RESUMO
Inflammatory Breast Cancer (IBC) is an aggressive form of invasive breast cancer, highly metastatic, representing 2-4% of all breast cancer cases in the United States. Despite its rare nature, IBC is responsible for 7-10% of all breast cancer deaths, with a 5-year survival rate of 40%. Thus, targeted and effective therapies against IBC are needed. Here, we proposed Lipocalin-2 (LCN2)-a secreted glycoprotein aberrantly abundant in different cancers-as a plausible target for IBC. In immunoblotting, we observed higher LCN2 protein levels in IBC cells than non-IBC cells, where the LCN2 levels were almost undetectable. We assessed the biological effects of targeting LCN2 in IBC cells with small interference RNAs (siRNAs) and small molecule inhibitors. siRNA-mediated LCN2 silencing in IBC cells significantly reduced cell proliferation, viability, migration, and invasion. Furthermore, LCN2 silencing promoted apoptosis and arrested the cell cycle progression in the G0/G1 to S phase transition. We used in silico analysis with a library of 25,000 compounds to identify potential LCN2 inhibitors, and four out of sixteen selected compounds significantly decreased cell proliferation, cell viability, and the AKT phosphorylation levels in SUM149 cells. Moreover, ectopically expressing LCN2 MCF7 cells, treated with two potential LCN2 inhibitors (ZINC00784494 and ZINC00640089) showed a significant decrease in cell proliferation. Our findings suggest LCN2 as a promising target for IBC treatment using siRNA and small molecule inhibitors.
Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Inflamatórias Mamárias/tratamento farmacológico , Lipocalina-2/antagonistas & inibidores , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Inflamatórias Mamárias/genética , Neoplasias Inflamatórias Mamárias/patologia , Lipocalina-2/genética , Células MCF-7 , Terapia de Alvo Molecular/métodos , Invasividade Neoplásica , RNA Interferente Pequeno/farmacologia , RNA Interferente Pequeno/uso terapêuticoRESUMO
Lipocalin-2 (LCN2) is a secreted glycoprotein linked to several physiological roles, including transporting hydrophobic ligands across cell membranes, modulating immune responses, maintaining iron homeostasis, and promoting epithelial cell differentiation. Although LNC2 is expressed at low levels in most human tissues, it is abundant in aggressive subtypes of cancer, including breast, pancreas, thyroid, ovarian, colon, and bile duct cancers. High levels of LCN2 have been associated with increased cell proliferation, angiogenesis, cell invasion, and metastasis. Moreover, LCN2 modulates the degradation, allosteric events, and enzymatic activity of matrix metalloprotease-9, a metalloprotease that promotes tumor cell invasion and metastasis. Hence, LCN2 has emerged as a potential therapeutic target against many cancer types. This review summarizes the most relevant findings regarding the expression, biological roles, and regulation of LCN2, as well as the proteins LCN2 interacts with in cancer. We also discuss the approaches to targeting LCN2 for cancer treatment that are currently under investigation, including the use of interference RNAs, antibodies, and gene editing.