted with GSTP1 and TRAF2, promoted the association of TRAF2 with GSTP1 while inhibited the interaction of TRAF2 and ASK1, thus to regulate sustained activation of JNK. In summary, our findings suggest that NUMA1 plays an important role during ESCC progression and it functions through regulating ASK1-MKK4-SAPK/JNK signaling pathway.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Animais , Camundongos , Carcinoma de Células Escamosas do Esôfago/genética , Sistema de Sinalização das MAP Quinases , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Fator 2 Associado a Receptor de TNF/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Apoptose , Regulação Neoplásica da Expressão Gênica , Movimento Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
14.
Zhongguo Zhong Yao Za Zhi ; 48(9): 2343-2351, 2023 May.
Artigo em Chinês | MEDLINE | ID: mdl-37282863

RESUMO

This study explored the molecular mechanism of acteoside against hepatoma 22(H22) tumor in mice through c-Jun N-terminal kinase(JNK) signaling pathway. H22 cells were subcutaneously inoculated in 50 male BALB/c mice, and then the model mice were classified into model group, low-dose, medium-dose, and high-dose acteoside groups, and cisplatin group. The administration lasted 2 weeks for each group(5 consecutive days/week). The general conditions of mice in each group, such as mental status, diet intake, water intake, activity, and fur were observed. The body weight, tumor volume, tumor weight, and tumor-inhibiting rate were compared before and after administration. Morphological changes of liver cancer tissues were observed based on hematoxylin and eosin(HE) staining, and the expression of phosphorylated(p)-JNK, JNK, B-cell lymphoma-2(Bcl-2), Beclin-1, and light chain 3(LC3) in each tissue was detected by immunohistochemistry and Western blot. qRT-PCR was performed to detect the mRNA expression of JNK, Bcl-2, Beclin-1, and LC3. The general conditions of mice in model and low-dose acteoside groups were poor, while the general conditions of mice in the remaining three groups were improved. The body weight of mice in medium-dose acteoside group, high-dose acteoside group, and cisplatin group was smaller than that in model group(P<0.01). The tumor volume in model group was insignificantly different from that in low-dose acteoside group, and the volume in cisplatin group showed no significant difference from that in high-dose acteoside group. Tumor volume and weight in medium-dose and high-dose acteoside groups and cisplatin group were lower than those in the model group(P<0.001). The tumor-inhibiting rates were 10.72%, 40.32%, 53.79%, and 56.44% in the low-dose, medium-dose, and high-dose acteoside groups and cisplatin group, respectively. HE staining showed gradual decrease in the count of hepatoma cells and increasing sign of cell necrosis in the acteoside and cisplatin groups, and the necrosis was particularly obvious in the high-dose acteoside group and cisplatin group. Immunohistochemical results suggested that the expression of Beclin-1, LC3, p-JNK, and JNK was up-regulated in acteoside and cisplatin groups(P<0.05). The results of immunohistochemistry, Western blot, and qRT-PCR indicated that the expression of Bcl-2 was down-regulated in the medium-dose and high-dose acteoside groups and cisplatin group(P<0.01). Western blot showed that the expression of Beclin-1, LC3, and p-JNK was up-regulated in acteoside and cisplatin groups(P<0.01), and there was no difference in the expression of JNK among groups. qRT-PCR results showed that the levels of Beclin-1 and LC3 mRNA were up-regulated in the acteoside and cisplatin groups(P<0.05), and the level of JNK mRNA was up-regulated in medium-dose and high-dose acteoside groups and cisplatin group(P<0.001). Acteoside promotes apoptosis and autophagy of H22 cells in mice hepatoma cells by up-regulating the JNK signaling pathway, thus inhibiting tumor growth.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Masculino , Animais , Camundongos , Cisplatino/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Sistema de Sinalização das MAP Quinases , Proteína Beclina-1 , Apoptose , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Necrose , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Linhagem Celular Tumoral , RNA Mensageiro/metabolismo , Autofagia
15.
Behav Brain Res ; 450: 114478, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37164190

