Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
3.
Am J Respir Cell Mol Biol ; 71(1): 95-109, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38546978

RESUMO

Pulmonary arterial (PA) hypertension (PAH) is a severe cardiopulmonary disease that may be triggered by exposure to drugs such as dasatinib or facilitated by genetic predispositions. The incidence of dasatinib-associated PAH is estimated at 0.45%, suggesting individual predispositions. The mechanisms of dasatinib-associated PAH are still incomplete. We discovered a KCNK3 gene (Potassium channel subfamily K member 3; coding for outward K+ channel) variant in a patient with dasatinib-associated PAH and investigated the impact of this variant on KCNK3 function. Additionally, we assessed the effects of dasatinib exposure on KCNK3 expression. In control human PA smooth muscle cells (hPASMCs) and human pulmonary endothelial cells (hPECs), we evaluated the consequences of KCNK3 knockdown on cell migration, mitochondrial membrane potential, ATP production, and in vitro tube formation. Using mass spectrometry, we determined the KCNK3 interactome. Patch-clamp experiments revealed that the KCNK3 variant represents a loss-of-function variant. Dasatinib contributed to PA constriction by decreasing KCNK3 function and expression. In control hPASMCs, KCNK3 knockdown promotes mitochondrial membrane depolarization and glycolytic shift. Dasatinib exposure or KCNK3 knockdown reduced the number of caveolae in hPECs. Moreover, KCNK3 knockdown in control hPECs reduced migration, proliferation, and in vitro tubulogenesis. Using proximity labeling and mass spectrometry, we identified the KCNK3 interactome, revealing that KCNK3 interacts with various proteins across different cellular compartments. We identified a novel pathogenic variant in KCNK3 and showed that dasatinib downregulates KCNK3, emphasizing the relationship between dasatinib-associated PAH and KCNK3 dysfunction. We demonstrated that a loss of KCNK3-dependent signaling contributes to endothelial dysfunction in PAH and glycolytic switch of hPASMCs.


Assuntos
Dasatinibe , Células Endoteliais , Canais de Potássio de Domínios Poros em Tandem , Dasatinibe/farmacologia , Dasatinibe/efeitos adversos , Humanos , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Canais de Potássio de Domínios Poros em Tandem/genética , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Movimento Celular/efeitos dos fármacos , Hipertensão Arterial Pulmonar/induzido quimicamente , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Masculino , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Artéria Pulmonar/efeitos dos fármacos , Proteínas do Tecido Nervoso
4.
Respir Physiol Neurobiol ; 318: 104164, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37739151

RESUMO

To clarify the contribution of KCNK3/TASK-1 channel chemoreflex in response to hypoxia and hypercapnia, we used a unique Kcnk3-deficient rat. We assessed ventilatory variables using plethysmography in Kcnk3-deficient and wild-type rats at rest in response to hypoxia (10% O2) and hypercapnia (4% CO2). Immunostaining for C-Fos, a marker of neuronal activity, was performed to identify the regions of the respiratory neuronal network involved in the observed response.Under basal conditions, we observed increased minute ventilation in Kcnk3-deficient rats, which was associated with increased c-Fos positive cells in the ventrolateral region of the medulla oblongata. Kcnk3-deficient rats show an increase in ventilatory response to hypoxia without changes in response to hypercapnia. In Kcnk3-deficient rats, linked to an increased hypoxia response, we observed a greater increase in c-Fos-positive cells in the first central relay of peripheral chemoreceptors and Raphe Obscurus. This study reports that KCNK3/TASK-1 deficiency in rats induces an inadequate peripheral chemoreflex, alternating respiratory rhythmogenesis, and hypoxic chemoreflex.

5.
J Physiol ; 601(17): 3717-3737, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37477289

RESUMO

Potassium channel subfamily K member 3 (KCNK3), encoded by the KCNK3 gene, is part of the two-pore domain potassium channel family, constitutively active at resting membrane potentials in excitable cells, including smooth muscle and cardiac cells. Several physiological and pharmacological mediators, such as intracellular signalling pathways, extracellular pH, hypoxia and anaesthetics, regulate KCNK3 channel function. Recent studies show that modulation of KCNK3 channel expression and function strongly influences pulmonary vascular cell and cardiomyocyte function. The altered activity of KCNK3 in pathological situations such as atrial fibrillation, pulmonary arterial hypertension and right ventricular dysfunction demonstrates the crucial role of KCNK3 in cardiovascular homeostasis. Furthermore, loss of function variants of KCNK3 have been identified in patients suffering from pulmonary arterial hypertension and atrial fibrillation. This review focuses on current knowledge of the role of the KCNK3 channel in pulmonary circulation and the heart, in healthy and pathological conditions.


Assuntos
Fibrilação Atrial , Canais de Potássio de Domínios Poros em Tandem , Hipertensão Arterial Pulmonar , Humanos , Circulação Pulmonar , Fibrilação Atrial/genética , Fibrilação Atrial/metabolismo , Potenciais da Membrana , Pulmão/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo
6.
Cardiovasc Res ; 117(12): 2474-2488, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-33483721

RESUMO

AIMS: Pulmonary hypertension (PH) is a common complication of left heart disease (LHD, Group 2 PH) leading to right ventricular (RV) failure and death. Several loss-of-function (LOF) mutations in KCNK3 were identified in pulmonary arterial hypertension (PAH, Group 1 PH). Additionally, we found that KCNK3 dysfunction is a hallmark of PAH at pulmonary vascular and RV levels. However, the role of KCNK3 in the pathobiology of PH due to LHD is unknown. METHODS AND RESULTS: We evaluated the role of KCNK3 on PH induced by ascending aortic constriction (AAC), in WT and Kcnk3-LOF-mutated rats, by echocardiography, RV catheterization, histology analyses, and molecular biology experiments. We found that Kcnk3-LOF-mutation had no consequence on the development of left ventricular (LV) compensated concentric hypertrophy in AAC, while left atrial emptying fraction was impaired in AAC-Kcnk3-mutated rats. AAC-animals (WT and Kcnk3-mutated rats) developed PH secondary to AAC and Kcnk3-mutated rats developed more severe PH than WT. AAC-Kcnk3-mutated rats developed RV and LV fibrosis in association with an increase of Col1a1 mRNA in right ventricle and left ventricle. AAC-Kcnk3-mutated rats developed severe pulmonary vascular (pulmonary artery as well as pulmonary veins) remodelling with intense peri-vascular and peri-bronchial inflammation, perivascular oedema, alveolar wall thickening, and exaggerated lung vascular cell proliferation compared to AAC-WT-rats. Finally, in lung, right ventricle, left ventricle, and left atrium of AAC-Kcnk3-mutated rats, we found a strong increased expression of Il-6 and periostin expression and a reduction of lung Ctnnd1 mRNA (coding for p120 catenin), contributing to the exaggerated pulmonary and heart remodelling and pulmonary vascular oedema in AAC-Kcnk3-mutated rats. CONCLUSIONS: Our results indicate that Kcnk3-LOF is a key event in the pathobiology of PH due to AAC, suggesting that Kcnk3 channel dysfunction could play a potential key role in the development of PH due to LHD.


Assuntos
Pressão Arterial , Proteínas do Tecido Nervoso/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Hipertensão Arterial Pulmonar/etiologia , Artéria Pulmonar/metabolismo , Disfunção Ventricular Esquerda/complicações , Função Ventricular Esquerda , Animais , Modelos Animais de Doenças , Mutação , Proteínas do Tecido Nervoso/genética , Canais de Potássio de Domínios Poros em Tandem/genética , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/fisiopatologia , Artéria Pulmonar/fisiopatologia , Ratos Transgênicos , Transdução de Sinais , Remodelação Vascular , Disfunção Ventricular Esquerda/genética , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/fisiopatologia , Pressão Ventricular
7.
Biomolecules ; 10(9)2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32882918

RESUMO

Pulmonary arterial hypertension (PAH) is a rare and severe cardiopulmonary disease without curative treatments. PAH is a multifactorial disease that involves genetic predisposition, epigenetic factors, and environmental factors (drugs, toxins, viruses, hypoxia, and inflammation), which contribute to the initiation or development of irreversible remodeling of the pulmonary vessels. The recent identification of loss-of-function mutations in KCNK3 (KCNK3 or TASK-1) and ABCC8 (SUR1), or gain-of-function mutations in ABCC9 (SUR2), as well as polymorphisms in KCNA5 (Kv1.5), which encode two potassium (K+) channels and two K+ channel regulatory subunits, has revived the interest of ion channels in PAH. This review focuses on KCNK3, SUR1, SUR2, and Kv1.5 channels in pulmonary vasculature and discusses their pathophysiological contribution to and therapeutic potential in PAH.


Assuntos
Canais de Potássio/metabolismo , Hipertensão Arterial Pulmonar/etiologia , Animais , Sistemas de Liberação de Medicamentos , Humanos , Canal de Potássio Kv1.5/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Canais de Potássio/genética , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Hipertensão Arterial Pulmonar/tratamento farmacológico , Receptores de Sulfonilureias/metabolismo
8.
J Am Heart Assoc ; 9(10): e015751, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32390491

RESUMO

Background The tandem of P domains in a weak inward rectifying K+ channel (TWIK)-related acid-sensitive K+ channel (TASK-1; hK2P3.1) two-pore-domain potassium channel was recently shown to regulate the atrial action potential duration. In the human heart, TASK-1 channels are specifically expressed in the atria. Furthermore, upregulation of atrial TASK-1 currents was described in patients suffering from atrial fibrillation (AF). We therefore hypothesized that TASK-1 channels represent an ideal target for antiarrhythmic therapy of AF. In the present study, we tested the antiarrhythmic effects of the high-affinity TASK-1 inhibitor A293 on cardioversion in a porcine model of paroxysmal AF. Methods and Results Heterologously expressed human and porcine TASK-1 channels are blocked by A293 to a similar extent. Patch clamp measurements from isolated human and porcine atrial cardiomyocytes showed comparable TASK-1 currents. Computational modeling was used to investigate the conditions under which A293 would be antiarrhythmic. German landrace pigs underwent electrophysiological studies under general anesthesia. Paroxysmal AF was induced by right atrial burst stimulation. After induction of AF episodes, intravenous administration of A293 restored sinus rhythm within cardioversion times of 177±63 seconds. Intravenous administration of A293 resulted in significant prolongation of the atrial effective refractory period, measured at cycle lengths of 300, 400 and 500 ms, whereas the surface ECG parameters and the ventricular effective refractory period lengths remained unchanged. Conclusions Pharmacological inhibition of atrial TASK-1 currents exerts antiarrhythmic effects in vivo as well as in silico, resulting in acute cardioversion of paroxysmal AF. Taken together, these experiments indicate the therapeutic potential of A293 for AF treatment.


Assuntos
Antiarrítmicos/farmacologia , Fibrilação Atrial/tratamento farmacológico , Frequência Cardíaca/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Proteínas do Tecido Nervoso/antagonistas & inibidores , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio de Domínios Poros em Tandem/antagonistas & inibidores , Sulfonamidas/farmacologia , ortoaminobenzoatos/farmacologia , Animais , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/metabolismo , Fibrilação Atrial/fisiopatologia , Modelos Animais de Doenças , Eletrocardiografia , Técnicas Eletrofisiológicas Cardíacas , Feminino , Humanos , Masculino , Potenciais da Membrana/efeitos dos fármacos , Simulação de Acoplamento Molecular , Miócitos Cardíacos/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Canais de Potássio de Domínios Poros em Tandem/genética , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Estudo de Prova de Conceito , Período Refratário Eletrofisiológico/efeitos dos fármacos , Sus scrofa , Fatores de Tempo , Xenopus laevis
9.
Cell Physiol Biochem ; 52(5): 1223-1235, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31001961

RESUMO

BACKGROUND/AIMS: The two-pore-domain potassium channel TASK-1 regulates atrial action potential duration. Due to the atrium-specific expression of TASK-1 in the human heart and the functional upregulation of TASK-1 currents in atrial fibrillation (AF), TASK-1 represents a promising target for the treatment of AF. Therefore, detailed knowledge of the molecular determinants of TASK-1 inhibition may help to identify new drugs for the future therapy of AF. In the current study, the molecular determinants of TASK-1 inhibition by the potent and antiarrhythmic compound A293 (AVE1231) were studied in detail. METHODS: Alanine-scanning mutagenesis together with two-electrode voltage-clamp recordings were combined with in silico docking experiments. RESULTS: Here, we have identified Q126 located in the M2 segment together with L239 and N240 of the M4 segment as amino acids essential for the A293-mediated inhibition of TASK-1. These data indicate a binding site which is different to that of A1899 for which also residues of the pore signature sequence and the late M4 segments are essential. Using in silico docking experiments, we propose a binding site at the lower end of the cytosolic pore, located at the entry to lateral side fenestrations of TASK-1. Strikingly, TASK-1 inhibition by the low affinity antiarrhythmic TASK-1 blockers propafenone, amiodarone and carvedilol was also strongly diminished by mutations at this novel binding site. CONCLUSION: We have identified the A293 binding site in the central cavity of TASK-1 and propose that this site might represent a conserved site of action for many low affinity antiarrhythmic TASK-1 blockers.


Assuntos
Antiarrítmicos/química , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/química , Canais de Potássio de Domínios Poros em Tandem/antagonistas & inibidores , Canais de Potássio de Domínios Poros em Tandem/química , Substituição de Aminoácidos , Animais , Sítios de Ligação , Humanos , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Canais de Potássio de Domínios Poros em Tandem/genética , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Xenopus laevis
10.
J Cardiovasc Electrophysiol ; 30(3): 383-391, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30516300

RESUMO

INTRODUCTION: K2p 3.1, also known as TASK-1, is a twin-pore acid-sensitive repolarizing K+ channel, responsible for a background potassium current that significantly contributes to setting the resting membrane potential of cardiac myocytes. Inhibition of IK2p3.1 alters cardiac repolarization and is proarrhythmogenic. In this study, we have examined the expression of K2p 3.1 and function of this channel in tissue and myocytes from across the left ventricular free wall. METHODS AND RESULTS: Using fluorescence immunocytochemistry, the expression of K2p 3.1 protein in myocytes from the subendocardial region was found to be twice (205% ± 13.5%) that found in myocytes from the subepicardial region of the left ventricle (100% ± 5.3%). The left ventricular free wall exhibited a marked transmural gradient of K2p 3.1 protein expression. Western blot analysis confirmed significantly higher K2p 3.1 protein expression in subendocardial tissue (156% ± 2.5%) than subepicardial tissue (100% ± 5.0%). However, there was no difference in K2p 3.1 messenger RNA expression. Whole-cell patch clamp identified IK2p3.1 current density to be significantly greater in myocytes isolated from the subendocardium (7.66 ± 0.53 pA/pF) compared with those from the subepicardium (3.47 ± 0.74 pA/pF). CONCLUSIONS: This is the first study to identify a transmural gradient of K2p 3.1 in the left ventricle. This gradient has implications for understanding ventricular arrhythmogenesis under conditions of ischemia but also in response to other modulatory factors, such as adrenergic stimulation and the presence of anesthetics that inhibits or activates this channel.


Assuntos
Ventrículos do Coração/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Animais , Frequência Cardíaca , Ventrículos do Coração/citologia , Concentração de Íons de Hidrogênio , Masculino , Potenciais da Membrana , Proteínas do Tecido Nervoso/genética , Canais de Potássio de Domínios Poros em Tandem/genética , Ratos Wistar
11.
Front Pharmacol ; 10: 1367, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32038227

RESUMO

Background: Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia and one of the major causes of cardiovascular morbidity and mortality. Despite good progress within the past years, safe and effective treatment of AF remains an unmet clinical need. The anti-anginal agent ranolazine has been shown to exhibit antiarrhythmic properties via mainly late INa and IKr blockade. This results in prolongation of the atrial action potential duration (APD) and effective refractory period (ERP) with lower effect on ventricular electrophysiology. Furthermore, ranolazine has been shown to be effective in the treatment of AF. TASK-1 is a two-pore domain potassium (K2P) channel that shows nearly atrial specific expression within the human heart and has been found to be upregulated in AF, resulting in shortening the atrial APD in patients suffering from AF. We hypothesized that inhibition TASK-1 contributes to the observed electrophysiological and clinical effects of ranolazine. Methods: We used Xenopus laevis oocytes and CHO-cells as heterologous expression systems for the study of TASK-1 inhibition by ranolazine and molecular drug docking simulations to investigate the ranolazine binding site and binding characteristics. Results: Ranolazine acts as an inhibitor of TASK-1 potassium channels that inhibits TASK-1 currents with an IC50 of 30.6 ± 3.7 µM in mammalian cells and 198.4 ± 1.1 µM in X. laevis oocytes. TASK-1 inhibition by ranolazine is not frequency dependent but shows voltage dependency with a higher inhibitory potency at more depolarized membrane potentials. Ranolazine binds within the central cavity of the TASK-1 inner pore, at the bottom of the selectivity filter. Conclusions: In this study, we show that ranolazine inhibits TASK-1 channels. We suggest that inhibition of TASK-1 may contribute to the observed antiarrhythmic effects of Ranolazine. This puts forward ranolazine as a prototype drug for the treatment of atrial arrhythmia because of its combined efficacy on atrial electrophysiology and lower risk for ventricular side effects.

12.
Basic Res Cardiol ; 113(4): 27, 2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29881975

RESUMO

Understanding molecular mechanisms involved in atrial tissue remodeling and arrhythmogenesis in atrial fibrillation (AF) is essential for developing specific therapeutic approaches. Two-pore-domain potassium (K2P) channels modulate cellular excitability, and TASK-1 (K2P3.1) currents were recently shown to alter atrial action potential duration in AF and heart failure (HF). Finding animal models of AF that closely resemble pathophysiological alterations in human is a challenging task. This study aimed to analyze murine cardiac expression patterns of K2P channels and to assess modulation of K2P channel expression in murine models of AF and HF. Expression of cardiac K2P channels was quantified by real-time qPCR and immunoblot in mouse models of AF [cAMP-response element modulator (CREM)-IbΔC-X transgenic animals] or HF (cardiac dysfunction induced by transverse aortic constriction, TAC). Cloned murine, human, and porcine TASK-1 channels were heterologously expressed in Xenopus laevis oocytes. Two-electrode voltage clamp experiments were used for functional characterization. In murine models, among members of the K2P channel family, TASK-1 expression displayed highest levels in both atrial and ventricular tissue samples. Furthermore, K2P2.1, K2P5.1, and K2P6.1 showed significant expression levels. In CREM-transgenic mice, atrial expression of TASK-1 was significantly reduced in comparison with wild-type animals. In a murine model of TAC-induced pressure overload, ventricular TASK-1 expression remained unchanged, while atrial TASK-1 levels were significantly downregulated. When heterologously expressed in Xenopus oocytes, currents of murine, porcine, and human TASK-1 displayed similar characteristics. TASK-1 channels display robust cardiac expression in mice. Murine, porcine, and human TASK-1 channels share functional similarities. Dysregulation of atrial TASK-1 expression in murine AF and HF models suggests a mechanistic contribution to arrhythmogenesis.


Assuntos
Fibrilação Atrial/metabolismo , Remodelamento Atrial , Átrios do Coração/metabolismo , Insuficiência Cardíaca/metabolismo , Ventrículos do Coração/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Remodelação Ventricular , Potenciais de Ação , Animais , Fibrilação Atrial/genética , Fibrilação Atrial/patologia , Fibrilação Atrial/fisiopatologia , Clonagem Molecular , Modelos Animais de Doenças , Feminino , Átrios do Coração/patologia , Átrios do Coração/fisiopatologia , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Frequência Cardíaca , Ventrículos do Coração/patologia , Ventrículos do Coração/fisiopatologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Oócitos , Canais de Potássio de Domínios Poros em Tandem/genética , Transdução de Sinais , Sus scrofa , Remodelação Ventricular/efeitos dos fármacos , Xenopus laevis
13.
Eur Heart J ; 38(22): 1764-1774, 2017 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-28057773

RESUMO

AIMS: Atrial fibrillation (AF) prevalence increases with advanced stages of left ventricular (LV) dysfunction. Remote proarrhythmic effects of ventricular dysfunction on atrial electrophysiology remain incompletely understood. We hypothesized that repolarizing K2P3.1 K+ channels, previously implicated in AF pathophysiology, may contribute to shaping the atrial action potential (AP), forming a specific electrical substrate with LV dysfunction that might represent a target for personalized antiarrhythmic therapy. METHODS AND RESULTS: A total of 175 patients exhibiting different stages of LV dysfunction were included. Ion channel expression was quantified by real-time polymerase chain reaction and Western blot. Membrane currents and APs were recorded from atrial cardiomyocytes using the patch-clamp technique. Severely reduced LV function was associated with decreased atrial K2P3.1 expression in sinus rhythm patients. In contrast, chronic (c)AF resulted in increased K2P3.1 levels, but paroxysmal (p)AF was not linked to significant K2P3.1 remodelling. LV dysfunction-related suppression of K2P3.1 currents prolonged atrial AP duration (APD) compared with patients with preserved LV function. In individuals with concomitant LV dysfunction and cAF, APD was determined by LV dysfunction-associated prolongation and by cAF-dependent shortening, respectively, consistent with changes in K2P3.1 abundance. K2P3.1 inhibition attenuated APD shortening in cAF patients irrespective of LV function, whereas in pAF subjects with severely reduced LV function, K2P3.1 blockade resulted in disproportionately high APD prolongation. CONCLUSION: LV dysfunction is associated with reduction of atrial K2P3.1 channel expression, while cAF leads to increased K2P3.1 abundance. Differential remodelling of K2P3.1 and APD provides a basis for patient-tailored antiarrhythmic strategies.


Assuntos
Potenciais de Ação/fisiologia , Antiarrítmicos/uso terapêutico , Fibrilação Atrial/fisiopatologia , Proteínas do Tecido Nervoso/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Disfunção Ventricular Esquerda/fisiopatologia , Idoso , Fibrilação Atrial/tratamento farmacológico , Índice de Massa Corporal , Doença do Sistema de Condução Cardíaco/etiologia , Doença do Sistema de Condução Cardíaco/fisiopatologia , Cardiomiopatia Dilatada/fisiopatologia , Regulação para Baixo/fisiologia , Feminino , Humanos , Masculino , Proteínas do Tecido Nervoso/antagonistas & inibidores , Canais de Potássio de Domínios Poros em Tandem/antagonistas & inibidores , Distribuição por Sexo , Fumar/efeitos adversos , Fumar/fisiopatologia , Regulação para Cima/fisiologia , Remodelação Ventricular/fisiologia
14.
Expert Opin Ther Targets ; 20(8): 947-58, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26918581

RESUMO

INTRODUCTION: Atrial fibrillation (AF) is the most common arrhythmia in humans. It is progressive and the development of electrical and structural remodeling makes early intervention desirable. Existing antiarrhythmic pharmacological approaches are not always effective and can produce unwanted side effects. Additional atrial-selective antiarrhythmic strategies are therefore desirable. AREAS COVERED: Evidence for three novel ion channel atrial-selective therapeutic targets is evaluated: atrial-selective fast sodium channel current (INa) inhibition; small conductance calcium-activated potassium (SK) channels; and two-pore (K2P) potassium channels. EXPERT OPINION: Data from animal models support atrial-ventricular differences in INa kinetics and also suggest atrial-ventricular differences in sodium channel ß subunit expression. Further work is required to determine whether intrinsic atrial-ventricular differences in human INa exist or whether functional differences occur due to distinct atrial and ventricular action and resting potentials. SK and K2P channels (particularly K2P 3.1) offer potentially attractive atrial-selective targets. Work is needed to identify the underlying basis of SK current that contributes to (patho)physiological atrial repolarization and settings in which SK inhibition is anti- versus pro-arrhythmic. Although K2P3.1 appears to be a promising target with comparatively selective drugs for experimental use, a lack of selective pharmacology hinders evaluation of other K2P channels as potential atrial-selective targets.


Assuntos
Antiarrítmicos/farmacologia , Fibrilação Atrial/tratamento farmacológico , Terapia de Alvo Molecular , Animais , Antiarrítmicos/efeitos adversos , Fibrilação Atrial/patologia , Modelos Animais de Doenças , Desenho de Fármacos , Humanos , Canais de Potássio de Domínios Poros em Tandem/efeitos dos fármacos , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Baixa/efeitos dos fármacos , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Canais de Sódio/efeitos dos fármacos , Canais de Sódio/metabolismo
15.
Pflugers Arch ; 468(4): 643-54, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26729267

RESUMO

In isolated human atrial cardiomyocytes, inhibition of K2P3.1 K(+) channels results in action potential (action potential duration (APD)) prolongation. It has therefore been postulated that K2P3.1 (KCNK3), together with K2P9.1 (KCNK9), could represent novel drug targets for the treatment of atrial fibrillation (AF). However, it is unknown whether these findings in isolated cells translate to the whole heart. The purposes of this study were to investigate the expression levels of KCNK3 and KCNK9 in human hearts and two relevant rodent models and determine the antiarrhythmic potential of K2P3.1 inhibition in isolated whole-heart preparations. By quantitative PCR, we found that KCNK3 is predominantly expressed in human atria whereas KCNK9 was not detectable in heart human tissue. No differences were found between patients in AF or sinus rhythm. The expression in guinea pig heart resembled humans whereas rats displayed a more uniform expression of KCNK3 between atria and ventricle. In voltage-clamp experiments, ML365 and A293 were found to be potent and selective inhibitors of K2P3.1, but at pH 7.4, they failed to prolong atrial APD and refractory period (effective refractory period (ERP)) in isolated perfused rat and guinea pig hearts. At pH 7.8, which augments K2P3.1 currents, pharmacological channel inhibition produced a significant prolongation of atrial ERP (11.6 %, p = 0.004) without prolonging ventricular APD but did not display a significant antiarrhythmic effect in our guinea pig AF model (3/8 hearts converted on A293 vs 0/7 hearts in time-matched controls). These results suggest that when K2P3.1 current is augmented, K2P3.1 inhibition leads to atrial-specific prolongation of ERP; however, this ERP prolongation did not translate into significant antiarrhythmic effects in our AF model.


Assuntos
Potenciais de Ação , Arritmias Cardíacas/metabolismo , Função Atrial , Proteínas do Tecido Nervoso/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Prótons , Período Refratário Eletrofisiológico , Adolescente , Adulto , Animais , Arritmias Cardíacas/fisiopatologia , Células Cultivadas , Feminino , Cobaias , Átrios do Coração/citologia , Átrios do Coração/metabolismo , Ventrículos do Coração/citologia , Ventrículos do Coração/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Masculino , Pessoa de Meia-Idade , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Canais de Potássio de Domínios Poros em Tandem/antagonistas & inibidores , Canais de Potássio de Domínios Poros em Tandem/genética , Ratos , Ratos Wistar , Especificidade da Espécie , Função Ventricular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA