Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39177438

RESUMO

Hybrid nanomaterials with controllable structures and diverting components have attracted significant interest in the functional materials field. Here, we develop a solvent evaporation-induced self-assembly (EISA) strategy to synthesize nanosheet-assembled phosphomolybdic acid (H3PMo)-alumina hybrid hollow spheres. The resulting nanoflowers display a high surface area (up to 697 m2 g-1), adjustable diameter, high chemical/thermal stability, and especially molecularly dispersed H3PMo species. By employing various microscopic and spectroscopic techniques, the formation mechanism is elucidated, revealing the simultaneous control of the morphology by heteropoly acids and water through the water-induced Kirkendall effect. The versatility of the synthesis method is demonstrated by varying surfactants, heteropoly acids, and metal oxide precursors for the facile synthesis of hybrid metal oxides. Spherical hybrid alumina serves as an attractive support material for constructing metal-acid bifunctional catalysts owing to its advantageous surface area, acidity, and mesoporous microenvironment. Pt-loaded hollow flowers exhibit excellent catalytic performance and exceptional stability in the hydrodeoxygenation of vanillin with recyclability for up to 10 cycles. This research presents an innovative strategy for the controllable synthesis of hybrid metal oxide nanospheres and hollow nanoflowers, providing a multifunctional platform for diverse applications.

2.
Materials (Basel) ; 17(9)2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38730955

RESUMO

Sn-3Ag-0.5Cu (SAC305)- and Sn-9Zn-based alloys (Sn-Zn-X, X = Al, In) are lead-free solders used in the fabrication of solder joints with Cu metallization. Electroplating is a facile technology used to fabricate Cu metallization. However, the addition of functional additive molecules in the plating solution may result in impurity residues in the Cu electroplated layer, causing damage to the solder joints. This study investigates the impurity effect on solder joints constructed by joining various solder alloys to the Cu electroplated layers. Functional additives are formulated to fabricate high-impurity and low-impurity Cu electroplated samples. The as-joined solder joint samples are thermally aged at 120 °C and 170 °C to explore the interfacial reactions between solder alloys and Cu. The results show that the impurity effect on the interfacial reactions between SAC305 and Cu is significant. Voids are massively formed at the SAC305/Cu interface incorporated with a high impurity content, and the Cu6Sn5 intermetallic compound (IMC) grows at a faster rate. In contrast, the growth of the Cu5Zn8 IMC formed in the SnZn-based solder joints is not significantly influenced by the impurity content in the Cu electroplated layers. Voids are not observed in the SnZn-based solder joints regardless of the impurity content, indicative of an insignificant impurity effect. The discrepancy of the impurity effect is rationalized by the differences in the IMC formation and associated atomic interdiffusion in the SAC305- and SnZn-based solder joints.

3.
ChemSusChem ; : e202400085, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38511252

RESUMO

The prevailing practice advocates pre-oxidation of electrospun Fe-salt/polymer nanofibers (Fe-salt/polymer Nf) before pyrolysis as advantageous in the production of high-performance FeOx@carbon nanofibers supercapacitors (FeOx@C). However, our study systematically challenges this notion by demonstrating that pre-oxidation facilitates the formation of polydispersed and large FeOx nanoparticles (FeOx@CI-DA) through "external" Fe3+ Kirkendall diffusion from carbon, resulting in subpar electrochemical properties. To address this, direct pyrolysis of Fe-salt/polymer Nf is proposed, promoting "internal" Fe3+ Kirkendall diffusion within carbon and providing substantial physical confinement, leading to the formation of monodispersed and small FeOx nanoparticles (FeOx@CDA). In 1 M H2SO4, FeOx@CDA demonstrates ~2.60× and 1.26× faster SO4 2- diffusivity, and electron transfer kinetics, respectively, compared to FeOx@CI-DA, with a correspondingly ~1.50× greater effective surface area. Consequently, FeOx@CDA exhibits a specific capacity of 161.92 mAhg-1, ~2× higher than FeOx@CI-DA, with a rate capability ~19 % greater. Moreover, FeOx@CDA retains 94 % of its capacitance after 5000 GCD cycles, delivering an energy density of 26.68 Whkg-1 in a FeOx@CDA//FeOx@CDA device, rivaling state-of-the-art FeOx/carbon electrodes in less Fe-corrosive electrolytes. However, it is worth noting that the effectiveness of direct pyrolysis is contingent upon hydrated Fe-salt. These findings reveal a straightforward approach to enhancing the supercapacitance of FeOx@C materials.

4.
J Colloid Interface Sci ; 664: 210-219, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38461787

RESUMO

Electrochemical CO2 reduction reaction (CO2RR) presents a unique opportunity to convert carbon dioxide (CO2) to value-added products while simultaneously storing renewable energy in the form of chemical energy. However, particle applications of this technology are limited due to the poor efficiency and product selectivity of the existing catalyst. In this study, we demonstrate a facile method for the heat-induced transformation of copper nanowires into CuOx/Cu nanotubes with defect-enriched surfaces. During this transformation, the outward migration of copper results in the formation of tubular structures encased within nanosized oxide grains. Notably, the hydrogen faradaic efficiency (FE) decreases with extended heat treatment, while carbon monoxide (CO) FE increases. As compared to Cu NWs, Cu NTs exhibit lower selectivity towards H2 and single-carbon (C1) products and favor the formation of multi-carbon (C2+) products. Consequently, a 2-fold increase in the single pass CO2 conversion (SPCC) and C2+ half-cell energy efficiency (EEhalf cell) was noted after heat treatment. The Cu NT-4 variant, synthesized under optimized conditions, exhibits the highest FE of 72.1 % for C2+ products at an operating current density (ID) of 500 mA cm-2.

5.
Nano Lett ; 24(9): 2719-2726, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38377427

RESUMO

Plasmonic Cu@semiconductor heteronanocrystals (HNCs) have many favorable properties, but the synthesis of solid structures is often hindered by the nanoscale Kirkendall effect. Herein, we present the use of an atomically thin Au3Cu palisade interlayer to reduce lattice mismatch and mediate the Kirkendall effect, enabling the successive topological synthesis of Cu@Au3Cu@Ag, Cu@Au3Cu@Ag2S, and further transformed solid Cu@Au3Cu@CdS core-shell HNCs via cation exchange. The atomically thin and intact Au3Cu palisade interlayer effectively modulates the diffusion kinetics of Cu atoms as demonstrated by experimental and theoretical investigations and simultaneously alleviates the lattice mismatch between Cu and Ag as well as Cu and CdS. The Cu@Au3Cu@CdS HNCs feature exceptional crystallinity and atomically organized heterointerfaces between the plasmonic metal and the semiconductor. This results in the efficient plasmon-induced injection of hot electrons from Cu@Au3Cu into the CdS shell, enabling the Cu@Au3Cu@CdS HNCs to achieve high activity and selectivity for the photocatalytic reduction of CO2 to CO.

6.
Adv Mater ; 36(15): e2312214, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38190643

RESUMO

Multiyolk-shell (mYS) nanostructures have garnered significant interest in various photocatalysis applications such as water splitting and waste treatment. Nonetheless, the complexity and rigorous conditions for the synthesis have hindered their widespread implementation. This study presents a one-step electrochemical strategy for synthesizing multiyolk-shell nanocoils (mYSNC), wherein multiple cores of noble metal nanoparticles, such as Au, are embedded within the hollow coil-shaped FePO4 shell structures, mitigating the challenges posed by conventional methods. By capitalizing on the dissimilar dissolution rates of bimetallic alloy nanocoils in an electrochemically programmed solution, nanocoils of different shapes and materials, including two variations of mYSNCs are successfully fabricated. The resulting Au-FePO4 mYSNCs exhibit exceptional photocatalytic performance for environmental remediation, demonstrating up to 99% degradation of methylene blue molecules within 50 min and 95% degradation of tetracycline within 100 min under ultraviolet-visible (UV-vis) light source. This remarkable performance can be attributed to the abundant electrochemical active sites, internal voids facilitating efficient light harvesting with coil morphology, amplified localized surface plasmon resonance (LSPR) at the plasmonic nanoparticle-semiconductor interface, and effective band engineering. The innovative approach utilizing bimetallic alloys demonstrates precise geometric control and design of intricate multicomponent hybrid composites, showcasing the potential for developing versatile hollow nanomaterials for catalytic applications.

7.
Adv Mater ; 36(8): e2307819, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37797210

RESUMO

The practical applications of alkaline zinc-based batteries are challenged by poor rechargeability with an insufficient zinc utilization ratio. Herein, a sphere-confined reversible zinc deposition behavior from a free-standing Zn anode is reported, which is composed of bi-continuous ZnO-protected interconnected and hollowed Zn microspheres by the Kirkendall effect. The cross-linked Zn network with in situ formed outer ZnO shell and inner hollow space not only inhibits side reactions but also ensures long-range conductivity and accommodates shape change, which induces preferential reversible zinc dissolution-deposition process in the inner space and maintains structural integrity even under high zinc utilization ratio. As a result, the Zn electrode can be stably cycled for 390 h at a high current density of 20 mA cm-2 (60% depth of discharge), outperforming previously reported alkaline Zn anodes. A stable zinc-nickel oxide hydroxide battery with a high cumulative capacity of 8532 mAh cm-2 at 60% depth of discharge is also demonstrated.

8.
J Colloid Interface Sci ; 657: 169-177, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38039878

RESUMO

Fabricating an efficient electrocatalyst for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) isthe most challenging task for overall water splitting. Herein, we utilized the confinement effect of molten sodium chloride (NaCl) to controllably prepare hollow Co/Co3O4 nanoparticles embedded into nitrogen-doped carbon (H-Co/Co3O4-NC). Experimental and theoretical investigations revealed that the interfacial interaction within Co/Co3O4 heterostructure played a pivotal role in modulating the electronic structure and facilitating the electron transfer. Meanwhile, the superiority of hollow nanostructure could promote the mesoscale mass diffusion. Remarkably, the as-prepared H-Co/Co3O4-NC catalyst achieved the low overpotentials of 316 mV and 252 mV towards OER and HER, respectively, which delivered overall water splitting with the potential of 1.76 V at a current density of 10 mA cm-2.

9.
J Colloid Interface Sci ; 658: 688-698, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38134677

RESUMO

Mg2+/Li+ hybrid batteries (MLHBs), which support the rapid insertion and removal of Mg2+/Li+ bimetallic ions, are promising energy storage systems. Inspired by the Kirkendall effect, ball-in-ball bimetallic sulfides with heterostructures were prepared as cathode materials for the MLHBs. First, a nickel-cobalt precursor (NiCo-X precursor) with three-dimensional (3D) nanosheets on its surface was prepared using a solvothermal method based on the association reaction between alkoxide molecules. Subsequently, the NiCo-X precursor was vulcanized at high temperature using the potential energy difference as the driving force to successfully prepare NiS2@CoS2 core-shell hollow spheres. When used as the positive electrode material for the MLHBs, the NiS2@CoS2 hollow spheres exhibited excellent Mg2+/Li+ ion storage capacity, high specific capacity, good rate performance, and stable cyclic stability owing to their tough hierarchical structure. At a current density of 500 mA g-1, a specific capacity of 536 mAh g-1 was maintained after 200 cycles. By explaining the transformation mechanism of Mg2+/Li+ in bimetallic sulfides, it was proven that Mg2+ and Li+ worked cooperatively. This study provides a new approach for developing MLHBs with good electrochemical properties.

10.
Nanomaterials (Basel) ; 13(20)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37887907

RESUMO

ß-Ga2O3 nanostructures are attractive wide-band-gap semiconductor materials as they exhibit promising photoelectric properties and potential applications. Despite the extensive efforts on ß-Ga2O3 nanowires, investigations into ß-Ga2O3 nanotubes are rare since the tubular structures are hard to synthesize. In this paper, we report a facile method for fabricating ß-Ga2O3 nanotubes using pre-synthesized GaSb nanowires as sacrificial templates. Through a two-step heating-treatment strategy, the GaSb nanowires are partially oxidized to form ß-Ga2O3 shells, and then, the residual inner parts are removed subsequently in vacuum conditions, yielding delicate hollow ß-Ga2O3 nanotubes. The length, diameter, and thickness of the nanotubes can be customized by using different GaSb nanowires and heating parameters. In situ transmission electron microscopic heating experiments are performed to reveal the transformation dynamics of the ß-Ga2O3 nanotubes, while the Kirkendall effect and the sublimation process are found to be critical. Moreover, photoelectric tests are carried out on the obtained ß-Ga2O3 nanotubes. A photoresponsivity of ~25.9 A/W and a detectivity of ~5.6 × 1011 Jones have been achieved with a single-ß-Ga2O3-nanotube device under an excitation wavelength of 254 nm.

11.
Proc Natl Acad Sci U S A ; 120(39): e2304552120, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37725641

RESUMO

Nanosized zero-valent iron (nZVI) is a promising persulfate (PS) activator, however, its structurally dense oxide shell seriously inhibited electrons transfer for O-O bond cleavage of PS. Herein, we introduced sulfidation and phosphorus-doped biochar for breaking the pristine oxide shell with formation of FeS and FePO4-containing mixed shell. In this case, the faster diffusion rate of iron atoms compared to shell components triggered multiple Kirkendall effects, causing inward fluxion of vacancies with further coalescing into radial nanocracks. Exemplified by trichloroethylene (TCE) removal, such a unique "lemon-slice-like" nanocrack structure favored fast outward transfer of electrons and ferrous ions across the mixed shell to PS activation for high-efficient generation and utilization of reactive species, as evidenced by effective dechlorination (90.6%) and mineralization (85.4%) of TCE. [Formula: see text] contributed most to TCE decomposition, moreover, the SnZVI@PBC gradually became electron-deficient and thus extracted electrons from TCE with achieving nonradical-based degradation. Compared to nZVI/PS process, the SnZVI@PBC/PS system could significantly reduce catalyst dosage (87.5%) and PS amount (68.8%) to achieve nearly complete TCE degradation, and was anti-interference, stable, and pH-universal. This study advanced mechanistic understandings of multiple Kirkendall effects-triggered nanocrack formation on nZVI with corresponding rational design of Fenton-like catalysts for organics degradation.

12.
Adv Mater ; 35(49): e2305985, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37724799

RESUMO

Heterostructuring colloidal nanocrystals into multicomponent modular constructs, where domains of distinct metal and semiconductor phases are interconnected through bonding interfaces, is a consolidated approach to advanced breeds of solution-processable hybrid nanomaterials capable of expressing richly tunable and even entirely novel physical-chemical properties and functionalities. To meet the challenges posed by the wet-chemical synthesis of metal-semiconductor nanoheterostructures and to overcome some intrinsic limitations of available protocols, innovative transformative routes, based on the paradigm of partial chemicalization, have recently been devised within the framework of the standard seeded-growth scheme. These techniques involve regiospecific replacement reactions on preformed nanocrystal substrates, thus holding great synthetic potential for programmable configurational diversification. This review article illustrates achievements so far made in the elaboration of metal-semiconductor nanoheterostructures with tailored arrangements of their component modules by means of conversion pathways that leverage on spatially controlled partial chemicalization of mono- and bi-metallic seeds. The advantages and limitations of these approaches are discussed within the context of the most plausible mechanisms underlying the evolution of the nanoheterostructures in liquid media. Representative physical-chemical properties and applications of chemicalization-derived metal-semiconductor nanoheterostructures are emphasized. Finally, prospects for developments in the field are outlined.

13.
ACS Appl Mater Interfaces ; 15(35): 41504-41515, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37611062

RESUMO

As for the conversion-type iron fluoride (FeF3) cathode material with multielectron reactions for lithium-ion batteries (LIBs), sluggish reaction kinetics and low electrical conductivity pose certain limitations for the long-lasting reversible conversion processes. Herein, the three-dimensional porous nitrogen-doped carbon matrix in situ anchoring FeF3 nanocavities coated by graphitized carbon (FeF3/GC) are rationally prepared. Through the Kirkendall effect, the low-temperature fluorination of NF3 enables the resultant hollow FeF3 nanoparticles to possess a large number of lithium storage cavities and outer graphitized carbon structure, further effectively buffering the expansion of volume. The FeF3/GC cathode delivers a superior discharge capacity of 504.2 mAh g-1 after 1200 cycles at 1000 mA g-1, with a capacity decay rate of only 0.01% per cycle. Even at a rate of 5000 mA g-1, the composite cathode still delivers a discharge capacity of 309.6 mAh g-1. Impressively, the existence of graphitized carbon and the short Li+ diffusion length ensure fast electron/ion transfer, which significantly enhances the conversion reaction kinetics. This study aims to provide a promising strategy for the efficiency enhancement of multielectron cathode conversion reactions for LIBs.

14.
ACS Nano ; 17(17): 17536-17544, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37611075

RESUMO

Platinum-based metal catalysts are considered excellent converters in various catalytic reactions, particularly in fuel cell applications. The atomic structure at the nanocrystal surface and the metal interface both influence the catalytic performance, controlling the efficiency of the electrochemical reactions. Here we report the synthesis of Ag/Pt and Ag/Pd core/shell nanocrystals and insight into the formation mechanism of these bimetallic core/shell nanocrystals when undergoing oxygen plasma treatment. We carefully designed the oxidation treatment that determines the structural and compositional evolution. The accelerated oxidation-triggered diffusion of Ag toward the outer metal shell leads to the Kirkendall effect. After prolonged oxygen plasma treatment, most core/shell nanocrystals evolve into hollow spheres. At the same time, a minor fraction of the metal remains unchanged with a well-protected Ag core and a monocrystalline Pt or Pd shell. We hypothesize that the O2 plasma disturbs the Pt or Pd shell surface and introduces active O species that react with the diffused Ag from the inside out. Based on EDX elemental mapping, combined with several electron microscopic techniques, we deduced the formation mechanism of the hollow structures to be as follows: (I) the oxidation of Ag within the Pt or Pd lattice causes a disrupted crystal lattice of Pt or Pd; (II) nanochannels arise at the defect locations on the Pt or Pd shell; (III) the remaining Ag atoms pass through these nanochannels and leave a hollow crystal behind. Our findings deepen the understanding of interface dynamics of bimetallic nanostructured catalysts under an oxidative environment and unveil an alternative approach for catalyst pretreatment.

15.
J Colloid Interface Sci ; 652(Pt A): 164-173, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37591078

RESUMO

Oxygen evolution reaction (OER) electrocatalysts in acidic media, except for precious IrO2, have difficulty realizing good electrocatalytic activity and high electrochemical stability simultaneously. However, the scarcity of IrO2 as an acidic OER electrocatalyst impedes its large-scale application in hydrogen generation, organic synthesis, nonferrous metal production and sewage disposal. Herein, we report the design and fabrication of a nanoporous TiMnCoCN compound based on the nanoscale Kirkendall effect, possessing an intriguing self-adjusting capability for the oxygen evolution reaction (OER) in a 0.5 M H2SO4 solution. The nanoporous TiMnCoCN compound electrode for the acidic OER displays a low overpotential of 143 mV for 10 mA cm-2 and exhibits no increase in potential over 50,000 s, which is ascribed to the self-adjusting ability, Carbon/nitrogen (C/N) incorporation and nanoporous architecture. The concentration of inert TiO2 on the reconstructed surface of the compound can self-adjust with the change in OER potential via a cobalt-dissolved vacancy approach according to the stabilization requirement. In this work, the self-reconstruction law of surface structure was discovered, providing a novel strategy for designing and fabricating nonnoble OER electrocatalysts with superior catalytic performance and robust stability in acidic media.

16.
Nano Lett ; 23(14): 6520-6527, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37399502

RESUMO

Metal nanoparticles are attracting interest for their light-absorption properties, but such materials are known to dynamically evolve under the action of chemical and physical perturbations, resulting in changes in their structure and composition. Using a transmission electron microscope equipped for optical excitation of the specimen, the structural evolution of Cu-based nanoparticles under simultaneous electron beam irradiation and plasmonic excitation was investigated with high spatiotemporal resolution. These nanoparticles initially have a Cu core-Cu2O oxide shell structure, but over the course of imaging, they undergo hollowing via the nanoscale Kirkendall effect. We captured the nucleation of a void within the core, which then rapidly grows along specific crystallographic directions until the core is hollowed out. Hollowing is triggered by electron-beam irradiation; plasmonic excitation enhances the kinetics of the transformation likely by the effect of photothermal heating.

17.
Small ; 19(32): e2301189, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37069774

RESUMO

In situ electrochemical activation brings unexpected electrochemical performance improvements to electrode materials, while the mechanism behind is still needed to study deeply. Herein, an in situ electrochemically approach is developed for the activation of heterointerface MnOx /Co3 O4 by inducing Mn-defect, wherein the Mn defects are formed through a charge process that converts the MnOx with poor electrochemical activities toward Zn2+ into high electrochemically active cathode for aqueous zinc-ion batteries (ZIBs). Guided by the coupling engineering strategy, the heterointerface cathode exhibits an intercalation/conversion dual-mechanism without structural collapse during storage/release of Zn2+ . The heterointerfaces between different phases can generate built-in electric fields, reducing the energy barrier for ion migration and facilitating electron/ion diffusion. As a consequence, the dual-mechanism MnOx /Co3 O4 shows an outstanding fast charging performance and maintains a capacity of 401.03 mAh g-1 at 0.1 A g-1 . More importantly, a ZIB based on MnOx /Co3 O4 delivered an energy density of 166.09 Wh kg-1 at an ultrahigh power density of 694.64 W kg-1 , which outperforms those of fast charging supercapacitors. This work provides insights for using defect chemistry to introduce novel properties in active materials for highly for high-performance aqueous ZIBs.

18.
Environ Sci Pollut Res Int ; 30(22): 61927-61944, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36934181

RESUMO

Because of the growing concerns about environmental issues, the search of proficient semiconductor catalysts for pollutants degradation from contaminated water is one of the interesting areas of research. Due to the larger surface area, hollow nanomaterials with hollow interior and outer thickness illustrate a class of significant nanostructured materials. The enhanced surface area provides remarkable applications of the hollow nanomaterials in catalysis. In Kirkendall effect, pores are formed owing to the diverse diffusion rates of two nanomaterials in a diffusion couple. Here, we have introduced the facile hydrothermal synthesis of hollow nanorods of ZnO/ZnS via Kirkendall effect using ZnO nanorods (NRs). The morphologies, optical properties, compositions, and crystal structures of the as synthesized materials are systematically studied using UV-vis, PXRD, FESEM, TEM, EDS, XPS, etc. The process of synthesis and growth mechanism of hollow NRs is suggested based on the Kirkendall effect. A hollow nanomaterial, envisaged being highly efficient for molecule adsorption on its surface, the as synthesized materials were used for the photocatalytic degradation of methylene blue (MB) dye. MB degradation efficiency of 96% within 60 min was performed over ZnO/ZnS hollow NRs, which was 2.6-fold greater than that of ZnO. The rate constant of ZnO/ZnS heterostructure was 0.045 min-1, which was 5.5 times larger than that of bare ZnO. We have concluded our work in the directions towards the synthesis of various semiconductor hollow nanostructures for the varied catalytic reactions.


Assuntos
Nanoestruturas , Nanotubos , Óxido de Zinco , Azul de Metileno
19.
ACS Nano ; 17(5): 4642-4649, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36800560

RESUMO

Hollow metal chalcogenide nanoparticles are widely applicable in environmental and energy-related processes. Herein, we synthesized such particles with large compositional and morphological diversity by combining scanning probe block copolymer lithography with a Kirkendall effect-based sulfidation process. We explored the influence of temperature-dependent diffusion kinetics, elemental composition and miscibility, and phase boundaries on the resulting particle morphologies. Specifically, CoNi alloys form single-shell sulfides for the synthetic conditions explored because Co and Ni exhibit similar diffusion rates, while CuNi alloys form sulfides with various types of morphologies (yolk-shell, double-shell, and single-shell) because Cu and Ni have different diffusion rates. In contrast, Co-Cu heterodimers form hollow heterostructured sulfides with varying void numbers and locations depending on synthesis temperature and phase boundary. At higher temperatures, the increased miscibility of CoS2 and CuS makes it energetically favorable for the heterostructure to adopt a single alloy shell morphology, which is rationalized using density functional theory-based calculations.

20.
Adv Mater ; 35(6): e2207995, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36417324

RESUMO

Structurally ordered L10 -iron triad (Fe, Co, Ni)/Pt with a M(iron triad)/Pt ratio ≈1:1 has drawn increasing attention in oxygen reduction reaction (ORR) electrocatalysis and fuel cell technologies by virtue of the high performance derived from their strong surface strain. However, the synthesis of intermetallic L10 -M(iron triad)Pt generally requires the accurate content control of the multicomponent and the sufficient thermal energy to overcome the kinetic barrier for atom diffusion. This work reports a synthesis of sub ≈5 nm L10 -intermetallic nanoparticles using phosphide intermediate-induced structural phase transition. Taking the L10 -CoPt intermetallic, for example, the formation of the L10 structure depends on the Co2 P intermediates can provide abundant P vacancies to accelerate the Pt diffusion into the orthorhombic Co-rich skeletons, instead of the traditional route of intermetallic from solid solution. L10 -CoPt prepared by this method has a high degree of ordering and shows the broad adaptability of various Pt-based electrocatalysts with different loading and states to improve their electrocatalytic performance. Additionally, the other L10 -M(iron triad)Pt intermetallics, i.e., L10 -NiPt and L10 -FePt, are also prepared through this phosphide-induced phase transition. The findings provide a promising strategy for designing other intermetallic materials alloy materials using a structural phase transition induced by a second phase.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA