Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38778606

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most aggressive malignancies in the world. Lamin B1 (LMNB1) is a key component of the nuclear skeleton structure. Recent studies have found that LMNB1 is overexpressed in tumor tissues and is associated with the prognosis of patients. However, the underlying mechanism remains unclear in HCC. OBJECTIVE: This study aims to explore the clinical significance and molecular mechanisms of LMNB1 in HCC. METHODS: The expression level of LMNB1 and its clinical values were analyzed with public databases, and the level of LMNB1 in HCC tissues and adjacent normal tissues was confirmed by qRT-PCR and IHC. Functional assays were conducted to explore the impact of LMNB1 knockdown on cell proliferation both in vivo and in vitro. Additionally, Genes and Genomes enrichment analysis, recovery analysis, and ChIP assays were employed to investigate its underlying molecular mechanisms. Finally, we carried out an analysis of the relationship between LMNB1 and immune cell infiltration in HCC. RESULTS: LMNB1 was found to be overexpressed in HCC and correlated with the pathological stage and unfavorable prognosis. Functional assays demonstrated that LMNB1 promotes HCC proliferation both in vitro and in vivo. Further analysis revealed that LMNB1 promotes the progression of HCC by regulating CDKN1A expression. Furthermore, the infiltration of immune cells in HCC tissues suggests a potential correlation between immune infiltration cell markers and the expression of LMNB1. CONCLUSIONS: LMNB1 emerged as a promising therapeutic target and prognostic biomarker for HCC, with its expression showing a correlation with several immune infiltration cell markers.

2.
J Bioenerg Biomembr ; 56(3): 285-296, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38517565

RESUMO

Acute kidney injury (AKI) is a serious complication of sepsis patients, but the pathogenic mechanisms underlying AKI are still largely unclear. In this view, the roles of the key component of N6-methyladenosine (m6A)-wilms tumor 1 associated protein (WTAP) in AKI progression were investigated. AKI mice model was established by using cecal ligation and puncture (CLP). AKI cell model was established by treating HK-2 cells with LPS. Cell apoptosis was analyzed by TdT-mediated dUTP Nick-End Labeling (TUNEL) staining and flow cytometry analysis. Cell viability was analyzed by 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT) assay. The concentrations of inflammatory factors were examined with ELISA kits. Reactive oxygen species (ROS), malondialdehyde (MDA), glutathione (GSH) and Fe2+ levels were detected with related kits. Gene expression was detected by western blot assay or quantitative real-time polymerase chain reaction (qRT-PCR) assay. The relation between WTAP and lamin B1 (LMNB1) was verified by Methylated RNA Immunoprecipitation (meRIP) assay, RIP assay, dual-luciferase reporter assay and Actinomycin D assay. CLP induced significant pathological changes in kidney tissues in mice and promoted inflammation, mitochondrial damage and ferroptosis. LMNB1 level was induced in HK-2 cells by LPS. LMNB1 knockdown promoted LPS-mediated HK-2 cell viability and inhibited LPS-mediated HK-2 cell apoptosis, inflammation, mitochondrial damage and ferroptosis. Then, WTAP was demonstrated to promote LMNB1 expression by m6A Methylation modification. Moreover, WTAP knockdown repressed LPS-treated HK-2 cell apoptosis, inflammation, mitochondrial damage and ferroptosis, while LMNB1 overexpression reversed the effects. Additionally, WTAP affected the pathways of NF-κB and JAK2/STAT3 by LMNB1. WTAP-mediated m6A promoted the inflammation, mitochondrial damage and ferroptosis in LPS-induced HK-2 cells by regulating LMNB1 expression and activating NF-κB and JAK2/STAT3 pathways.


Assuntos
Injúria Renal Aguda , Adenosina , Ferroptose , Inflamação , Janus Quinase 2 , NF-kappa B , Animais , Humanos , Masculino , Camundongos , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Adenosina/análogos & derivados , Adenosina/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Inflamação/metabolismo , Inflamação/patologia , Janus Quinase 2/metabolismo , Túbulos Renais/patologia , Túbulos Renais/metabolismo , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Mitocôndrias/patologia , NF-kappa B/metabolismo , Fatores de Processamento de RNA/metabolismo , Fatores de Processamento de RNA/genética , Transdução de Sinais , Fator de Transcrição STAT3/metabolismo
3.
Inflamm Regen ; 44(1): 7, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360694

RESUMO

BACKGROUND: Different neural subtypes are selectively lost in diverse neurodegenerative diseases. Huntington's disease (HD) is an inherited neurodegenerative disease characterized by motor abnormalities that primarily affect the striatum. The Huntingtin (HTT) mutation involves an expanded CAG repeat, leading to insoluble polyQ, which renders GABA+ medium spiny neurons (MSN) more venerable to cell death. Human pluripotent stem cells (hPSCs) technology allows for the construction of disease-specific models, providing valuable cellular models for studying pathogenesis, drug screening, and high-throughput analysis. METHODS: In this study, we established a method that allows for rapid and efficient generation of MSNs (> 90%) within 21 days from hPSC-derived neural progenitor cells, by introducing a specific combination of transcription factors. RESULTS: We efficiently induced several neural subtypes, in parallel, based on the same cell source, and revealed that, compared to other neural subtypes, MSNs exhibited higher polyQ aggregation propensity and overexpression toxicity, more severe dysfunction in BDNF/TrkB signaling, greater susceptibility to BDNF withdrawal, and more severe disturbances in nucleocytoplasmic transport (NCT). We further found that the nuclear lamina protein LMNB1 was greatly reduced in HD neurons and mislocalized to the cytoplasm and axons. Knockdown of HTT or treatment with KPT335, an orally selective inhibitor of nuclear export (SINE), effectively attenuated the pathological phenotypes and alleviated neuronal death caused by BDNF withdrawal. CONCLUSIONS: This study thus establishes an effective method for obtaining MSNs and underscores the necessity of using high-purity MSNs to study HD pathogenesis, especially the MSN-selective vulnerability.

4.
Endocr Relat Cancer ; 31(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38224097

RESUMO

Adrenocortical carcinoma (ACC) is a malignancy with a poor prognosis and high mortality rate. A high tumor mutational burden (TMB) has been found to be associated with poor prognosis in ACC. Thus, exploring ACC biomarkers based on TMB holds significant importance for patient risk stratification. In our research, we utilized weighted gene coexpression network analysis and an assay for transposase-accessible chromatin with high-throughput sequencing to identify genes associated with TMB. Through the comprehensive analysis of various public datasets, Lamin B1 (LMNB1) was identified as a biomarker associated with a high TMB and low chromatin accessibility. Immunohistochemical staining demonstrated high expression of LMNB1 in ACC compared to noncancerous tissues. Functional enrichment analyses revealed that the function of LMNB1 is associated with cell proliferation and division. Furthermore, cell assays suggested that LMNB1 promotes tumor proliferation and invasion. In addition, mutation analysis suggested that the high expression of LMNB1 is associated with TP53 mutations. Additionally, LMNB1 was highly expressed in the vast majority of solid tumors across cancers. In our immune analysis, we discovered that the high expression of LMNB1 might suppress the infiltration of CD8+ T cells in the ACC microenvironment. In summary, LMNB1 is a predictive factor for the poor prognosis of adult and pediatric ACC. Its high expression in ACC is positively associated with high TMB and lower chromatin accessibility, and it promotes ACC cell proliferation and invasion. Therefore, LMNB1 holds promise as a novel biomarker and potential therapeutic target for ACC.


Assuntos
Carcinoma Adrenocortical , Lamina Tipo B , Adulto , Criança , Humanos , Carcinoma Adrenocortical/genética , Biomarcadores , Biomarcadores Tumorais/genética , Cromatina , Lamina Tipo B/genética , Lamina Tipo B/metabolismo , Prognóstico , Microambiente Tumoral
5.
Eur J Med Chem ; 259: 115677, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37542992

RESUMO

N6-methyladenosine (m6A) and MELLT3 assume a role in the development of acute kidney injury (AKI). However, their mechanism in AKI remains under-explored. On this basis, this study explored the mechanism of MELLT3 in mitochondrial damage and ferroptosis of kidney tubular epithelial cells after AKI. HK-2 cells were induced by lipopolysaccharide (LPS) to simulate AKI, followed by gain and loss of function of genes, detection of mitochondrial damage and ferroptosis indicators, and analysis of gene interactions. An AKI mouse model was developed using the cecal ligation and puncture (CLP) method to investigate the effect of METTL3 knockdown on kidney injury. MDM2 and LMNB1 were upregulated and p53 was downregulated in LPS-treated HK-2 cells. Mechanistically, the E3 ubiquitin ligase MDM2 increased p53 ubiquitination to activate LMNB1. METTL3 knockdown decreased m6A methylation of MDM2, thus diminishing YTHDF1-mediated MDM2 mRNA stability and translation in LPS-treated HK-2 cells. Knockdown of LMNB1, MDM2, or METTL3 reduced NO, MDA, iron ion, and ROS levels as well as mitochondrial damage and raised SOD, GSH, XCT, GPX4, FPN1, and TFR1 levels in LPS-treated HK-2 cells. The in vivo results showed that METTL3 knockdown reduced renal injury and ferroptosis in CLP mice. METTL3 knockdown prevents mitochondrial damage and ferroptosis of kidney tubular epithelial cells after AKI via the MDM2-p53-LMNB1 axis.


Assuntos
Injúria Renal Aguda , Ferroptose , Camundongos , Animais , Proteína Supressora de Tumor p53 , Lipopolissacarídeos , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/genética , Injúria Renal Aguda/prevenção & controle , Rim , Células Epiteliais
6.
Sheng Wu Gong Cheng Xue Bao ; 39(4): 1609-1620, 2023 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-37154326

RESUMO

Lamin B1 (LMNB1) is highly expressed in liver cancer tissues, and its influence and mechanism on the proliferation of hepatocellular carcinoma cells were explored by knocking down the expression of the protein. In liver cancer cells, siRNAs were used to knock down LMNB1. Knockdown effects were detected by Western blotting. Changes in telomerase activity were detected by telomeric repeat amplification protocol assay (TRAP) experiments. Telomere length changes were detected by quantitative real-time polymerase chain reaction (qPCR). CCK8, cloning formation, transwell and wound healing were performed to detect changes in its growth, invasion and migration capabilities. The lentiviral system was used to construct HepG2 cells that steadily knocked down LMNB1. Then the changes of telomere length and telomerase activity were detected, and the cell aging status was detected by SA-ß-gal senescence staining. The effects of tumorigenesis were detected by nude mouse subcutaneous tumorigenesis experiments, subsequent histification staining of tumors, SA-ß-gal senescence staining, fluorescence in situ hybridization (FISH) for telomere analysis and other experiments. Finally, the method of biogenesis analysis was used to find the expression of LMNB1 in clinical liver cancer tissues, and its relationship with clinical stages and patient survival. Knockdown of LMNB1 in HepG2 and Hep3B cells significantly reduced telomerase activity, cell proliferation, migration and invasion abilities. Experiments in cells and tumor formation in nude mice had demonstrated that stable knockdown of LMNB1 reduced telomerase activity, shortened telomere length, senesced cells, reduced cell tumorigenicity and KI-67 expression. Bioinformatics analysis showed that LMNB1 was highly expressed in liver cancer tissues and correlated with tumor stage and patient survival. In conclusion, LMNB1 is overexpressed in liver cancer cells, and it is expected to become an indicator for evaluating the clinical prognosis of liver cancer patients and a target for precise treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Telomerase , Animais , Camundongos , Telomerase/genética , Telomerase/metabolismo , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Encurtamento do Telômero , Hibridização in Situ Fluorescente , Camundongos Nus , Telômero/metabolismo , Telômero/patologia , Carcinogênese , Lamina Tipo B
7.
Exp Cell Res ; 426(2): 113573, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37003558

RESUMO

Ovarian cancer (OC) is a common malignant tumor in gynecology. LMNB1 is an important component of the nuclear skeleton. The expression of LMNB1 in ovarian cancer is significantly higher than that in normal tissues, but its role in tumor still needs comprehensive investigation. In this study, we overexpressed and knocked down LMNB1 in ovarian cancer cells and explore the effect of LMNB1 on the cell proliferation, migration and the underlying mechanism. We analyzed the expression levels of LMNB1 in ovarian cancer and their clinical relevance by using bioinformatics methods, qRT-PCR, Western blot and immunohistochemistry. To state the effect and mechanism of LMNB1 on OC in vitro and in vivo, we performed mouse xenograft studies, CCK8, cloning formation, Edu incorporation, wound healing, transwell and flow cytometry assay in stable LMNB1 knockdown OC cells, following by RNA-seq. Overexpression of LMNB1 indicates the progression of OC. LMNB1 knockdown inhibited the proliferation and migration of OC cells by suppressing the FGF1-mediated PI3K-Akt signaling pathway. Our study shows LMNB1 as a novel prognostic factor and therapeutic target in OC.


Assuntos
Lamina Tipo B , Neoplasias Ovarianas , Proteínas Proto-Oncogênicas c-akt , Animais , Feminino , Humanos , Camundongos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Ovarianas/patologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Lamina Tipo B/genética , Deleção de Genes
8.
Cancer Med ; 12(10): 11651-11671, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37041721

RESUMO

BACKGROUND: Growing evidences suggest that circular RNAs (circRNAs) are important factors in cancer progression. Nevertheless, the role of circRNAs in the progression of pancreatic ductal adenocarcinoma (PDAC) remains unclear. METHODS: CircPTPRA was identified based on our previous circRNA array data analysis. Wound healing, transwell, and EdU assays were performed to investigate the effect of circPTPRA on the migration, invasion, and proliferation of PDAC cells in vitro. RNA pull-down, fluorescence in situ hybridization (FISH), RNA immunoprecipitation (RIP), and dual-luciferase reporter assays were conducted to verify the binding of circPTPRA with miR-140-5p. Subcutaneous xenograft model was constructed for in vivo experiment. RESULTS: CircPTPRA was significantly upregulated in PDAC tissues and cells compared to normal controls. Moreover, circPTPRA overexpression was positively correlated with lymph node invasion and worse prognosis in PDAC patients. In addition, overexpression of circPTPRA promoted PDAC migration, invasion, proliferation, and epithelial-mesenchymal transition (EMT) in vitro and in vivo. Mechanistically, circPTPRA upregulates LaminB1 (LMNB1) expression by sponging miR-140-5p and ultimately promotes the progression of PDAC. CONCLUSIONS: This study revealed that circPTPRA plays an important role in the progression of PDAC by sponging miR-140-5p. It can be explored as a potential prognostic marker and therapeutic target for PDAC.


Assuntos
Carcinoma Ductal Pancreático , MicroRNAs , Neoplasias Pancreáticas , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Hibridização in Situ Fluorescente , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Neoplasias Pancreáticas
9.
Chinese Journal of Biotechnology ; (12): 1609-1620, 2023.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-981157

RESUMO

Lamin B1 (LMNB1) is highly expressed in liver cancer tissues, and its influence and mechanism on the proliferation of hepatocellular carcinoma cells were explored by knocking down the expression of the protein. In liver cancer cells, siRNAs were used to knock down LMNB1. Knockdown effects were detected by Western blotting. Changes in telomerase activity were detected by telomeric repeat amplification protocol assay (TRAP) experiments. Telomere length changes were detected by quantitative real-time polymerase chain reaction (qPCR). CCK8, cloning formation, transwell and wound healing were performed to detect changes in its growth, invasion and migration capabilities. The lentiviral system was used to construct HepG2 cells that steadily knocked down LMNB1. Then the changes of telomere length and telomerase activity were detected, and the cell aging status was detected by SA-β-gal senescence staining. The effects of tumorigenesis were detected by nude mouse subcutaneous tumorigenesis experiments, subsequent histification staining of tumors, SA-β-gal senescence staining, fluorescence in situ hybridization (FISH) for telomere analysis and other experiments. Finally, the method of biogenesis analysis was used to find the expression of LMNB1 in clinical liver cancer tissues, and its relationship with clinical stages and patient survival. Knockdown of LMNB1 in HepG2 and Hep3B cells significantly reduced telomerase activity, cell proliferation, migration and invasion abilities. Experiments in cells and tumor formation in nude mice had demonstrated that stable knockdown of LMNB1 reduced telomerase activity, shortened telomere length, senesced cells, reduced cell tumorigenicity and KI-67 expression. Bioinformatics analysis showed that LMNB1 was highly expressed in liver cancer tissues and correlated with tumor stage and patient survival. In conclusion, LMNB1 is overexpressed in liver cancer cells, and it is expected to become an indicator for evaluating the clinical prognosis of liver cancer patients and a target for precise treatment.


Assuntos
Animais , Camundongos , Telomerase/metabolismo , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Encurtamento do Telômero , Hibridização in Situ Fluorescente , Camundongos Nus , Telômero/patologia , Carcinogênese
10.
Am J Cancer Res ; 12(7): 3390-3404, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35968338

RESUMO

Although prostate cancer (PC) is the most common cancer among men in the Western world, there are no good biomarkers that can reliably differentiate between potentially aggressive and indolent PC. This leads to overtreatment, even for patients who can be managed conservatively. Previous studies have suggested that nuclear lamin proteins-especially lamin B1 (LMNB1)-play important roles in PC progression. However, the results of these studies are inconsistent. Here, we transfected the LMNB1 gene into the telomerase reverse transcriptase-immortalized benign prostatic epithelial cell line, EP156T to generate a LMNB1-overexpressing EP156T (LMN-EP156T) cell line with increased cellular proliferation. However, LMN-EP156T cells could neither form colonies in soft agar, nor establish subcutaneous growth or metastasis in the xenograft NOD/SCID mouse model. In addition, immunohistochemical staining of LMNB1 in PC specimens from 143 patients showed a statistically significant trend of stronger LMNB1 staining with higher Gleason scores. A univariate analysis of the clinicopathological parameters of 85 patients with PC who underwent radical prostatectomy revealed that pathological stage, resection margin, and extracapsular extension were significant predictors for biochemical recurrence (BCR). However, LMNB1 staining showed only a non-significant trend of association with BCR (high vs. low staining: hazard ratio (HR), 1.83; 95% confidence interval (CI), 0.98-3.41; P = 0.059). In multivariate analysis, only pathological stage was a significant independent predictor of BCR (pT3 vs. pT2: HR, 2.29; 95% CI, 1.18-4.43; P = 0.014). In summary, LMNB1 may play a role in the early steps of PC progression, and additional molecular alterations may be needed to confer full malignancy potential to initiated cells.

11.
Cells ; 11(14)2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35883595

RESUMO

Modifications in nuclear structures of cells are implicated in several diseases including cancer. They result in changes in nuclear activity, structural dynamics and cell signalling. However, the role of the nuclear lamina and related proteins in malignant melanoma is still unknown. Its molecular characterisation might lead to a deeper understanding and the development of new therapy approaches. In this study, we analysed the functional effects of dysregulated nuclear lamin B1 (LMNB1) and its nuclear receptor (LBR). According to their cellular localisation and function, we revealed that these genes are crucially involved in nuclear processes like chromatin organisation. RNA sequencing and differential gene expression analysis after knockdown of LMNB1 and LBR revealed their implication in important cellular processes driving ER stress leading to senescence and changes in chromatin state, which were also experimentally validated. We determined that melanoma cells need both molecules independently to prevent senescence. Hence, downregulation of both molecules in a BRAFV600E melanocytic senescence model as well as in etoposide-treated melanoma cells indicates both as potential senescence markers in melanoma. Our findings suggest that LMNB1 and LBR influence senescence and affect nuclear processes like chromatin condensation and thus are functionally relevant for melanoma progression.


Assuntos
Lamina Tipo B , Melanoma , Receptores Citoplasmáticos e Nucleares , Senescência Celular/genética , Heterocromatina/genética , Humanos , Lamina Tipo B/genética , Melanoma/genética , Receptores Citoplasmáticos e Nucleares/genética , Receptor de Lamina B
12.
Front Oncol ; 12: 913740, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35712471

RESUMO

Background: Lung cancer has considerably high mortality and morbidity rate. Lung adenocarcinoma (LUAD) tissues highly express lamin B1 (LMNB1), compared with normal tissues. In this study, we knocked down LMNB1 in LUAD cells A549 and NCI-1299 to explore the effect of its inhibition on the proliferation of cells and the potential mechanism. Methods: Using bioinformatics methods, we analyzed the specificity of LMNB1 mRNA expression level in LUAD and its effect on prognosis from TCGA data. SiRNAs were used to knock down LMNB1 in the A549 cell line, and the knockdown effect was identified by western blotting and qRT-PCR. Through CCK8 cell proliferation assay, wound healing assay, TRAP, cloning formation Assay, DNase I-TUNEL assay, ATAC-seq, immunofluorescence, FISH, in vivo mouse xenograft studies, etc, we evaluated the influence and mechanism of LMNB1 on LUAD cell line proliferation in vitro and in vivo. Results: According to bioinformatics analysis, LMNB1 is substantially abundant in LUAD tissues and is associated with tumor stage and patient survival (P < 0.05). After silencing LMNB1, the rate of cell growth, wound healing, the number of transwells, and the number of cell colonies all decreased significantly (P < 0.01). With the decreased LMNB1 expression, H3K9me3 protein expression decreases, chromosome accessibility increases, P53, P21, P16 and γ-H2AX protein expression increases, and the number of senescence staining positive cells increases. At the same time, in vivo mouse xenograft experiments showed that the tumor volume of the LMNB1-silenced group was significantly reduced, compared to that of the control group (P < 0.01), and the proliferation biomarker Ki-67 level (P < 0.01) was considerably reduced. Conclusions: Overexpression of LMNB1 in LUAD cells is significant, which has excellent potential to be an indicator for evaluating the clinical prognosis of LUAD patients and a target for precise treatment.

13.
Bioengineered ; 13(4): 9211-9231, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35436411

RESUMO

Hepatocellular carcinoma (HCC) is an aggressive malignancy. Previous studies have found that lamin B1 (LMNB1) contributes to the development of human cancers. However, the biological functions and prognostic values of LMNB1 in HCC have not been adequately elucidated. In our present research, the expression pattern of LMNB1 was analyzed. The prognostic values of LMNB1 were evaluated by Kaplan-Meier survival analysis and Cox proportional hazards regression analysis. The effects of LMNB1 on HCC progression were assessed by Cell Counting Kit-8 (CCK-8), colony formation, wound healing, Transwell and in vivo xenograft assays. The mechanisms of LMNB1 in HCC progression were elucidated by gene set enrichment analysis (GSEA) and loss-of-function assays. Besides, a nomogram for predicting overall survival (OS) was constructed. The results demonstrated that LMNB1 was overexpressed in HCC and that increased LMNB1 expression predicted a dismal prognosis. Further experiments showed that LMNB1 facilitated cell proliferation and metastasis in HCC. Functional enrichment analysis revealed that LMNB1 modulated metastasis-associated biological functions such as focal adhesion, extracellular matrix, cell junctions and cell adhesion. Mechanistically, we revealed that LMNB1 promoted HCC progression by regulating the phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways. Moreover, incorporating LMNB1, Ki67 and Barcelona Clinic Liver Cancer (BCLC) stage into a nomogram showed better predictive accuracy than the Tumor-Node-Metastasis (TNM) stage and BCLC stage. In conclusion, LMNB1 may serve as an effective therapeutic target as well as a reliable prognostic biomarker for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Biomarcadores , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Humanos , Lamina Tipo B , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Fosfatidilinositol 3-Quinases , Prognóstico
14.
Cancer Cell Int ; 22(1): 101, 2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35241075

RESUMO

BACKGROUND: Emerging evidence suggests that LMNB1 is involved in the development of multiple cancer types. However, there is no study reporting the potential role of LMNB1 in a systematic pan-cancer manner. METHODS: The gene expression level and potential oncogenic roles of LMNB1 in The Cancer Genome Atlas (TCGA) database were analyzed with Tumor Immune Estimation Resource version 2 (TIMER2.0), Gene Expression Profiling Interactive Analysis version 2 (GEPIA2), UALCAN and Sangerbox tools. Pathway enrichment analysis was carried out to explore the possible mechanism of LMNB1 on tumorigenesis and tumor progression. The therapeutic effects of LMNB1 knockdown combined with PARP inhibition on human cancers were further investigated in vitro. RESULTS: LMNB1 upregulation is generally observed in the tumor tissues of most TCGA cancer types, and is verified in kidney renal clear cell carcinoma using clinical specimens of our institute. High level of LMNB1 expression usually predicts poor overall survival and disease free survival for patients with tumors. Mechanically, LMNB1 level is positively correlated with CD4+ Th2 cell infiltration and DNA homologous recombination repair gene expression. In vitro experiments reveal that targeting LMNB1 has a synergistic effect on prostate cancer with PARP inhibitor treatment. CONCLUSIONS: LMNB1 is a biomarker of CD4+ Th2 cell infiltration and DNA homologous recombination repair in human cancers. Blockage of LMNB1 combined with PARP inhibitor treatment could be a promising therapeutic strategy for patients with cancers.

15.
Mol Genet Genomic Med ; 10(4): e1892, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35247231

RESUMO

Neurodegenerative disorders and leukodystrophies are progressive neurologic conditions that can occur following the disruption of intricately coordinated patterns of gene expression. Exome sequencing has been adopted as an effective diagnostic tool for determining the underlying genetic etiology of Mendelian neurologic disorders, however genome sequencing offer advantages in its ability to identify and characterize copy number, structural, and sequence variants in noncoding regions. Genome sequencing from peripheral leukocytes was performed on two patients with progressive neurologic disease of unknown etiology following negative genetic investigations including exome sequencing. RNA sequencing from peripheral blood was performed to determine gene expression patterns in one of the patients. Potential causative variants were matched to the patients' clinical presentation. The first proband was found to be heterozygous for a likely pathogenic missense variant in PLA2G6 (c.386T>C; p.Leu129Pro) and have an additional deep intronic variant in PLA2G6 (c.2035-926G>A). RNA sequencing indicated this latter variant created a splice acceptor site leading to the incorporation of a pseudo-exon introducing a premature termination codon. The second proband was heterozygous for a 261 kb deletion upstream of LMNB1 that included an enhancer region. Previous reports of copy number variants spanning this region of cis-acting regulatory elements corroborated its pathogenicity. When combined with clinical presentations, these findings led to a definitive diagnosis of autosomal recessive infantile neuroaxonal dystrophy and autosomal dominant adult-onset demyelinating leukodystrophy, respectively. In patients with progressive neurologic disease of unknown etiology, genome sequencing with the addition of RNA analysis where appropriate should be considered for the identification of causative noncoding pathogenic variants.


Assuntos
Fosfolipases A2 do Grupo VI , Lamina Tipo B , Distrofias Neuroaxonais , Adulto , Sequência de Bases , Fosfolipases A2 do Grupo VI/genética , Fosfolipases A2 do Grupo VI/metabolismo , Heterozigoto , Humanos , Lamina Tipo B/genética , Lamina Tipo B/metabolismo , Distrofias Neuroaxonais/genética , Distrofias Neuroaxonais/metabolismo , Sítios de Splice de RNA , Sequenciamento do Exoma
16.
Cell Insight ; 1(3): 100028, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37193048

RESUMO

Alpha7 nicotinic acetylcholine receptor (α7 nAChR), a hub of the cholinergic anti-inflammatory pathway (CAP), is required for the treatment of inflammatory diseases. HIV-1 infection can upregulate the expression of α7 nAChR in T lymphocytes and affect the role of CAP. However, whether α7 nAChR regulates HIV-1 infection in CD4+ T cells is unclear. In this study, we first found that activation of α7 nAChR by GTS-21 (an α7 nAChR agonist) can promote the transcription of HIV-1 proviral DNA. Then, through transcriptome sequencing analysis, we found that p38 MAPK signaling was enriched in GTS-21 treated HIV-latent T cells. Mechanistically, activation of α7 nAChR could increase reactive oxygen species (ROS), reduce DUSP1 and DUSP6, and consequently enhance the phosphorylation of p38 MAPK. By co-immunoprecipitation and liquid chromatography tandem mass spectrometry, we found that p-p38 MAPK interacted with Lamin B1 (LMNB1). Activation of α7 nAChR increased the binding between p-p38 MAPK and LMNB1. We confirmed that knockdown of MAPK14 significantly downregulated NFATC4, a key activator of HIV-1 transcription. Taken together, activation of the α7 nAChR could trigger ROS/p-p38 MAPK/LMNB1/NFATC4 signaling pathway enhancing HIV-1 transcription. We have revealed an unrecognized mechanism of α7 nAChR-mediated neuroimmune regulation of HIV infection.

17.
Cancer Biomark ; 34(1): 23-39, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34511484

RESUMO

Emerging evidence has revealed a relationship between lamin B1 (LMNB1) and several cancers such as cervical cancer, liver cancer, and prostate cancer. But no systematic pan-cancer analysis is available. Little is known about the clinical significance and biomarker utility of LMNB1. In this study, we first revealed the key role of LMNB1 in esophageal carcinoma (ESCA) through weighted gene co-expression network analysis (WGCNA) and disease-free survival (DFS) analysis. Based on this result and the datasets of the cancer genome atlas (TCGA), we explored the biomarker utility of LMNB1 across thirty-three tumors. We found that LMNB1 was highly expressed in most of the cancers and significant associations existed between LMNB1 expression and prognosis of cases of nearly half of the cancers. We also found that LMNB1 expression was associated with the infiltration level of Macrophages M1 and T cells CD4 memory activated in some cancers. Moreover, LMNB1 was mainly involved in the functional mechanisms of MRNA binding, olfactory transduction, and gene silencing. Our study first provides a pan-cancer study of LMNB1, thereby offering a relatively comprehensive understanding of the biomarker utility of LMNB1 across thirty-three tumors.


Assuntos
Lamina Tipo B , Neoplasias Hepáticas , Biomarcadores , Humanos , Lamina Tipo B/genética , Lamina Tipo B/metabolismo , Neoplasias Hepáticas/genética , Masculino , Prognóstico
18.
Ann Indian Acad Neurol ; 24(3): 413-416, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34447008

RESUMO

Autosomal dominant leukodystrophy is an adult onset neurodegenerative disorder presenting with progressive symptoms of ataxia and autonomic dysfunction in fourth or fifth decade in life. It has clinical similarity with multiple sclerosis, but shows characteristic magnetic resonance imaging findings of diffuse bilaterally symmetrical leukodystrophy which can distinguish this disorder. It is a rare disorder with no known treatment till date, and has never been described from the Indian subcontinent. We present an Indian family with autosomal dominant adult-onset demyelinating leukodystrophy with multiple members affected over four generations, and demonstrate a cheap and accurate molecular method of real-time polymerase chain reaction to detect the LMNB1 gene duplication, which is the genetic basis of this devastating disorder.

19.
Biosci Rep ; 41(5)2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33956061

RESUMO

Glioma is the most common primary cancer in the central nervous system. Despite advances in surgery, radiotherapy and chemotherapy over the past decades, the prognosis of glioblastoma patients remains poor. We aim to identify robust gene signatures to better understand the complex molecular mechanisms and to discover potential novel molecular biomarkers for glioma. By exploring GSE16011, GSE4290 and GSE50161 data in Gene Expression Omnibus (GEO) database, we screened out 380 differentially expressed genes between non-tumor and glioma tissues, and further selected 30 hub genes through the Molecular Complex Detection (MCODE) plug-in in Cytoscape. In addition, LMNB1 and DLGAP5 were selected for further analyses due to their high expression in gliomas and were verified by using our cohort. Our study confirmed that LMNB1 and DLGAP5 were up-regulated in gliomas, and patients with high expression of LMNB1 or DLGAP5 had poor survival rate. Furthermore, silence of LMNB1 and DLGAP5 inhibited the proliferation of glioma cells. Together, LMNB1 and DLGAP5 were two potentially novel molecular biomarkers for diagnosis and prognosis of glioma.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Glioma/genética , Lamina Tipo B/genética , Proteínas de Neoplasias/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Redes Reguladoras de Genes , Glioma/metabolismo , Glioma/patologia , Humanos , Lamina Tipo B/metabolismo , Proteínas de Neoplasias/metabolismo , Mapas de Interação de Proteínas , Análise de Sobrevida
20.
Cancer Manag Res ; 13: 2633-2642, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33776481

RESUMO

PURPOSE: Lung cancer has been recognized as the most fatal malignant tumor with the highest morbidity and mortality in recent years. MATERIALS AND METHODS: In this study, we found that LMNB1, which is an important component protein of the nuclear skeleton, was significantly upregulated in lung adenocarcinoma (LUAD) and correlated with the pathological stage as well as lymphatic metastasis. RESULTS: In vitro loss-of-function study utilizing LMNB1 knockdown LUAD cell lines demonstrated that depletion of LMNB1 inhibited development of LUAD through regulating cell proliferation, cell apoptosis, cell cycle and cell motility. Decreased tumorigenesis of LMNB1 knockdown LUAD cells was proved in mice xenograft models. Moreover, the mechanism by which LMNB1 promotes LUAD was explored through the expression evaluation of apoptosis-related proteins and cancer-related signaling pathways. CONCLUSION: In conclusion, our study identified LMNB1 as a tumor promotor and a potential therapeutic target in LUAD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA