Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
Contact (Thousand Oaks) ; 7: 25152564241239445, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38524404

RESUMO

Rapid increase in body surface area of growing zebrafish larvae (Danio rario) is partially accomplished by asynthetic fission of superficial epithelial cells (SECs) of the skin. There are two cycles of this atypical form of cell division which is unaccompanied by DNA replication; resulting in cells with a variable DNA content. Here, electron microscopy of basal epithelium cells that give rise to these SECs in zebrafish larvae shows aggregation of mitochondria around the nucleus and the formation of nucleus-mitochondria membrane contact sites. Membrane aggregates appear in the lumen of the nuclear envelope at these sites of membrane contact in some cells, suggesting lipid turnover in this vicinity. As the epithelial cells mature and stratify, the mitochondria are engulfed by extensions arising from the nuclear envelope. The mitochondrial outer membrane fragments and mitochondria fuse with the nuclear envelope and parts of the endoplasmic reticulum. Other organelles, including the Golgi apparatus, progressively localize to a central region of the cell and lose their integrity. Thus, asynthetic fission is accompanied by an atypical pattern of organelle destruction and a prelude to this is the formation of nucleus-mitochondria membrane contact sites.

2.
Dis Model Mech ; 16(9)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37702214

RESUMO

Every tissue has an extracellular matrix (ECM) with certain properties unique to it - the tissue 'niche' - that are necessary for normal function. A distinct specific population of quiescent keratocan-expressing keratocytes populate the corneal stroma during homeostasis to maintain corneal function. However, during wound healing, when there is alteration of the niche conditions, keratocytes undergo apoptosis, and activated corneal fibroblasts and myofibroblasts attempt to restore tissue integrity and function. It is unknown what the fate of activated and temporary fibroblasts and myofibroblasts is after the wound healing process has resolved. In this study, we used several strategies to elucidate the cellular dynamics of corneal wound healing and the fate of corneal fibroblasts. We injured the cornea of a novel mouse model that allows cell-lineage tracing, and we transplanted a cell suspension of in vitro-expanded corneal fibroblasts that could be tracked after being relocated into normal stroma. These transplanted fibroblasts regained expression of keratocan in vivo when relocated to a normal stromal niche. These findings suggest that transformed fibroblasts maintain plasticity and can be induced to a keratocyte phenotype once relocated to an ECM with normal signaling ECM.


Assuntos
Córnea , Fibroblastos , Animais , Camundongos , Apoptose , Divisão Celular , Matriz Extracelular
3.
Exp Eye Res ; 235: 109641, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37696465

RESUMO

Corneal activated keratocytes (CAKs) -representing the injured phenotype of corneal stromal cells- are associated with several corneal diseases. Inflammatory cytokines are the key drivers of CAK formation subsequently leading to fibrogenesis. This study aimed to investigate the effect of adlay seed extract on the expression of genes involved in inflammation (IL-6, IL-1b, LIF) and fibrogenesis (TGF-ß) in CAK cells. CAKs (106 cells/10 cm2) were exposed to methanolic (MeOH) and residual (Res) extract of adlay seed (1 mg/ml, 24 h). The control group received the vehicle solution without extract at the same time and condition. Then, RNA extraction, cDNA synthesis, and real-time PCR were performed to quantify the relative expression of IL-6, IL-1b, LIF, and TGF-ß in the treated vs. control cells. This study showed that the MeOH extract of adlay seed could significantly downregulate the expression of IL-6 and IL-1b in the CAKs, while the Res extract led to a significant decrease in TGF-ß gene expression. We showed that CAK treatment with adlay seed extract could decrease the expression of genes related to inflammation and fibrogenesis. However, the genes to be targeted depended on the method of extraction. This proof-of-concept study could provide groundwork for the treatment of corneal stromal diseases and ocular regenerative medicine in the future.


Assuntos
Doenças da Córnea , Interleucina-6 , Humanos , Interleucina-6/genética , Ceratócitos da Córnea , Inflamação , Córnea , Metanol , Extratos Vegetais/farmacologia
4.
Curr Eye Res ; 48(11): 981-991, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37490619

RESUMO

PURPOSE: This study was designed to determine if previous approaches to eliminate fibroblast contamination in different cells types would be successful in eliminating fibroblast contamination from human and mouse primary corneal epithelial cell cultures, with the primary goal being to describe a simple, easy, and effective method to culture fibroblast-free primary mouse and human corneal epithelial cell cultures. METHODS: Primary human and mouse corneal stromal cells and epithelial cells were isolated and cultured from human corneal rims and mouse corneas, respectively. Several approaches previously used in other tissue types were evaluated using corneal epithelial cells and mixtures of fibroblasts and epithelial cells to determine the most effective purification method. Methods evaluated included 0.25% trypsin-EDTA, low temperature, mitomycin-C, and dispase. Degree of fibroblast contamination was examined using light microscopy evaluation of cell phenotype, immunofluorescence and western blotting using cell type-specific markers. Anti-pancytokeratin (PanCK) was used as the epithelial immunofluorescence label, and anti-α smooth muscle actin (αSMA) as the fibroblast immunofluorescence label. Epithelial western blot antibodies included PanCK, keratin 12, and E-cadherin, while αSMA, collagen 1A1 and collagen 3A1 were used to identify fibroblasts. RESULTS: Fibroblast contamination of human and mouse primary cornea epithelial cell cultures was best controlled using the 0.25% trypsin-EDTA method. The other methods examined were not effective at eliminating cornea fibroblast contamination. CONCLUSIONS: Trypsin-EDTA digestion is a simple and effective method for controlling fibroblast contamination of cultured primary human and mouse corneal epithelial cells.


Assuntos
Córnea , Células Epiteliais , Humanos , Animais , Camundongos , Ácido Edético/farmacologia , Ácido Edético/metabolismo , Tripsina/metabolismo , Células Cultivadas , Córnea/metabolismo , Fibroblastos/metabolismo , Colágeno/metabolismo
5.
J Complement Integr Med ; 20(3): 604-611, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37277938

RESUMO

OBJECTIVES: This study aimed to investigate the potential of honey-supplemented medium (HSM) for expanding corneal keratocytes and its transplantation in a model of corneal laceration. METHODS: Keratocytes were cultured in 1 % HSM- or 10 % fetal bovine serum (FBS)-supplemented medium for 24 h. The effect of HSM on keratocyte proliferation was evaluated using the MTT assay. The relative expression of Lum, Kera, and ALDH3A1, known markers of native keratocytes, was quantified by real-time PCR. The safety and efficacy of HSM-treated keratocyte intrastromal injection in a rabbit model of corneal laceration were also evaluated. RESULTS: The MTT assay showed that HSM treatment did not significantly affect cell viability compared to FBS-supplemented medium (84.71 ± 2.38 vs. 100.08 ± 10.92, respectively; p=0.076). Moreover, HSM-treated keratocytes had significantly increased expression of Lum, Kera, and ALDH3A1 compared to cells treated with FBS, while the expression of the proliferation biomarker Thy-1 did not significantly differ between the two treatments. Intrastromal injection of HSM-treated keratocytes in the laceration animal model was safe and uneventful, resulting in less stromal inflammation and neovascularization, and consequently, better final architecture with less residual haze compared to the group injected with FBS-treated keratocytes. CONCLUSIONS: These findings suggest that honey is a suitable supplement for keratocyte treatment and corneal cell therapy. The use of HSM may have potential applications in the treatment of corneal injuries and diseases.


Assuntos
Lesões da Córnea , Mel , Lacerações , Animais , Coelhos , Lacerações/terapia , Lesões da Córnea/terapia , Sobrevivência Celular , Terapia Baseada em Transplante de Células e Tecidos
6.
Tissue Cell ; 82: 102117, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37267821

RESUMO

Keratocytes are the main cellular components of the corneal stroma. This cell is quiescent and cannot be cultured easily. The aim of this study was to investigate differentiate human adipose mesenchymal stem cells (hADSCs) into corneal keratocyte cells by combining natural scaffolds and conditioned medium (CM) and evaluating their safety in the rabbit's cornea. Keratocytes were cultured in an optimal culture medium and this medium was collected and kept as a CM. hADSCs were cultured on the decellularized human small incision lenticule extraction (SMILE) lenticule (SL), amniotic membrane (AM), and collagen-coated plates, and were exposed to keratocyte-CM (KCM) for 7, 14, and 21 days. Differentiation was evaluated using Real-time PCR and immunocytochemistry (ICC). hADSCs were cultured on the SL scaffolds and implanted in the corneal stroma of 8 New Zealand male rabbits. Rabbits were followed for 3 months and the safety was evaluated by clinical and histological variables. Real-time PCR results showed a significant increase in the expression of keratocyte-specific markers on the 21 day of differentiation compared to the control group. ICC also confirmed the induction of differentiation. Implantation of SLs containing differentiated cells in the cornea of animals showed no serious complications including neovascularization, corneal opacity, inflammation, or signs of tissue rejection. Furthermore, the evaluation of the presence of keratocyte-like cells after three months in the rabbit stroma was confirmed by Real-time PCR and immunohistochemistry (IHC) analysis. Our results showed that combination of combination of corneal extracellular matrix and KCM can induced keratocytes differentiation of hADSC and can be introduced as a alternative method to supply the required keratocytes in corneal tissue engineering.


Assuntos
Ceratócitos da Córnea , Células-Tronco Mesenquimais , Humanos , Masculino , Coelhos , Animais , Ceratócitos da Córnea/metabolismo , Córnea , Diferenciação Celular , Substância Própria/metabolismo , Células Cultivadas
7.
Int J Ophthalmol ; 16(6): 863-870, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37332555

RESUMO

AIM: To evaluate the efficacy and safety of intrastromal transplantation of adipose-derived stem cells (ASCs) in keratoconus patients. METHODS: This study was conducted on 8 eyes of 8 patients with moderate to severe keratoconus. In the patients, ophthalmic assessments including visual acuity, refraction, slit lamp examination, fundoscopy, corneal topography, and confocal microscopy were performed. Autologous stem cells were used. The isolated stem cells were injected into the corneal stroma by using femtosecond laser. Surgical procedure was similar to intracorneal ring implantation. All patients were re-assessed 1, 3, and 6mo after surgery. RESULTS: The baseline mean visual acuity was 0.48±0.18 and improved to 0.66±0.17 after surgery and final acuity increased by 1.85±0.80 lines (P=0.001). The mean spherical refraction of patients improved 0.34±0.35 D (P=0.039), and the mean cylindrical refraction of patients improved 0.84±0.23 D (P=0.016). The mean flat keratometry decreased 0.78±0.71 D (P=0.017), and the mean steep keratometry decreased 0.59±0.68 D (P=0.023). The mean central corneal thickness of patients improved of 6.29±4.47 µm (P=0.03). The mean keratocyte density at the anterior and middle stroma of cornea increased (P<0.05) but remained stable at the posterior stroma after 6mo. All patients had no complications and their corneas remained transparent. CONCLUSION: Intrastromal transplantation of ASCs has positive effects on vision and refractive parameters in most patients with keratoconus. After six months, visual acuity improved moderately, corneal parameters reduced slightly, and stromal keratocytes density increased. This modality is safe, and patients do not have any complications.

8.
Biomed Mater ; 18(4)2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37068490

RESUMO

Although extensive studies have evaluated the regulation effect of microenvironment on cell phenotype and cell differentiation, further investigations in the field of the cornea are needed to gain sufficient knowledge for possible clinical translation. This study aims to evaluate the regulation effects of substrate stiffness and inflammation on keratocyte phenotype of corneal fibroblasts, as well as the differentiation from stem cells towards keratocytes. Soft and stiff substrates were prepared based on polydimethylsiloxane. HTK and stem cells were cultured on these substrates to evaluate the effects of stiffness. The possible synergistic effects between substrate stiffness and inflammatory factor IL-1ßwere examined by qPCR and immunofluorescence staining. In addition, macrophages were cultured on soft and stiff substrates to evaluate the effect of substrate stiffness on the synthesis of inflammatory factors. The conditioned medium of macrophages (Soft-CM and Stiff-CM) was collected to examine the effects on HTK and stem cells. It was found that inflammatory factor IL-1ßpromoted keratocyte phenotype and differentiation when cells were cultured on soft substrate (∼130 kPa), which were different from cells cultured on stiff substrate (∼2 × 103kPa) and TCP (∼106kPa). Besides, macrophages cultured on stiff substrates had significantly higher expression ofIL-1ßandTnf-αas compared to the cells cultured on soft substrates. And Stiff-CM decreased the expression of keratocyte phenotype markers as compared to Soft-CM. The results of our study indicate a stiffness-dependent dynamic effect of inflammation on keratocyte phenotype and differentiation, which is of significance not only in gaining a deeper knowledge of corneal pathology and repair, but also in being instructive for scaffold design in corneal tissue engineering and ultimate regeneration.


Assuntos
Ceratócitos da Córnea , Células-Tronco , Humanos , Diferenciação Celular , Fenótipo , Ceratócitos da Córnea/metabolismo , Inflamação/metabolismo , Células Cultivadas
9.
BMC Ophthalmol ; 23(1): 169, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37081412

RESUMO

INTRODUCTION: Cell senescence plays a regulatory role in tissue fibrosis. Corneal scarring is usually more severe in the central cornea based on clinical observation. In this study, we attempted to explore the senescence difference between the central and peripheral cornea in an in vivo mouse model with suture-induced senescence and in an in vitro model of senescence with hydrogen peroxide (H2O2)-induced rabbit corneal fibroblasts. METHODS: Male Balb/c mice (6-8 weeks) received sutures in the central, superior, inferior, nasal, and temporal cornea. The sutures were removed on the 14th day. Corneal neovascularization was observed under a slit lamp microscope with a digital camera. The fibroblasts isolated from the central and peripheral rabbit cornea were induced with H2O2 to establish the senescence model in vitro. Senescence was evaluated with SA-ß-gal staining and gene expression analysis of p21, p27, and p53. RESULTS: Senescent cells accumulated in the corneal stroma from the third day to the 14th day after the operation and peaked on the 14th day. More senescent keratocytes were observed in the peripheral cornea of the mouse model. In vitro, the peripheral corneal fibroblasts were more prone to senescence due to H2O2. The polymerase chain reaction results showed that the senescence-related genes p21, p27, and p53 were highly expressed in the peripheral corneal fibroblasts compared with the central corneal fibroblasts. CONCLUSIONS: Senescent fibroblasts can limit tissue fibrosis; hence, the senescence difference between the central and peripheral cornea may contribute to the difference in scarring.


Assuntos
Cicatriz , Proteína Supressora de Tumor p53 , Masculino , Camundongos , Animais , Coelhos , Proteína Supressora de Tumor p53/metabolismo , Peróxido de Hidrogênio/toxicidade , Córnea/patologia , Suturas , Fibroblastos/metabolismo
10.
Exp Eye Res ; 229: 109419, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36806671

RESUMO

Graphene-based nanomaterials (GBNs) are widely used due to their chemical and physical properties for multiple commercial and environmental applications. From an occupational health perspective, there is concern regarding the effects of inhalation on the respiratory system, and many studies have been conducted to study inhalation impacts on lung. Similar to the respiratory system, the eyes may also be exposed to GBNs and thus impacted. In this study, immortalized human corneal epithelial (hTCEpi) cells and rabbit corneal fibroblasts (RCFs) were used to investigate the toxicity of eight types of GBN: graphene oxide (GO; 400 nm), GO (1 µm), partially reduced graphene oxide (PRGO; 400 nm), reduced graphene oxide (RGO; 400 nm), RGO (2 µm), graphene (110 nm), graphene (140 nm), and graphene (1 µm). We next examined the effects of these GBNs on hTCEpi cell migration. We also determined whether the expression of α-smooth muscle actin (αSMA), a myofibroblast marker, is altered by the GBNs using RCFs. We found that RGO (400 nm) and RGO (2 µm) were highly toxic to hTCEPi cells and RCFs meanwhile, PRGO (400 nm) was toxic only to hTCEpi cells. In addition, PRGO (400 nm), RGO (400 nm), and RGO (2 µm) inhibited hTCEpi cell migration and significantly increased αSMA mRNA expression. Further study in vivo is required to determine if RGO nanomaterials delay corneal epithelial healing and induce scar formation.


Assuntos
Grafite , Nanoestruturas , Animais , Humanos , Coelhos , Grafite/toxicidade , Córnea , Cicatrização
11.
Int J Mol Sci ; 24(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36834965

RESUMO

The cornea forms the tough and transparent anterior part of the eye and by accurate shaping forms the major refractive element for vision. Its largest component is the stroma, a dense collagenous connective tissue positioned between the epithelium and the endothelium. In chicken embryos, the stroma initially develops as the primary stroma secreted by the epithelium, which is then invaded by migratory neural crest cells. These cells secrete an organised multi-lamellar collagenous extracellular matrix (ECM), becoming keratocytes. Within individual lamellae, collagen fibrils are parallel and orientated approximately orthogonally in adjacent lamellae. In addition to collagens and associated small proteoglycans, the ECM contains the multifunctional adhesive glycoproteins fibronectin and tenascin-C. We show in embryonic chicken corneas that fibronectin is present but is essentially unstructured in the primary stroma before cell migration and develops as strands linking migrating cells as they enter, maintaining their relative positions as they populate the stroma. Fibronectin also becomes prominent in the epithelial basement membrane, from which fibronectin strings penetrate into the stromal lamellar ECM at right angles. These are present throughout embryonic development but are absent in adults. Stromal cells associate with the strings. Since the epithelial basement membrane is the anterior stromal boundary, strings may be used by stromal cells to determine their relative anterior-posterior positions. Tenascin-C is organised differently, initially as an amorphous layer above the endothelium and subsequently extending anteriorly and organising into a 3D mesh when the stromal cells arrive, enclosing them. It continues to shift anteriorly in development, disappearing posteriorly, and finally becoming prominent in Bowman's layer beneath the epithelium. The similarity of tenascin-C and collagen organisation suggests that it may link cells to collagen, allowing cells to control and organise the developing ECM architecture. Fibronectin and tenascin-C have complementary roles in cell migration, with the former being adhesive and the latter being antiadhesive and able to displace cells from their adhesion to fibronectin. Thus, in addition to the potential for associations between cells and the ECM, the two could be involved in controlling migration and adhesion and subsequent keratocyte differentiation. Despite the similarities in structure and binding capabilities of the two glycoproteins and the fact that they occupy similar regions of the developing stroma, there is little colocalisation, demonstrating their distinctive roles.


Assuntos
Córnea , Fibronectinas , Tenascina , Animais , Embrião de Galinha/metabolismo , Galinhas/crescimento & desenvolvimento , Galinhas/metabolismo , Colágeno/metabolismo , Córnea/metabolismo , Matriz Extracelular/metabolismo , Fibronectinas/metabolismo , Morfogênese , Tenascina/metabolismo
12.
Int J Mol Sci ; 24(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36674976

RESUMO

We evaluated the small molecules (AFM) caffeine, curcumin and pirfenidone to find non-toxic concentrations reducing the transformation of activated human corneal stromal keratocytes (aCSK) to scar-inducing myofibroblasts (MYO-SF). CSK were isolated from 16 human corneas unsuitable for transplantation and expanded for three passages in control medium (0.5% FBS). Then, aCSK were exposed to concentrations of caffeine of 0−500 µM, curcumin of 0−200 µM, pirfenidone of 0−2.2 nM and the profibrotic cytokine TGF-ß1 (10 ng/mL) for 48 h. Alterations in viability and gene expression were evaluated by cell viability staining (FDA/PI), real-time polymerase chain reaction (RT-PCR) and immunocytochemistry. We found that all AFMs reduced cell counts at high concentrations. The highest concentrations with no toxic effect were 100 µM of caffeine, 20 µM of curcumin and 1.1 nM of pirfenidone. The addition of TGF-ß1 to the control medium effectively transformed aCSK into myofibroblasts (MYO-SF), indicated by a 10-fold increase in α-smooth muscle actin (SMA) expression, a 39% decrease in lumican (LUM) expression and a 98% decrease in ALDH3A1 expression (p < 0.001). The concentrations of 100 µM of caffeine, 20/50 µM of curcumin and 1.1 nM of pirfenidone each significantly reduced SMA expression under TGF-ß1 stimulation (p ≤ 0.024). LUM and ALDH3A1 expression remained low under TGF-ß1 stimulation, independently of AFM supplementation. Immunocytochemistry showed that 100 µM of caffeine, 20 µM of curcumin and 1.1 nM of pirfenidone reduce the conversion rate of aCSK to SMA+ MYO-SF. In conclusion, in aCSK, 100 µM of caffeine, 20 µM of curcumin and 1.1 nM of pirfenidone significantly reduced SMA expression and MYO-SF conversion under TGF-ß1 stimulation, with no influence on cell counts. However, the AFMs were unable to protect aCSK from characteristic marker loss.


Assuntos
Curcumina , Fator de Crescimento Transformador beta1 , Humanos , Fator de Crescimento Transformador beta1/metabolismo , Curcumina/farmacologia , Curcumina/metabolismo , Cafeína/farmacologia , Cafeína/metabolismo , Células Cultivadas , Fibroblastos/metabolismo , Actinas/genética , Actinas/metabolismo
13.
Cytoskeleton (Hoboken) ; 80(1-2): 34-51, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36576104

RESUMO

Fish basal epidermal cells, known as keratocytes, are well-suited for cell migration studies. In vitro, isolated keratocytes adopt a stereotyped shape with a large fan-shaped lamellipodium and a nearly spherical cell body. However, in their native in vivo environment, these cells adopt a significantly different shape during their rapid migration toward wounds. Within the epidermis, keratocytes experience two-dimensional (2D) confinement between the outer epidermal cell layer and the basement membrane; these two deformable surfaces constrain keratocyte cell bodies to be flatter in vivo than in isolation. In vivo keratocytes also exhibit a relative elongation of the front-to-back axis and substantially more lamellipodial ruffling, as compared to isolated cells. We have explored the effects of 2D confinement, separated from other in vivo environmental cues, by overlaying isolated cells with an agarose hydrogel with occasional spacers, or with a ceiling made of polydimethylsiloxane (PDMS) elastomer. Under these conditions, isolated keratocytes more closely resemble the in vivo migratory shape phenotype, displaying a flatter apical-basal axis and a longer front-to-back axis than unconfined keratocytes. We propose that 2D confinement contributes to multiple dimensions of in vivo keratocyte shape determination. Further analysis demonstrates that confinement causes a synchronous 20% decrease in both cell speed and volume. Interestingly, we were able to replicate the 20% decrease in speed using a sorbitol hypertonic shock to shrink the cell volume, which did not affect other aspects of cell shape. Collectively, our results suggest that environmentally imposed changes in cell volume may influence cell migration speed, potentially by perturbing physical properties of the cytoplasm.


Assuntos
Queratinócitos , Animais , Movimento Celular , Citoplasma/metabolismo , Células Cultivadas
14.
Int J Mol Sci ; 23(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36232373

RESUMO

Interleukin-1 (IL-1) and transforming growth factor-beta (TGFß) are important cytokines involved in corneal wound healing. Here, we studied the effect of these cytokines on corneal stromal cell (keratocyte) differentiation. IL-1ß treatment resulted in reduced keratocyte phenotype, as evident by morphological changes and decreased expression of keratocyte markers, including keratocan, lumican, ALDH3A1, and CD34. TGFß1 treatment induced keratocyte differentiation towards the myofibroblast phenotype. This was inhibited by simultaneous treatment with IL-1ß, as seen by inhibition of α-SMA expression, morphological changes, and reduced contractibility. We found that the mechanism of crosstalk between IL-1ß and TGFß1 occurred via regulation of the NF-κB signaling pathway, since the IL-1ß induced inhibition of TGFß1 stimulated keratocyte-myofibroblast differentiation was abolished by a specific NF-κB inhibitor, TPCA-1. We further found that Smad7 participated in the downstream signaling. Smad7 expression level was negatively regulated by IL-1ß and positively regulated by TGFß1. TPCA-1 treatment led to an overall upregulation of Smad7 at mRNA and protein level, suggesting that NF-κB signaling downregulates Smad7 expression levels in keratocytes. All in all, we propose that regulation of cell differentiation from keratocyte to fibroblast, and eventually myofibroblast, is closely related to the opposing effects of IL-1ß and TGFß1, and that the mechanism of this is governed by the crosstalk of NF-κB signaling.


Assuntos
NF-kappa B , Fator de Crescimento Transformador beta , Amidas , Diferenciação Celular , Células Cultivadas , Lumicana/farmacologia , NF-kappa B/farmacologia , RNA Mensageiro , Transdução de Sinais , Tiofenos , Fator de Crescimento Transformador beta/farmacologia , Fatores de Crescimento Transformadores
15.
Front Cell Dev Biol ; 10: 930373, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35938166

RESUMO

Functional tissue repair after injury or disease is governed by the regenerative or fibrotic response by cells within the tissue. In the case of corneal damage, keratocytes are a key cell type that determine the outcome of the remodeling response by either adapting to a fibroblast or myofibroblast phenotype. Although a growing body of literature indicates that geometrical cues in the environment can influence Myo(fibroblast) phenotype, there is a lack of knowledge on whether and how differentiated keratocyte phenotype is affected by the curved tissue geometry in the cornea. To address this gap, in this study we characterized the phenotype of fibroblastic and transforming growth factor ß (TGFß)-induced myofibroblastic keratocytes and studied their migration behavior on curved culture substrates with varying curvatures. Immunofluorescence staining and quantification of cell morphological parameters showed that, generally, fibroblastic keratocytes were more likely to elongate, whereas myofibroblastic keratocytes expressed more pronounced α smooth muscle actin (α-SMA) and actin stress fibers as well as more mature focal adhesions. Interestingly, keratocyte adhesion on convex structures was weak and unstable, whereas they adhered normally on flat and concave structures. On concave cylinders, fibroblastic keratocytes migrated faster and with higher persistence along the longitudinal direction compared to myofibroblastic keratocytes. Moreover, this behavior became more pronounced on smaller cylinders (i.e., higher curvatures). Taken together, both keratocyte phenotypes can sense and respond to the sign and magnitude of substrate curvatures, however, myofibroblastic keratocytes exhibit weaker curvature sensing and slower migration on curved substrates compared to fibroblastic keratocytes. These findings provide fundamental insights into keratocyte phenotype after injury, but also exemplify the potential of tuning the physical cell environments in tissue engineering settings to steer towards a favorable regeneration response.

16.
Biomater Adv ; 137: 212840, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35929269

RESUMO

There is a long history behind applying biological macromolecules like Aloe vera (AV) in regenerative medicine; endowed with anti-inflammatory and antimicrobial activities besides improving immune activity, AV has always been of particular interest to regenerate/reconstruct injuries and burns. In the present study, aligned electrospun polycaprolactone (PCL)-silk fibroin (SF) fibers containing different percentages of AV (0, 2.5, 5, and 7.5%wt) were fabricated for stromal regeneration. The results illustrated that a uniform bead-free structure was obtained, and the AV incorporation decreased the mean fiber diameter from 552 down to 182 nm and led to more alignment in the fibers. The Young's modulus raised from 4.96 to 5.26 MPa by higher amount of AV up to 5%wt. It is noteworthy that both the fiber alignment and AV affected the scaffolds' transparency and water uptake to increase. The human stromal keratocyte cells (hSKC)s culture revealed that the addition of AV and morphological properties of scaffolds encouraged cell adhesion and proliferation. The mRNA expression level for keratocan and ALDH3A1 and immunocytochemistry F-actin revealed the positive effect of AV on hSKCs differentiation. Our study indicated the promising potential of AV as a biological macromolecule for stromal tissue regeneration.


Assuntos
Aloe , Fibroínas , Aloe/química , Proliferação de Células , Fibroínas/farmacologia , Humanos , Poliésteres , Engenharia Tecidual/métodos , Alicerces Teciduais/química
17.
Carbohydr Polym ; 292: 119668, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35725168

RESUMO

The functional design of scaffolding biomaterials with potent capabilities of promoting cell adhesion and proliferation is critically important for tissue repair and regeneration. Here, we exploit the effects of oxidation level of aldehyde hyaluronic acid (oHA) on gelatin microcarriers for repairing corneal injuries. Specifically, high oxidation levels can endow the microcarrier surface with large oHA grafting amount, smooth topography, and strong stiffness, consequently formulating biocompatible scaffolding materials with superior affinities for keratocyte attachment and growth. In a rabbit model of corneal alkali burn injury, single intracorneal injection of keratocytes/functionalized microcarriers with an appropriate oxidation level could effectively reduce corneal swelling (~62-fold improvement), recover ~94% collagen production and ~89% keratocan expression, and repair disordered collagenous stromal architecture after 4 weeks. These findings on the oxidation level effects of the aldehyde polysaccharide show a great potential use in the development of advanced scaffolds for efficient tissue engineering.


Assuntos
Lesões da Córnea , Ácido Hialurônico , Aldeídos/metabolismo , Animais , Materiais Biocompatíveis/farmacologia , Lesões da Córnea/tratamento farmacológico , Substância Própria/metabolismo , Ácido Hialurônico/farmacologia , Coelhos , Regeneração , Engenharia Tecidual , Alicerces Teciduais
18.
Fish Shellfish Immunol ; 124: 92-106, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35378308

RESUMO

The impact of dietary supplementation with silk fibroin (SF) microparticles on the wound healing process in gilthead seabream (Sparus aurata) skin was studied. A control diet was enriched with different SF levels: 0 (control), 50 (SF50 diet), and 100 (SF100 diet) mg Kg-1 to form three experimental diets and was fed to seabream for 30 days. Experimental wounds were performed and after 7 days post-wounding (dpw) skin mucus immunity, macroscopic wound closure, and skin regeneration were studied at a microscopic and genetic level. Results indicated that fish fed SF100 did not suffer the decreases in protease and IgM levels observed in the skin mucus of wounded fish fed with the control diet. Macroscopic findings illustrated that dietary SF100 significantly improved the wound closure ratio compared to those reared in the control group. At a microscopic level, changes in the shape of keratocyte cells were evident in the wounded fish. In addition, the intercellular spaces present between epidermal cells and their proliferation in the epidermis, as well as the presence of blood vessels in the dermis were significantly statistically higher in the skin of fish fed the SF100 diet and sampled at 7 dpw compared to those observed in the skin of fish fed the control or SF50 diets. Moreover, regarding the RNA: DNA ratio, statistically significant increases and decreases were observed in fish fed the control and SF100 diet, respectively, in non-wounded and wounded fish. Interestingly, dietary SF100 supplementation improved skin cell proliferation, enhanced the inflammatory phase, and increased the expression of important genes involved in tissue repair and extracellular matrix formation. In conclusion, the SF100 diet can be considered as an appropriate feed additive to improve wound healing in gilthead seabream.


Assuntos
Dourada , Animais , Dieta/veterinária , Epiderme , Seda/metabolismo , Pele , Cicatrização
19.
Exp Eye Res ; 217: 108936, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35093391

RESUMO

The cornea is one of the major refractive eye components and could be easily injured. An ineffective healing of corneal stromal wound may cause fibrosis and even loss of vision. Therefore, it is pivotal to prevent corneal fibrosis after injury. In this study, a poly (ε-caprolactone) (PCL) microfibrous scaffold infused with rat tail collagen type I was fabricated to obtain a 3D composite material. Physical and biological properties of PCL/collagen scaffold were evaluated, the effect of PCL/collagen scaffold on the proliferation and differentiation of limbal stromal stem cells (LSSCs) were detected in vitro, the differentiation of keratocytes as well as the expression and arrangement of extracellular matrix (ECM) influenced by PCL/collagen scaffold were investigated in vivo. RNA-sequencing on normal and injured corneas was carried out to find out the differential enriched pathways and gene expression. We discovered that the PCL/collagen scaffold simulated the stromal structure with properties that were most similar to the native cornea, the PCL/collagen scaffold exhibited good mechanical and biological properties. We also observed that the PCL/collagen scaffold reduced keratocyte differentiation. Injured corneas treated with PCL/collagen scaffold exhibited more regular collagen distribution and less fibroblasts and myofibroblasts distribution. By RNA-sequencing, we observed that in injured group, ECM-related pathway was enriched and several ECM-related genes were up-regulated. This study provides evidence that application of PCL/collagen scaffold could be a new therapeutic strategy for corneal injury.


Assuntos
Lesões da Córnea , Substância Própria , Animais , Colágeno/metabolismo , Colágeno Tipo I/metabolismo , Córnea/metabolismo , Lesões da Córnea/metabolismo , Substância Própria/metabolismo , Fibrose , RNA/metabolismo , Ratos , Cauda/metabolismo
20.
Ophthalmologe ; 119(4): 342-349, 2022 Apr.
Artigo em Alemão | MEDLINE | ID: mdl-34874483

RESUMO

BACKGROUND: Keratoconus is classified as a corneal ectasia and is a multifactorial disease. In those affected, mostly adolescent patients visual deterioration occurs due to the development of irregular astigmatism. Treatment by corneal cross-linking (CXL) has been indicated in progressive disease for several years. OBJECTIVE: To present the pathophysiology and histological changes in keratoconus as well as wound healing processes after CXL and their potential complications. MATERIAL AND METHODS: Histological changes in keratoconus as well as wound healing processes after CXL and their potential complications are presented based on histological examination of corneal specimens with keratoconus with and without a condition after CXL. Relevant literature and own data are analyzed and discussed. RESULTS: Besides inflammatory processes, atopic and genetic dispositions play a role in the development of keratoconus. The histological characteristics of keratoconus include changes in the epithelium, Bowman's layer and stroma. Wound healing processes after CXL include healing of the surface epithelium and transient loss of keratocytes and nerve fibers. CONCLUSION: Keratoconus shows characteristic histopathological changes, such as epithelial irregularities, stromal thinning and breaks of Bowman's layer, whereas the endothelium and Descemet's membrane remain unchanged (apart from cases of corneal hydrops). After CXL wound healing processes can be followed primarily in vivo by confocal microscopy. Complications after CXL are rare. Persistent loss of keratocytes can be clinically manifested as a visually relevant scar.


Assuntos
Ceratocone , Adolescente , Colágeno , Substância Própria , Topografia da Córnea , Reagentes de Ligações Cruzadas/uso terapêutico , Humanos , Ceratocone/terapia , Fármacos Fotossensibilizantes/uso terapêutico , Riboflavina/uso terapêutico , Raios Ultravioleta , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...