RESUMO

Neuronal apoptosis is considered one of the hallmarks of ischemic stroke. Dual specificity phosphatase 10 (DUSP10), a member of the dual-specificity phosphatase family, which is involved in the regulation of apoptosis process. This study aimed to investigate the effect of on apoptosis in primary cortical neurons exposed to oxygen-glucose deprivation and reoxygenation (OGD/R) and mice suffered from transient middle cerebral artery occlusion and reperfusion (MCAO/R). The results showed that DUSP10 overexpression improved survival and reduced apoptosis in neurons subjected to OGD/R, which was manifested by decreased apoptotic proteins (cleaved caspase 3 and bax) and TUNEL+ cells, as well as increased the anti-apoptotic protein (bcl-2). DUSP10 overexpression inhibited the p38/JNK signaling pathway after OGD/R treatment, whilst DUSP10 knockdown had opposite effects. In addition, the p38 inhibitor SB203580 or JNK inhibitor SP600125 attenuated the increased apoptosis of OGD/R-stimulated neurons treated with DUSP10 silencing. Consistently, DUSP10 knockdown exacerbated infarct volume in MCAO/R injury. The data of Nissl staining and TUNEL-NeuN double staining revealed that DUSP10 interference aggravated neuronal damage in the ischemic penumbra of mice. Furthermore, DUSP10 inhibition activated the p38/JNK axis accompanied by enhanced phosphorylation of p38 and JNK in vivo. In summary, DUSP10 is a neuroprotective agent against ischemic stroke-induced neuronal damage via suppressing the p38/JNK signaling pathway.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Traumatismo por Reperfusão , Animais , Camundongos , Apoptose , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Glucose/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , AVC Isquêmico/metabolismo , Sistema de Sinalização das MAP Quinases , Neurônios/metabolismo , Oxigênio/metabolismo , Traumatismo por Reperfusão/metabolismo
16.
Front Pharmacol ; 14: 1103527, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37089928

RESUMO

Background: Chronic kidney disease (CKD) is usually insidious, and most affected individuals are asymptomatic until the disease becomes advanced. The effective treatment of CKD would rely on the incorporation of multidisciplinary approaches. Astragalus membranaceus (AM) and Curcuma zedoaria (CZ) have been widely used in the treatment of CKD. However, the mechanism of AM and CZ in the treatment of CKD is still unclear. Methods: This study was designed to evaluate the effects of AM and CZ on adenine-induced rats and to investigate the underlying mechanism by using metabolomic analysis. Addition of 0.75% adenine to the diet of rats for 3 weeks induced the animal model of CKD. The rats in the treatment group were treated with AM and CZ (2.1 g/kg/day) for 4 weeks. Blood and kidney samples were collected for biochemical and histological examination. Ultra-high-performance liquid chromatography/Q Exactive HFX mass spectrometer (UHPLC-QE-MS) was applied to analyze metabolic profiling variations in the kidney. Results: The results showed that AM and CZ could significantly reduce serum creatinine (Scr) and blood urea nitrogen (BUN) levels in CKD rats and alleviate renal pathological injury. By comparing the endogenous components of the normal group and the model group in positive ion mode and negative ion mode, a total of 365 and 155 different metabolites were screened, respectively. A total of 117 and 73 metabolites with significantly different expressions were identified between model group and AM and CZ group in positive ion mode and negative ion mode, respectively. The pivotal pathways affected by AM and CZ included nicotinate and nicotinamide metabolism, and glycine, serine and threonine metabolism. Furthermore, significant changes in metabolites in CKD rats after AM and CZ therapies were observed, including L-Threonine, D-pantothenic acid, and nicotinamide. Moreover, we found that AM and CZ significantly reduced renal fibrosis and inflammation in CKD rats, which may be related to the regulation of SIRT1/JNK signaling pathway. Conclusion: In conclusion, AM and CZ significantly reduced renal fibrosis and inflammation in CKD rats, which may be related to the regulation of SIRT1/JNK signaling pathway. Furthermore, L-Threonine, D-pantothenic acid, and nicotinamide may be potential biomarkers for the progression and treatment of CKD.

17.
Cytokine ; 166: 156191, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37002970

RESUMO

OBJECTIVE: This study was aimed to screen and identify miRNAs that could regulate human CTGF gene and downstream cascade reaction Rac1/MLK3/JNK/AP-1/Collagen I by bioinformatics and experimental means. METHODS: TargetScan and Tarbase were used to predict miRNAs that may have regulatory effects on human CTGF gene. The dual-luciferase reporter gene assay was employed to verify the results obtained in bioinformatics. Human alveolar basal epithelial A549 cells were exposed to silica (SiO2) culture medium for 24 h to establish an in vitro model of pulmonary fibrosis, and bleomycin (BLM) of 100 ng/mL was used as a positive control. The miRNA and mRNA expression levels were determined by RT-qPCR, and the protein levels were measured by western blot in hsa-miR-379-3p overexpression group or not. RESULTS: A total of 9 differentially expressed miRNAs that might regulate the human CTGF gene were predicted. Hsa-miR-379-3p and hsa-miR-411-3p were selected for the subsequent experiments. The results of the dual-luciferase reporter assay showed that hsa-miR-379-3p could bind to CTGF, but hsa-miR-411-3p could not. Compared with the control group, SiO2 exposure (25 and 50 µg/mL) could significantly reduce the expression level of hsa-miR-379-3p in A549 cells. SiO2 exposure (50 µg/mL) could significantly increase the mRNA expression levels of CTGF, Collagen I, Rac1, MLK3, JNK, AP1, and VIM in A549 cells, while CDH1 level was significantly decreased. Compared with SiO2 + NC group, the mRNA expression levels of CTGF, Collagen I, Rac1, MLK3, JNK, AP1, and VIM were significantly decreased, and CDH1 level was significantly higher when hsa-miR-379-3p was overexpressed. At the same time, overexpression of hsa-miR-379-3p improved the protein levels of CTGF, Collagen I, c-Jun and phospho-c-Jun, JNK1 and phospho-JNK1 significantly compared with SiO2 + NC group. CONCLUSION: Hsa-miR-379-3p was demonstrated for the first time that could directly target and down-regulate human CTGF gene, and further affect the expression levels of key genes and proteins in Rac1/MLK3/JNK/AP-1/Collagen I cascade reaction.


Assuntos
Fator de Crescimento do Tecido Conjuntivo , MicroRNAs , Humanos , Células A549 , Colágeno/metabolismo , Fator de Crescimento do Tecido Conjuntivo/genética , Fator de Crescimento do Tecido Conjuntivo/metabolismo , MicroRNAs/genética , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , RNA Mensageiro , Dióxido de Silício/metabolismo , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo
18.
Clin Transl Oncol ; 25(10): 2938-2949, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37017923

RESUMO

Renal cell carcinoma (RCC) with poor prognosis and high incidence rate is a common malignant disease. Current therapies could bring little benefit for the patients with advanced-stage RCC. PDIA2 is an isomerase responsible for protein folding and its role in cancer including RCC is under investigation. In this study, we found that PDIA2 was expressed much higher in RCC tissues than the control but the methylation level of PDIA2 promoter was lower based on the TCGA data. Patients with higher PDIA2 expression exerted worse survival. In clinical specimen, PDIA2 expression was correlated to patients' clinical factors such as TNM stage (I/II vs III/IV, p = 0.025) and tumor size (≤ 7 cm vs > 7 cm, p = 0.004). Moreover, K-M analysis showed that PDIA2 was associated with patients' survival in RCC. PDIA2 was expressed much higher in cancer cells A498 than 786-O than that in 293 T cells. After PDIA2 was knocked down, cell proliferation, migration and invasion was potently inhibited. But cell apoptotic rate increased reversely. Furthermore, the efficacy of Sunitinib on RCC cells was strengthened after PDIA2 knockdown. In addition, knockdown of PDIA2 gene leaded to downregulation of levels of JNK1/2, phosphorylated JNK1/2, c-JUN, and Stat3. But this inhibition was partially released when JNK1/2 was overexpressed. In consistent, cell proliferation was also partially recovered. In summary, PDIA2 plays important role in progression of RCC and JNK signaling pathway might be regulated by PDIA2. This study suggests PDIA2 as a candidate target for therapy of RCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Neoplasias Renais/patologia , Sistema de Sinalização das MAP Quinases , Prognóstico
19.
Front Mol Neurosci ; 16: 1071327, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969556

RESUMO

Depression is a common recurrent psychiatric disorder with a high lifetime prevalence and suicide rate. At present, although several traditional clinical drugs such as fluoxetine and ketamine, are widely used, medications with a high efficiency and reduced side effects are of urgent need. Our group has recently reported that a single administration of salmon calcitonin (sCT) could ameliorate a depressive-like phenotype via the amylin signaling pathway in a mouse model established by chronic restraint stress (CRS). However, the molecular mechanism underlying the antidepressant effect needs to be addressed. In this study, we investigated the antidepressant potential of sCT applied chronically and its underlying mechanism. In addition, using transcriptomics, we found the MAPK signaling pathway was upregulated in the hippocampus of CRS-treated mice. Further phosphorylation levels of ERK/p38/JNK kinases were also enhanced, and sCT treatment was able only to downregulate the phosphorylation level of p38/JNK, with phosphorylated ERK level unaffected. Finally, we found that the antidepressant effect of sCT was blocked by p38 agonists rather than JNK agonists. These results provide a mechanistic explanation of the antidepressant effect of sCT, suggesting its potential for treating the depressive disorder in the clinic.

20.
Phytomedicine ; 112: 154714, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36812746

RESUMO

BACKGROUND: Cognitive deficit is the main clinical feature of Alzheimer's disease (AD), and the massive death of neuronal cells is the leading cause of cognitive deficits. So, there is an urgent clinical need to discover effective drugs to protect brain neurons from damage in order to treat AD. Naturally-derived compounds have always been an important source of new drug discovery because of their diverse pharmacological activities, reliable efficacy and low toxicity. Magnoflorine is a quaternary aporphine alkaloid, which naturally exist in some commonly used herbal medicines, and has good anti-inflammatory and antioxidant effects. However, magnoflorine has not been reported in AD. HYPOTHESIS/PURPOSE: To investigate the therapeutic effect and mechanism of magnoflorine on AD. METHODS: Neuronal damage was detected by flow cytometry, immunofluorescence and western blotting. Oxidative stress was measured by detection of SOD and MDA, as well as JC-1 and reactive oxygen species (ROS) staining. The APP/PS1 mice were given drugs by intraperitoneal injection (I.P.) every day for one month, and then the new object recognition and Morris water maze were used to detect the cognitive ability of the mice. RESULTS: We demonstrated that magnoflorine reduced Aß-induced PC12 cell apoptosis and intracellular ROS generation. Further studies found that magnoflorine significantly improved cognitive deficits and AD-type pathology. Most interestingly, the efficacy of magnoflorine was better than that of the clinical control drug donepezil. Mechanistically, based on RNA-sequencing analysis, we found that magnoflorine significantly inhibited phosphorylated c-Jun N-terminal kinase (JNK) in AD models. This result was further validated using a JNK inhibitor. CONCLUSION: Our results indicate that magnoflorine improves cognitive deficits and pathology of AD through inhibiting of JNK signaling pathway. Thus, magnoflorine may be a potential therapeutic candidate for AD.


Assuntos
Doença de Alzheimer , Aporfinas , Camundongos , Animais , Doença de Alzheimer/metabolismo , Sistema de Sinalização das MAP Quinases , Peptídeos beta-Amiloides/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Aporfinas/farmacologia , Aporfinas/uso terapêutico , Cognição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...