Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Food Chem ; 453: 139644, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38761735

RESUMO

This work developed and characterized the physicochemical properties of a type A gelatin and amidated low-methoxyl pectin complex coacervate (GA-LMAP-CC) hydrogel and evaluated its suitability for preserving the viability of probiotics under in vitro gastrointestinal conditions. The formation of GA-LMAP-CC was achieved via height electrostatic attraction at pH 3 and a mixing ratio of 1, exhibiting thermoreversible gel behavior. The hydrogel had a porosity of 44% and a water absorption capacity of up to 12 times. Water absorption profiles were obtained at different pH values (2, 5, and 7). The influence of GA-LMAP-CC depended on the medium, which controlled the hydration and water absorption rate. GA-LMAP-CC promoted the viability of B. longum BB536 and L. acidophilus strains under simulated gastrointestinal conditions, thereby enhancing their potential for intestinal colonization. The hydrogel has suitable properties for potential application in food and pharmaceutical areas to encapsulate and preserve probiotics.

2.
Antibiotics (Basel) ; 13(4)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38667028

RESUMO

Salmonella enterica serovar Typhimurium (S. Typhimurium), a foodborne pathogen that poses significant public health risks to humans and animals, presents a formidable challenge due to its antibiotic resistance. This study explores the potential of Lactobacillus acidophilus (L. acidophilus 1.3251) probiotics as an alternative strategy to combat antibiotic resistance associated with S. Typhimurium infection. In this investigation, twenty-four BALB/c mice were assigned to four groups: a non-infected, non-treated group (CNG); an infected, non-treated group (CPG); a group fed with L. acidophilus but not infected (LAG); and a group fed with L. acidophilus and challenged with Salmonella (LAST). The results revealed a reduction in Salmonella levels in the feces of mice, along with restored weight and improved overall health in the LAST compared to the CPG. The feeding of L. acidophilus was found to downregulate pro-inflammatory cytokine mRNA induced by Salmonella while upregulating anti-inflammatory cytokines. Additionally, it influenced the expression of mRNA transcript, encoding tight junction protein, oxidative stress-induced enzymes, and apoptosis-related mRNA expression. Furthermore, the LEfSe analysis demonstrated a significant shift in the abundance of critical commensal genera in the LAST, essential for maintaining gut homeostasis, metabolic reactions, anti-inflammatory responses, and butyrate production. Transcriptomic analysis revealed 2173 upregulated and 506 downregulated differentially expressed genes (DEGs) in the LAST vs. the CPG. Functional analysis of these DEGs highlighted their involvement in immunity, metabolism, and cellular development. Kyoto Encyclopedia of Genes and Genome (KEGG) pathway analysis indicated their role in tumor necrosis factor (TNF), mitogen-activated protein kinase (MAPK), chemokine, Forkhead box O (FOXO), and transforming growth factor (TGF-ß) signaling pathway. Moreover, the fecal metabolomic analysis identified 929 differential metabolites, with enrichment observed in valine, leucine, isoleucine, taurine, glycine, and other metabolites. These findings suggest that supplementation with L. acidophilus promotes the growth of beneficial commensal genera while mitigating Salmonella-induced intestinal disruption by modulating immunity, gut homeostasis, gut barrier integrity, and metabolism.

3.
Microorganisms ; 12(4)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38674606

RESUMO

Lactic acid bacteria are considered an inexhaustible source of bioactive compounds; indeed, products from their metabolism are known to have immunomodulatory and anti-inflammatory activity. Recently, we demonstrated that Cell-Free Supernatants (CFS) obtained from Lactobacillus (L.) acidophilus, Lactiplantibacillus (L.) plantarum, Lacticaseibacillus (L.) rhamnosus, and Limosilactobacillus (L.) reuteri can impair Candida pathogenic potential in an in vitro model of epithelial vaginal infection. This effect could be ascribed to a direct effect of living lactic acid bacteria on Candida virulence and to the production of metabolites that are able to impair fungal virulence. In the present work, stemming from these data, we deepened our knowledge of CFS from these four lactic acid bacteria by performing a metabolomic analysis to better characterize their composition. By using an untargeted metabolomic approach, we detected consistent differences in the metabolites produced by these four different lactic acid bacteria. Interestingly, L. rhamnosus and L. acidophilus showed the most peculiar metabolic profiles. Specifically, after a hierarchical clustering analysis, L. rhamnosus and L. acidophilus showed specific areas of significantly overexpressed metabolites that strongly differed from the same areas in other lactic acid bacteria. From the overexpressed compounds in these areas, inosine from L. rhamnosus returned with the best identification profile. This molecule has been described as having antioxidant, anti-inflammatory, anti-infective, and neuroprotective properties. The biological significance of its overproduction by L. rhamnosus might be important in its probiotic and/or postbiotic activity.

4.
Microbiol Resour Announc ; 13(4): e0114023, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38501783

RESUMO

The gut microflora contains a diverse microbial population that is influenced by the host and the environment. We report the complete circular genome sequences of Lactobacillus acidophilus strain P42 and Limosilactobacillus reuteri strain P43 isolated from chicken cecal samples. P42 and P43 could potentially serve as poultry probiotic strains.

5.
Environ Pollut ; 341: 122977, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38006993

RESUMO

Particulate matter with aerodynamic diameters of ≤2.5 µm (PM2.5) is associated with multiple organ damage, among which the influence of PM2.5 on the gastrointestinal system has been a recent focus of attention. In this study, four different types of PM2.5 exposure models are established to determine the occurrence of PM2.5 induced intestinal inflammation. In view of the abnormal expression of lymphocytes detected in the model and the well-known fact that the intestine is the largest immune organ, we focused on the intestinal immune system. A combined regulatory T cell (Treg) transplantation experiment demonstrated that PM2.5 induced intestinal inflammation by affecting the imbalance of regulatory T cell/T helper cell 17 (Treg/Th17). Since the intestine has the highest microbial content, and the results of the 16S rDNA third-generation sequencing analysis further revealed that the abundance of Lactobacillus_acidophilus (L.acidophilus) decreased significantly after PM2.5 exposure. The following mechanism study confirmed that L.acidophilus participated in an imbalance of Treg/Th17. Moreover, L.acidophilus supplementation successfully alleviated intestinal inflammation by regulated regulating the balance of Treg/Th17 under the background of PM2.5 exposure. Hence, this is a potential method to protect against intestinal inflammation induced by PM2.5.


Assuntos
Material Particulado , Linfócitos T Reguladores , Humanos , Material Particulado/toxicidade , Material Particulado/metabolismo , Células Th17 , Trato Gastrointestinal , Inflamação/induzido quimicamente , Inflamação/metabolismo
6.
Heliyon ; 9(12): e22609, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38094054

RESUMO

Protein rich culture media are employed in the production of lactic acid bacteria (LAB); however, production costs are high. In this work media formulation and evaluation for LAB production were conducted considering physiological properties of lactic acid bacteria. Consumption efficiency (E), yield production (Y) and specific substrate consumption rate (qS) values as response variables were used. Four culture media were used: (1) Man Rogosa Sharp (MRS); (2) cabbage liquor (MC); (3) a new balanced culture medium (MX); and (4) MX supplemented with cabbage liquor (MXC). The culture media were evaluated using two strains: Lactobacillus acidophilus ATCC 4356 and Lactiplantibacillus plantarum ATCC 10241. The EGLU for L. plantarum was 100 % in the three media and YX/S value was 0.02 ± 0.003 in MRS and MX, while YLAC/S was 0.57 ± 0.03 in MRS and 0.51 ± 0.02 in MX. In MXC, the value obtained for YX/S was 0.07 ± 0.002 while YLAC/S was 0.47 ± 0.04. Specific glucose consumption and lactate formation rates for L. plantarum in MRS and MX media did not show significant differences. These results suggest that MX and MXC can be used for efficient production of the LAB at low cost.

7.
AAPS PharmSciTech ; 24(7): 193, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37740105

RESUMO

Previously, we have shown that thin-film freeze-drying can be applied to prepare dry powders of bacteria such as Lactobacillus acidophilus. Herein, we tested the viability of L. acidophilus in thin-film freeze-dried powders (TFF powders) filled in delayed-release vegetarian capsules in a simulated gastric fluid (SGF) consisting of 0.1N hydrochloric acid and sodium chloride. Initially, we determined the water removal rate from frozen thin films on relatively larger scales (i.e., 10-750 g). We then prepared and characterized two TFF powders of L. acidophilus with either sucrose and maltodextrin or sucrose and hydroxypropyl methylcellulose acetate succinate (HPMC-AS), a pH-sensitive polymer, as excipients and evaluated the viability of the bacteria after the TFF powders were filled in delayed-release vegetarian capsules and the capsules were incubated in the SGF for 30 min. On 10-750 g scales and at the settings specified, water removal from frozen thin films was faster than from slow shelf-frozen bulk solids. When the L. acidophilus in sucrose and HPMC-AS TFF powder was filled into a delayed-release capsule that was placed into another delayed-release capsule, the bacterial viability reduction after incubation in the SGF can be minimized to within 1 log in colony forming unit (CFU). However, for the L. acidophilus in sucrose and maltodextrin TFF powder, even in the capsule-in-capsule dosage form, bacterial CFU reduction was > 2 logs. TFF powders of live microorganisms containing an acid-resistant material in capsule-in-capsule delayed-release vegetarian capsules have the potential for oral delivery of those microorganisms.


Assuntos
Lactobacillus acidophilus , Sacarose , Humanos , Pós , Cápsulas , Vegetarianos , Água
8.
Int J Mol Sci ; 24(15)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37569261

RESUMO

Porcine circovirus type 2 (PCV2) has caused huge economic losses to the pig industry across the world. Matrine is a natural compound that has been shown to regulate intestinal flora and has anti-PCV2 activity in mouse models. PCV2 infection can lead to changes in intestinal flora. The intestinal flora has proved to be one of the important pharmacological targets of the active components of Traditional Chinese Medicine. This study aimed to determine whether matrine exerts anti-PCV2 effects by regulating intestinal flora. In this study, fecal microbiota transplantation (FMT) was used to evaluate the effect of matrine on the intestinal flora of PCV2-infected Kunming (KM) mice. The expression of the Cap gene in the liver and the ileum, the relative expression of IL-1ß mRNA, and the Lactobacillus acidophilus (L. acidophilus) gene in the ileum of mice were determined by real-time quantitative polymerase chain reaction (qPCR). ELISA was used to analyze the content of secretory immunoglobulin A (SIgA) in small intestinal fluid. L. acidophilus was isolated and identified from the feces of KM mice in order to study its anti-PCV2 effect in vivo. The expression of the Cap gene in the liver and the ileum and the relative expression of L. acidophilus and IL-1ß mRNA in the ileum were determined by qPCR. The results showed that matrine could reduce the relative expression of IL-1ß mRNA by regulating intestinal flora, and that its pharmacological anti-PCV2 and effect may be related to L. acidophilus. L. acidophilus was successfully isolated and identified from the feces of KM mice. The in vivo experiment revealed that administration of L. acidophilus also reduced the relative expression of IL-1ß mRNA, and that it had anti-PCV2 effects in PCV2-infected mice. It was found that matrine could regulate the abundance of L. acidophilus in the gut of mice to exert an anti-PCV2 effect and inhibit PCV2-induced inflammatory response.


Assuntos
Circovirus , Doenças dos Suínos , Camundongos , Suínos , Animais , Matrinas , Lactobacillus acidophilus , RNA Mensageiro/genética
9.
Vet Sci ; 10(4)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37104443

RESUMO

Probiotics, also referred to as "living microorganisms," are mostly present in the genitals and the guts of animals. They can increase an animal's immunity, aid in digestion and absorption, control gut microbiota, protect against sickness, and even fight cancer. However, the differences in the effects of different types of probiotics on host gut microbiota composition are still unclear. In this study, 21-day-old specific pathogen-free (SPF) mice were gavaged with Lactobacillus acidophilus (La), Lactiplantibacillus plantarum (Lp), Bacillus subtilis (Bs), Enterococcus faecalis (Ef), LB broth medium, and MRS broth medium. We sequenced 16S rRNA from fecal samples from each group 14 d after gavaging. According to the results, there were significant differences among the six groups of samples in Firmicutes, Bacteroidetes, Proteobacteria, Bacteroidetes, Actinobacteria, and Desferribacter (p < 0.01) at the phylum level. Lactobacillus, Erysipelaceae Clostridium, Bacteroides, Brautella, Trichospiraceae Clostridium, Verummicroaceae Ruminococcus, Ruminococcus, Prevotella, Shigella, and Clostridium Clostridium differed significantly at the genus level (p < 0.01). Four kinds of probiotic changes in the composition and structure of the gut microbiota in mice were observed, but they did not cause changes in the diversity of the gut microbiota. In conclusion, the use of different probiotics resulted in different changes in the gut microbiota of the mice, including genera that some probiotics decreased and genera that some pathogens increased. According to the results of this study, different probiotic strains have different effects on the gut microbiota of mice, which may provide new ideas for the mechanism of action and application of microecological agents.

10.
Pharmaceutics ; 15(2)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36839725

RESUMO

The proteinaceous compounds produced by lactic acid bacteria are called bacteriocins and have a wide variety of bioactive properties. However, bacteriocin's commercial availability is limited due to short stability periods and low yields. Therefore, the objective of this study was to synthesize bacteriocin-derived silver nanoparticles (Bac10307-AgNPs) extracted from Lactobacillus acidophilus (L. acidophilus), which may have the potential to increase the bioactivity of bacteriocins and overcome the hurdles. It was found that extracted and purified Bac10307 had a broad range of stability for both temperature (20-100 °C) and pH (3-12). Further, based on Sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis, its molecular weight was estimated to be 4.2 kDa. The synthesized Bac10307-AgNPs showed a peak of surface plasmon resonance at 430 nm λmax. Fourier transform infrared (FTIR) confirmed the presence of biological moieties, and transmission electron microscopy (TEM) coupled with Energy dispersive X-Ray (EDX) confirmed that AgNPs were spherical and irregularly shaped, with a size range of 9-20 nm. As a result, the Bac10307-AgNPs displayed very strong antibacterial activity with MIC values as low as 8 µg/mL for Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa), when compared to Bac10307 alone. In addition, Bac10307-AgNPs demonstrated promising in vitro antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) (IC50 = 116.04 µg/mL) and in vitro cytotoxicity against human liver cancer cells (HepG2) (IC50 = 135.63 µg/mL), more than Bac10307 alone (IC50 = 139.82 µg/mL against DPPH and 158.20 µg/mL against HepG2). Furthermore, a protein-protein molecular docking simulation study of bacteriocins with target proteins of different biological functions was also carried out in order to ascertain the interactions between bacteriocins and target proteins.

11.
Polymers (Basel) ; 15(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36850336

RESUMO

One of the most prevalent chronic infectious disorders is tooth decay. Acids produced when plaque bacteria break down sugar in the mouth cause tooth decay. Streptococcus mutans and Lactobacillus acidophilus are the most prominent species related to dental caries. Innovative biocidal agents that integrate with a biomaterial to prevent bacterial colonization have shown remarkable promise as a result of the rapid advancement of nanoscience and nanotechnology. In this study, Ulva lactuca was used as a cellulose source and reducing agent to synthesize nanocellulose and Ulva/Ag/cellulose/nanocomposites. The characterizations of nanocellulose and Ulva/Ag/cellulose/nanocomposites were tested for FT-IR, TEM, SEM, EDS, XRD, and zeta potential. Ulva/Ag/cellulose/nanocomposites and Ulva/nanocellulose, both blended with fluoride, were tested as an antibacterial against S. mutans ATCC 25175 and L. acidophilus CH-2. The results of the SEM proved that nanocellulose is filament-shaped, and FT-IR proved that the functional groups of Ulva/nanocellulose and Ulva/Ag/cellulose/nanocomposites and cellulose are relatively similar but present some small diffusion in peaks. The TEM image demonstrated that the more piratical size distribution of Ulva/Ag/cellulose/nanocomposites ranged from 15 to 20 nm, and Ulva/nanocellulose ranged from 10 to 15 nm. Ulva/Ag/cellulose/nanocomposites have higher negativity than Ulva/nanocellulose. Ulva/Ag/cellulose/nanocomposites and Ulva/nanocellulose possess antibacterial activity against S. mutans ATCC 25175 and L. acidophilus CH-2, but Ulva/Ag/cellulose/nanocomposites are more effective, followed by that blended with fluoride. It is possible to use Ulva/Ag/cellulose/nanocomposites as an antimicrobial agent when added to toothpaste. It is promising to discover an economic and safe nanocomposite product from a natural source with an antimicrobial agent that might be used against tooth bacteria.

12.
Heliyon ; 8(12): e12307, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36578411

RESUMO

There are several reports about the effect of gravity removal on some characteristics of microorganisms due to possible change in surface layer thickness and adherence properties. In this study, bioremoval efficiency of Lactobacillus acidophilus ATCC 4356 from water under simulated microgravity conditions was investigated. Furthermore, pretreatment effects (untreated, NaOH, and heat pretreated) of L. acidophilus ATCC 4356 on heavy metal removal was evaluated on microgravity, as our previous research showed impact of pretreatment on adherence properties of probiotics to environmental metals. The results showed that ability of L. acidophilus for arsenic adsorption enhanced following heat-pretreatment in simulated and normal gravity. Moreover, in both conditions of simulated microgravity and normal gravity NaOH-treated L. acidophilus increased the removal of cadmium and lead. In none of the conditions, pretreatment of lactobacillus affects mercury removal. Evaluation of stability of binding of L. acidophilus-heavy metal was investigated to check irreversibility of complex formation between microorganisms and metals in simulated gastrointestinal conditions. Data showed release of heavy metals from complex in normal gravity. Obtained results of this research show the favorable potential of simulated microgravity condition to increase bioremoval capacity of L. acidophilus for heavy metals.

13.
Artigo em Inglês | MEDLINE | ID: mdl-36443558

RESUMO

Obesity is defined as having an excess of adipose tissue and is associated with the development of diabetes, hypertension, and atherosclerosis, which are the main causes of death worldwide. Research shows that probiotics and prebiotics reduce the metabolic alterations caused by high-fat diets. Therefore, this work evaluated the effect of the incorporation of Lactobacillus acidophilus (probiotic) and inulin (prebiotic) in the diet through obesity markers (biochemical, anthropometric, and molecular markers) in an obese murine model. Four treatments were administered: (1) hypocaloric diet (HD), (2) HD + L. acidophilus, (3) HD + inulin, and (4) DH supplemented with L. acidophilus + inulin for 8 weeks. After treatment, glucose, triglycerides, total cholesterol, HDL-C, and LDL-C in plasma were determined. In addition, the total body weight and adipose tissue were taken to calculate the body mass index. Following RNA extraction from adipose tissue, the expression of PPAR gamma, PPAR alpha, and transforming growth factor beta 1 (TGF1ß) was evaluated by semiquantitative PCR. All treatments showed an improvement in biochemical markers compared to the values of the obese model (p < 0.05). Optimal values for blood glucose (133.2 ± 14.3 mg/dL), triglycerides (71 ± 4.6 mg/dL), total cholesterol (48.9 ± 6 mg/dL), HDL-C (40.9 ± 4.8 mg/dL), and LDL-C (8.4 ± 1.7 mg/dL) were obtained in the mixed treatment. Regarding fat mass index (FMI), prebiotic treatment caused the greatest reduction. On the other hand, mixed treatment increased the gene expression of PPARα and TGF1ß in adipose tissue with DH with L. acidophilus and inulin treatment. This work demonstrates that the use of L. acidophilus and inulin as a complementary treatment is a viable alternative for prevention and action as a complementary treatment for obesity given the reduction in biochemical parameters and anthropometric indices; these reductions were greater than those found in the classic treatment of obesity due to the induction of the expression of genes related to lipid metabolism and anti-inflammatory cytokines, which contribute to reducing the high levels of glucose, triglycerides, and cholesterol caused by obesity.

14.
Gastroenterol Hepatol Bed Bench ; 15(3): 263-270, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36311958

RESUMO

Aim: The current study aimed to remove aflatoxin from reconstituted milk by adding three probiotics, namely Saccharomyces boulardii, Lactobacillus casei, and Lactobacillus acidophilus. Background: Aflatoxins are poisonous substances produced by certain kinds of fungi that are found naturally all over the world. They can contaminate food crops and pose a serious health threat to humans and livestock. Microbial detoxification is one method of eliminating aflatoxins, including aflatoxin M1. Methods: For this purpose, about 109 and 107 cfu/ml of S. boulardii, L. casei, and L. acidophilus were inoculated into skim milk without aflatoxin M1. The samples were then spiked by aflatoxin M1 in concentrations of 0.5 and 0.75 ng/ml. The concentration of the aflatoxin residing in supernatant of milk samples after different storage times (30 and 90 minutes) and temperatures of 4 ℃ and 37 °C was measured by ELISA method, and the results were confirmed by HPLC. Results: The results showed that the highest amount of aflatoxin M1 removal was related to S. boulardii (96.88 ± 3.79c) with a microbial density concentration of 109 cfu/ml and toxin concentration of 0.75 ng/ml at 37 °C for 90 minutes and then to L. acidophilus (71.46 ± 3.79b) with a microbial density concentration of 107 cfu/ml and toxin concentration 0.75 ng/ml at 4 °C for 90 minutes. Furthermore, the maximum level of AFM1 binding to 107 cfu/ml of L. casei with average binding percentages of 64.31 ± 3/79c was 0.75 ng/ml at 37 °C for 90 minutes. Conclusion: The results revealed the possibility of using S. boulardii in combination with the selected probiotics of L. casei and L. acidophilus in the detoxification of AFM1-contaminated milk.

15.
Food Res Int ; 154: 110880, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35337549

RESUMO

This study first evaluated the stimulatory effect of S. platensis biomass on the growth of L. acidophilus and the metabolic activity during fermentation (37 °C, 72 h) in a culture medium. The results demonstrated a higher impact of S. platensis biomass than fructooligosaccharide (FOS), an established prebiotic. Higher L. acidophilus proliferation rates and metabolic activity were observed (lower pH values and higher concentrations of acetic, lactic, and propionic acids) in the presence of S. platensis. Then, we evaluated the effects of the S. platensis biomass (1.5 g, twice a day, 5 days) in association with L. acidophilus (106 CFU/g) on the gut microbiota composition of medium-age healthy individuals through the Simulator of Human Intestinal Microbial Ecosystem (SHIME®) and measurement of metabolites. L. acidophilus (La5) and L. acidophilus + S. platensis (Spi-La5) could positively modulate the intestinal microbiota. The administration of La5 resulted in increases in Bacteroides, Megasphaera, Lactobacillus, and Parabacteroides genus abundance, with a consequent decrease in ammonium ions. The administration of Spi-La5 increased the abundance of the genus Erysipelatoclostridium, Roseburia, Enterococcus, Bifidobacterium, Coriobacteriaceae UCG-003, Enterobacter, and Paraclostridium. The results demonstrate that the intestinal microbiota was differently modified by administrating La5 and Spi-La5 and indicate the latter as an alternative for microbiota positive modulation in healthy individuals.


Assuntos
Microbioma Gastrointestinal , Microbiota , Biomassa , Proliferação de Células , Humanos , Lactobacillus acidophilus/metabolismo , Spirulina
16.
J Transl Med ; 20(1): 104, 2022 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-35216600

RESUMO

BACKGROUND: Graft-versus-host disease (GvHD) is a critical complication after allogeneic hematopoietic stem cell transplantation (HSCT). The immunosuppressants given to patients undergoing allogeneic HSCT disturb the microbiome and the host immune system, potentially leading to dysbiosis and inflammation, and may affect immune function and bone marrow transplantation. The intestinal microbiome is a target for the development of novel therapies for GvHD. Lactobacillus species are widely used supplements to induce production of antimicrobial and anti-inflammatory factors. METHODS: We determined the effect of the combination of Lactobacillus acidophilus and FK506 on GvHD following major histocompatibility complex-mismatched bone marrow transplantation. RESULTS: The combination treatment suppressed IFN-γ and IL-17-producing T cell differentiation, but increased Foxp3+Treg differentiation and IL-10 production. Also, the combination treatment and combination treated-induced Treg cells modulated the proliferation of murine alloreactive T cells in vitro. Additionally, the combination treatment upregulated Treg-related genes-Nt5e, Foxp3, Ikzf2, Nrp1 and Itgb8-in murine CD4+-T cells. The combination treatment also alleviated GvHD clinically and histopathologically by controlling the effector T cell and Treg balance in vivo. Moreover, the combination treatment decreased Th17 differentiation significantly and significantly upregulated Foxp3 and IL-10 expression in peripheral blood mononuclear cells from healthy controls and liver transplantation (LT) patients. CONCLUSIONS: Therefore, the combination of L. acidophilus and FK506 is effective and safe for patients undergoing allogeneic hematopoietic stem cell transplantation.


Assuntos
Doença Enxerto-Hospedeiro , Linfócitos T Reguladores , Doença Aguda , Animais , Doença Enxerto-Hospedeiro/tratamento farmacológico , Humanos , Lactobacillus acidophilus , Leucócitos Mononucleares , Camundongos , Camundongos Endogâmicos C57BL , Tacrolimo/farmacologia , Tacrolimo/uso terapêutico
17.
Nutrition ; 93: 111439, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34507264

RESUMO

OBJECTIVES: Species Lactobacillus acidophilus and butyrate producer Clostridium cochlearium have been shown to have potential antiobesity effects. The aim of this study was to show that the combination of C. cochlearium and L. acidophilus (CC-LA) has beneficial effects on body weight control and glucose homeostasis in high-fat diet-induced obese (DIO) mice. METHODS: In this study, thirty-six 6-wk-old male C57BL/6 mice were randomly assigned to three groups of 12 mice each. The experimental group (CC-LA) was administered with CC-LA mixture and fed ad libitum with a high-fat diet. High-fat diet (HF) control and low-fat diet (LF) control groups were treated with the same dose of sterile water as the CC-LA group. RESULTS: After 17 wk of dietary intervention, the CC-LA group showed 17% less body weight gain than the HF group did (P < 0.01). The CC-LA group also showed significantly reduced incremental area under the curve of oral glucose tolerance test and homeostatic model assessment for insulin resistance compared with the HF group. The results from 16S rRNA sequencing analysis of gut microbiota showed that the CC-LA administration led to overall increased α-diversity indices, and a significant microbial separation from the HF group. The ratio of Firmicutes to Bacteroidetes (F/B) was reduced from 3.30 in the HF group to 1.94 in the CC-LA group. The relative abundances of certain obesity-related taxa were also decreased by CC-LA administration. CONCLUSION: The present study provided evidence that the CC-LA combination reduced obesity and improved glucose metabolism in high-fat diet-treated DIO mice, potentially mediated by the modulation of gut microbiota.


Assuntos
Microbioma Gastrointestinal , Resistência à Insulina , Animais , Clostridium , Dieta Hiperlipídica/efeitos adversos , Lactobacillus acidophilus , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , RNA Ribossômico 16S , Aumento de Peso
18.
Front Bioeng Biotechnol ; 9: 698349, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34796165

RESUMO

Lead (Pb) is a pestilent and relatively nonbiodegradable heavy metal, which causes severe health effects by inducing inflammation and oxidative stress in animal and human tissues. This is because of its significant tolerance and capability to bind Pb (430 mg/L) and thermodynamic fitness to sequester Pb in the Freundlich model (R 2 = 0.98421) in vitro. Lactobacillus acidophilus KLDS1.1003 was selected for further in vivo study both in free and maize resistant starch (MRS)-based microencapsulated forms to assess its bioremediation aptitude against chronic Pb lethality using adult female BALB/c mice as a model animal. Orally administered free and microencapsulated KLDS 1.1003 provided significant protection by reducing Pb levels in the blood (127.92 ± 5.220 and 101.47 ± 4.142 µg/L), kidneys (19.86 ± 0.810 and 18.02 ± 0.735 µg/g), and liver (7.27 ± 0.296 and 6.42 ± 0.262 µg/g). MRS-microencapsulated KLDS 1.0344 improved the antioxidant index and inhibited changes in blood and serum enzyme concentrations and relieved the Pb-induced renal and hepatic pathological damages. SEM and EDS microscopy showed that the Pb covered the surfaces of cells and was chiefly bound due to the involvement of the carbon and oxygen elements. Similarly, FTIR showed that the amino, amide, phosphoryl, carboxyl, and hydroxyl functional groups of bacteria and MRS were mainly involved in Pb biosorption. Based on these findings, free and microencapsulated L. acidophilus KLDS 1.0344 could be considered a potential dietetic stratagem in alleviating chronic Pb toxicity.

19.
FEMS Microbiol Lett ; 368(5)2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33693760

RESUMO

Probiotics is widespreadly used nowadays. However, the safety issue with the use of live probiotics is still a matter of contention. In recent years, an expanding body of evidence supports the beneficial role of heat-killed probiotics in the maintenance of systemic health, whereas the role of these heat-killed bacteria on periodontal health remains unclear. This study aimed to evaluate the effects of heat-killed probiotics on periodontal pathogen virulence and associated mechanisms. We demonstrated that heat-killed Lactobacillus acidophilus was able to coaggregate with Fusobacterium nucleatum, the bridging bacteria of oral biofilm, and inhibit the adhesion and invasion of F. nucleatum, leading to a subsequent elimination of pro-inflammatory cytokine production in oral epithelial cells. This coaggregation further caused a suppression of the virulence gene fap2 expression in F. nucleatum. Therefore, heat-killed L. acidophilus might downregulate the pro-inflammatory cytokine expression in epithelial cells via coaggregation with F. nucleatum and suppression of F. nucleatum fap2 expression, which was the first demonstration that heat-killed probiotics modulate periodontal disease pathogenesis via coaggregation. Collectively, this finding provides new evidence that heat-killed probiotics might exert beneficial effects to periodontal health by coaggregating with periodontal pathogens and modulating their virulence.


Assuntos
Aderência Bacteriana/efeitos dos fármacos , Infecções por Fusobacterium/terapia , Fusobacterium nucleatum/efeitos dos fármacos , Lactobacillus acidophilus/metabolismo , Doenças Periodontais/tratamento farmacológico , Probióticos/farmacologia , Biofilmes/crescimento & desenvolvimento , Linhagem Celular Tumoral , Citocinas/biossíntese , Citocinas/imunologia , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Fusobacterium nucleatum/imunologia , Fusobacterium nucleatum/patogenicidade , Temperatura Alta , Humanos , Doenças Periodontais/microbiologia
20.
Food Res Int ; 140: 109827, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33648164

RESUMO

Synbiotic formulations and microencapsulation techniques have been explored in food industries to guarantee the viability of probiotic organisms; playing an important role in microbiota balance. Microparticles of alginate, gelatin and xylo-oligosaccharides (XOS) were produced by external gelation with the purpose of enhancing the survival rate of the probiotic L. acidophilus. XOS was obtained through enzymatic hydrolysis of xylan extracted from sugarcane straw, achieving more than 70% conversion and used for microparticle preparation. Microparticles containing 3% XOS provided greater cell protection during exposure to the gastrointestinal tract and during refrigerated storage; keeping 97.86 ± 0.44% of viability during 28 days of storage and enabling 87.50 ± 0.02% survival after digestive simulation. However, particles without XOS showed 84.49 ± 0.59% of viability after storage and 68.45 ± 0.03% after digestion assay. These results lead to promising applications in synbiotic and functional food formulations comprised of components requiring extended shelf-life, protection from gastrointestinal conditions and gradual bioactive delivery.


Assuntos
Probióticos , Saccharum , Simbióticos , Hidrólise , Oligossacarídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...