Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Cancers (Basel) ; 16(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39001439

RESUMO

BACKGROUND: LMO2 is a relevant gene involved in B-cell ontogeny and a survival predictor of aggressive large B-cell lymphomas (aLBCL). Most studies assessing LMO2 mRNA expression have relied on microarray platforms or qRT-PCR methods, overlooking tissue morphology. In this study, we evaluate LMO2 RNA expression by chromogenic in situ hybridization (CISH) in normal tissue and in a series of 82 aLBCL. METHODS: LMO2 CISH was performed in formalin-fixed paraffin-embedded tissues, scored by three different methods, and correlated with a transcriptome panel. RESULTS: We obtained statistically significant results correlating the methods of evaluation with LMO2 protein expression and gene expression results. Normal tonsil tissue showed high levels of LMO2, particularly within the light zone of the germinal center. Conversely, in aLBCL, a notable reduction in LMO2 expression was noted, remarkably in cases carrying MYC rearrangements. Furthermore, significant results were obtained through overall survival and Cox regression survival analysis, incorporating International Prognostic Index data alongside LMO2 expression levels. CONCLUSIONS: We show a reliable method to identify LMO2 mRNA expression by CISH, effectively capturing many of the reported biologic features of LMO2.

2.
Indian J Pathol Microbiol ; 67(1): 141-144, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38358204

RESUMO

Distinguishing T-lymphoblastic leukemia/lymphoma (T-ALL/T-LBL) from thymomas (especially B1 or B2 type) can be challenging particularly in limited trucut biopsy material where appreciating architecture is difficult or the background epithelial component does not provide tangible evidence for definite diagnosis. As a pathologist, it is important to accurately diagnose these neoplasms because they have entirely distinct management protocols. Recent studies have reported that LIM Domain Only 2 (LMO2) is expressed in neoplastic lymphoblasts of T-ALL/T-LBL and is absent in thymocytes of normal thymuses or thymomas. An observational study was done to test the sensitivity and specificity of LMO2 in differentiating neoplastic lymphoblasts from thymocytes of thymomas/normal thymuses. Our study showed that LMO2 had sensitivity of 70% and specificity of 100% in diagnosing LBL. None of the thymomas (B1 or B2 type) showed expression of LMO2 in the neoplastic cells. LMO2 is a reliable marker of transformed T-cell precursors and should be routinely included in immunohistochemical panel when evaluating thymic/mediastinal neoplasms.


Assuntos
Linfoma de Células T , Leucemia-Linfoma Linfoblástico de Células Precursoras , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Timoma , Neoplasias do Timo , Humanos , Timoma/diagnóstico , Timoma/patologia , Imuno-Histoquímica , Leucemia-Linfoma Linfoblástico de Células T Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Neoplasias do Timo/diagnóstico , Neoplasias do Timo/patologia , Proteínas Proto-Oncogênicas , Proteínas Adaptadoras de Transdução de Sinal , Proteínas com Domínio LIM/metabolismo
3.
Int J Mol Sci ; 24(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38069245

RESUMO

Three years ago, our patient, at that time a 16-month-old boy, was discovered to have bilateral kidney lesions with a giant tumor in the right kidney. Chemotherapy and bilateral nephron-sparing surgery (NSS) for Wilms tumor with nephroblastomatosis was carried out. The patient also had eye affection, including glaucoma, eye enlargement, megalocornea, severe corneal swelling and opacity, complete aniridia, and nystagmus. The diagnosis of WAGR syndrome was suspected. De novo complex chromosomal rearrangement with balanced translocation t(10,11)(p15;p13) and a pericentric inversion inv(11)(p13q12), accompanied by two adjacent 11p14.1p13 and 11p13p12 deletions, were identified. Deletions are raised through the complex molecular mechanism of two subsequent rearrangements affecting chromosomes 11 and 10. WAGR syndrome diagnosis was clinically and molecularly confirmed, highlighting the necessity of comprehensive genetic testing in patients with congenital aniridia and/or WAGR syndrome.


Assuntos
Aniridia , Neoplasias Renais , Síndrome WAGR , Tumor de Wilms , Masculino , Humanos , Lactente , Síndrome WAGR/diagnóstico , Síndrome WAGR/genética , Síndrome WAGR/patologia , Deleção Cromossômica , Aniridia/diagnóstico , Aniridia/genética , Tumor de Wilms/genética , Neoplasias Renais/genética , Cromossomos Humanos Par 11/genética , Inversão Cromossômica
4.
Mol Ther Methods Clin Dev ; 30: 515-533, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37693949

RESUMO

Safety assessment in retroviral vector-mediated gene therapy remains challenging. In clinical trials for different blood and immune disorders, insertional mutagenesis led to myeloid and lymphoid leukemia. We previously developed the In Vitro Immortalization Assay (IVIM) and Surrogate Assay for Genotoxicity Assessment (SAGA) for pre-clinical genotoxicity prediction of integrating vectors. Murine hematopoietic stem and progenitor cells (mHSPCs) transduced with mutagenic vectors acquire a proliferation advantage under limiting dilution (IVIM) and activate stem cell- and cancer-related transcriptional programs (SAGA). However, both assays present an intrinsic myeloid bias due to culture conditions. To detect lymphoid mutants, we differentiated mHSPCs to mature T cells and analyzed their phenotype, insertion site pattern, and gene expression changes after transduction with retroviral vectors. Mutagenic vectors induced a block in differentiation at an early progenitor stage (double-negative 2) compared to fully differentiated untransduced mock cultures. Arrested samples harbored high-risk insertions close to Lmo2, frequently observed in clinical trials with severe adverse events. Lymphoid insertional mutants displayed a unique gene expression signature identified by SAGA. The gene expression-based highly sensitive molecular readout will broaden our understanding of vector-induced oncogenicity and help in pre-clinical prediction of retroviral genotoxicity.

5.
Biochem Biophys Res Commun ; 675: 170-176, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37480698

RESUMO

Aerobic glycolysis preferentially exists in many cancer cells. LMO2 is an adaptor protein ubiquitously expressed in many epithelia and their malignancies, and it mediates broad-spectrum protein interactions. In this study, results showed that LMO2 directly interacted with glycolytic enzymes PGK1, PGAM1 and LDHA/LDHB, attenuated the glycolytic metabolism flow characterized by decreased glucose intake, ATP production and lactic acid excretion in lung and breast cancer cells, and was positively associated with of CD8+ T-lymphocyte infiltration in the tumor microenvironment. These findings reveal a novel role of LMO2 on modulating glycolysis in tumor cells and cytotoxic T-lymphocyte infiltration in the tumor microenvironment, which expands our knowledge of LMO2 in the field of solid tumors.


Assuntos
Neoplasias , Linfócitos T Citotóxicos , Humanos , Tórax , Glicólise , Pulmão , Microambiente Tumoral , Proteínas Proto-Oncogênicas , Proteínas Adaptadoras de Transdução de Sinal , Proteínas com Domínio LIM
6.
BMC Med ; 21(1): 253, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37442994

RESUMO

BACKGROUND: PARP inhibitor (PARPi), as a kind of DNA damage repair inhibitor, has been shown to be effective in various solid tumors and hematologic malignancies. Natural killer/T cell lymphoma (NKTCL) is a highly aggressive malignancy, the treatment of which has long been a major challenge in the clinic. Here, we investigated the efficacy and mechanism of PARPi, and the therapeutic value of PARPi combined with cisplatin in NKTCL. METHODS: The cell proliferation, cell apoptosis, and cell cycle of NKTCL cells were detected respectively by CCK-8 and flow cytometry. The changes of mRNA expression and protein level were measured respectively by mRNA-sequencing, quantitative real-time PCR, western blotting, and immunofluorescence. LMO2 expression was detected by immunohistochemistry and western blotting. Targeted knockdown of LMO2 was conducted by short hairpin RNA. The tumor xenograft models were established to evaluate the efficacy of drugs in vivo. RESULTS: PARPi inhibited cell proliferation, promoted cell apoptosis, and induced S-phase cell cycle arrest in NKTCL cells. PARPi led to the accumulation of DNA damage by blocking DNA repair and DNA replication. Additionally, LMO2 deficiency reduced the sensitivity of NKTCL cells to PARPi. Finally, the combination of PARPi and cisplatin exhibited significant synergistic effects both in vitro and in vivo. CONCLUSIONS: In summary, we found that PARPi exerted an anti-tumor effect via LMO2 and synergized with cisplatin in NKTCL, which provides the theoretical basis for the clinical application of PARPi.


Assuntos
Antineoplásicos , Linfoma de Células T , Linfoma , Humanos , Cisplatino/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Células Matadoras Naturais , RNA Mensageiro , Proteínas Proto-Oncogênicas/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/farmacologia , Proteínas com Domínio LIM/farmacologia
7.
Turk J Haematol ; 40(3): 162-173, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37519110

RESUMO

Objective: Diffuse large B-cell lymphoma (DLBCL) is a biologically heterogeneous disease that is classified into germinal center B-cell (GCB) and non-GCB subtypes, which are prognostically different. The Hans algorithm is the most widely used tool based on CD10, BCL6, and MUM1 expression, but some cases with the non-GCB phenotype are still known to be misclassified. In this study, we investigate the extent to which GCET1, HGAL, and LMO2 protein expressions reflect GCB phenotype together with their roles in determining the GCB phenotype of DLBCL and their contributions to the performance of the Hans algorithm. Materials and Methods: Sixty-five cases of DLBCL-not otherwise specified, 40 cases of follicular lymphoma (FL), and 19 non-GC-derived lymphoma cases were included in this study. The DLBCL cases were grouped as CD10+ (Group A) or only MUM1+ (Group B), and the remaining cases constituted the intermediate group (Group C). GCET1, HGAL, and LMO2 expressions were evaluated. Results: In the FL group, GCET1, HGAL, and LMO2 were positive in 85%, 77.5%, and 100% of the cases, respectively. Among the non-GC-derived lymphoma cases, all three markers were negative in cases of small lymphocytic lymphoma, plasmablastic lymphoma, peripheral T-cell lymphoma, and anaplastic large cell lymphoma. GCET1 and HGAL were negative in cases of marginal zone lymphoma (MZL) and mantle cell lymphoma (MCL). Two of the 3 MZL and 2 of the 4 MCL cases were positive for LMO2. In the DLBCL group, the number of cases with GCET1, HGAL, and LMO2 positivity was 18 (90%), 17 (85%), and 20 (100%), respectively, in Group A and 0 (0%), 2 (13.3%), and 2 (13.3%), respectively, in Group B. Considering these rates, when the cases in the intermediate group were evaluated, it was concluded that 13 cases typed as non-GCB according to the Hans algorithm may have the GCB phenotype. Conclusion: GCET1, HGAL, and LMO2 are highly sensitive markers for determining the germinal center cell phenotype and can increase the accuracy of the subclassification of DLBCL cases, especially for cases that are negative for CD10.


Assuntos
Linfoma Folicular , Linfoma Difuso de Grandes Células B , Adulto , Humanos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Centro Germinativo/metabolismo , Centro Germinativo/patologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas com Domínio LIM/genética , Proteínas com Domínio LIM/metabolismo , Linfoma Folicular/patologia , Linfoma Difuso de Grandes Células B/genética , Proteínas de Neoplasias/genética , Fenótipo , Proteínas Proto-Oncogênicas/genética
8.
Virchows Arch ; 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37368083

RESUMO

Aggressive large B-cell lymphomas (aLBCL) include a heterogeneous group of lymphomas with diverse biological features. One of the approaches to the diagnosis of aLBCL is based on the identification of MYC rearrangements (MYC-R), in addition to BCL2 and BCL6 rearrangements by genetic techniques, mainly fluorescent in situ hybridization (FISH). Because of the low incidence of MYC-R, the identification of useful immunohistochemistry markers to select cases for MYC FISH testing may be useful in daily practice. In a previous work, we identified a strong association between the profile CD10 positive/LMO2 negative expression and the presence of MYC-R in aLBCL and obtained good intralaboratory reproducibility. In this study, we wanted to evaluate external reproducibility. To evaluate whether LMO2 can be a reproducible marker between observers 50 aLBCL cases were circulated among 7 hematopathologists of 5 hospitals. Fleiss' kappa index for LMO2 and MYC were 0.87 and 0.70, respectively, indicating high agreement between observers. In addition, during 2021-2022, the enrolled centers included LMO2 in their diagnostic panels to evaluate prospectively the utility of the marker, and 213 cases were analyzed. Comparing LMO2 with MYC, the group of CD10 positive cases showed higher specificity (86% vs 79%), positive predictive value (66% vs 58%), likelihood positive value (5.47 vs 3.78), and accuracy (83% vs 79%), whereas the negative predictive values remained similar (90% vs 91%). These findings place LMO2 as a useful and reproducible marker to screen MYC-R in aLBCL.

9.
Cell Regen ; 12(1): 10, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37002435

RESUMO

EAF1 and EAF2, the eleven-nineteen lysine-rich leukemia (ELL)-associated factors which can assemble to the super elongation complex (AFF1/4, AF9/ENL, ELL, and P-TEFb), are reported to participate in RNA polymerase II to actively regulate a variety of biological processes, including leukemia and embryogenesis, but whether and how EAF1/2 function in hematopoietic system related hypoxia tolerance during embryogenesis remains unclear. Here, we unveiled that deletion of EAF1/2 (eaf1-/- and eaf2-/-) caused reduction in hypoxia tolerance in zebrafish, leading to reduced erythropoiesis during hematopoietic processes. Meanwhile, eaf1-/- and eaf2-/- mutants showed significant reduction in the expression of key transcriptional regulators scl, lmo2, and gata1a in erythropoiesis at both 24 h post fertilization (hpf) and 72 hpf, with gata1a downregulated while scl and lmo2 upregulated at 14 hpf. Mechanistically, eaf1-/- and eaf2-/- mutants exhibited significant changes in the expression of epigenetic modified histones, with a significant increase in the binding enrichment of modified histone H3K27me3 in gata1a promoter rather than scl and lmo2 promoters. Additionally, eaf1-/- and eaf2-/- mutants exhibited a dynamic expression of canonical WNT/ß-catenin signaling during erythropoiesis, with significant reduction in p-ß-Catenin level and in the binding enrichment of both scl and lmo2 promoters with the WNT transcriptional factor TCF4 at 24 hpf. These findings demonstrate an important role of Eaf1/2 in erythropoiesis in zebrafish and may have shed some light on regeneration medicine for anemia and related diseases and on molecular basis for fish economic or productive traits, such as growth, disease resistance, hypoxia tolerance, and so on.

10.
Biochem Biophys Rep ; 33: 101406, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36545566

RESUMO

Brain glioma is one of the cancer types with worst prognosis, and LMO2 has been reported to play oncogenic functions in brain gliomas. Herein, analysis of datasets from The Cancer Genome Atlas (TCGA) indicated that higher LMO2 level in patient samples indicated worse prognosis in lower grade gliomas (LGG) but not glioblastoma multiforme (GBM). Further, in tumor tissues consisting of a variety of cell types, LMO2 level indicated intratumoral endothelium and pattern recognition receptor (PRR) response in both LGGs and GBMs, and additionally indicated cytotoxic T-lymphocyte, M2 macrophage infiltration and fibroblast specifically in LGGs. Moreover, only in LGGs these aspects were significantly associated with patient survival, in either risky or protective manner, and these dissected associations can give a better prediction on patient prognosis than LMO2 alone. This study not only provided more detailed understandings of LMO2 functional representatives in brain gliomas but also demonstrated that dealing with certain gene (LMO2 in this study) in transcriptome data with the Weighted Gene Co-Expression Network Analysis (WGCNA) method was a robust strategy for dissecting exact and reasonable gene functions/associations in a complicated tumor environment.

11.
Biomedicines ; 10(11)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36359204

RESUMO

Cancer stem-like cells (CSCs) are considered promising targets for anti-cancer therapy owing to their role in tumor progression. Extensive research is, therefore, being carried out on CSCs to identify potential targets for anti-cancer therapy. However, this requires the availability of patient-derived CSCs ex vivo, which remains restricted due to the low availability and diversity of CSCs. To address this limitation, a functional polymer thin-film (PTF) platform was invented to induce the transformation of cancer cells into tumorigenic spheroids. In this study, we demonstrated the functionality of a new PTF, polymer X, using a streamlined production process. Polymer X induced the formation of tumor spheroids with properties of CSCs, as revealed through the upregulated expression of CSC-related genes. Signal transducer and activator of transcription 3 (STAT3) phosphorylation in the cancer cells cultured on polymer X was upregulated by the fibronectin-integrin α5-Janus kinase 2 (JAK2) axis and maintained by the cytosolic LMO2/LBD1 complex. In addition, STAT3 signaling was critical in spheroid formation on polymer X. Our PTF platform allows the efficient generation of tumor spheroids from cancer cells, thereby overcoming the existing limitations of cancer research.

12.
FASEB J ; 36(11): e22596, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36208295

RESUMO

Cox17 is required in the assembly of mitochondrial intermembrane space (IMS) and Cu metallization of cytochrome C oxidase (CcO) in mitochondria as well as Cu homeostasis in cells. Cox deficiency is associated with hematopoietic diseases such as tubulopathy and leukodystrophy, but whether and how cox17 functions in hematopoiesis are still unknown. Here, we report the effects of zebrafish cox17 deficiency on primitive erythropoiesis, mitochondrial metabolism, and hypoxia tolerance. Cox17-/- larvae were sensitive to hypoxia stress, with reduced primitive erythropoiesis. Meanwhile, cox17-/- mutants showed a significant reduction in the expression of pivotal transcriptional regulators in erythropoiesis, such as scl, lmo2, and gata1a at 14 h post fertilization (hpf), with expression remaining downregulated for scl but upregulated for lmo2 and gata1a at 24 hpf. Mechanistically, cox17-/- mutants showed impaired mitochondrial metabolism, coupled with a significant decrease in the mitochondrial membrane potential, ATP and SAM content, and the ratio of SAM and SAH. Additionally, disrupting mitochondrial metabolism in wild type (WT) larvae treated with carbonyl cyanide 3-chlorophenylhydrazone (CCCP) could mimic the primitive erythropoiesis defects observed in cox17-/- mutants. Moreover, cox17-/- mutants exhibited significantly downregulated WNT signaling and upregulated ER stress, with a significant reduction of beta-Catenin in gata1a+ cells and of binding enrichment in both scl and lmo2 promoters of the WNT transcriptional factor TCF4. This is the first report on the novel linkage of cox17 deficiency with defective primitive erythropoiesis and reduced hypoxia tolerance. This study has shed light on the potential mechanism by which Cox deficiency, especially cox17 deficiency, induces Cu homeostasis imbalance, leading to hematopoietic diseases.


Assuntos
Deficiência de Citocromo-c Oxidase , Peixe-Zebra , Trifosfato de Adenosina/metabolismo , Animais , Carbonil Cianeto m-Clorofenil Hidrazona , Deficiência de Citocromo-c Oxidase/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Eritropoese , Hipóxia/metabolismo , Proteínas com Domínio LIM/metabolismo , Mitocôndrias/metabolismo , Fatores de Transcrição/metabolismo , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , beta Catenina/metabolismo
13.
J Biol Chem ; 298(11): 102506, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36126774

RESUMO

Hematopoietic stem and progenitor cells can differentiate into all types of blood cells. Regulatory mechanisms underlying pluripotency in progenitors, such as the ability of lymphoid progenitor cells to differentiate into T-lineage, remain unclear. We have previously reported that LIM domain only 2 (Lmo2), a bridging factor in large transcriptional complexes, is essential to retain the ability of lymphoid progenitors to differentiate into T-lineage. However, biochemical characterization of Lmo2 protein complexes in physiological hematopoietic progenitors remains obscure. Here, we identified approximately 600 Lmo2-interacting molecules in a lymphoid progenitor cell line by two-step affinity purification with LC-MS/MS analysis. Zinc finger and BTB domain containing 1 (Zbtb1) and CBFA2/RUNX1 partner transcriptional corepressor 3 (Cbfa2t3) were found to be the functionally important binding partners of Lmo2. We determined CRISPR/Cas9-mediated acute disruption of Zbtb1 or Cbfa2t3 in the lymphoid progenitor or bone marrow-derived primary hematopoietic progenitor cells causes significant defects in the initiation of T-cell development when Notch signaling is activated. Our transcriptome analysis of Zbtb1- or Cbfa2t3-deficient lymphoid progenitors revealed that Tcf7 was a common target for both factors. Additionally, ChIP-seq analysis showed that Lmo2, Zbtb1, and Cbfa2t3 cobind to the Tcf7 upstream enhancer region, which is occupied by the Notch intracellular domain/RBPJ transcriptional complex after Notch stimulation, in lymphoid progenitors. Moreover, transduction with Tcf7 restored the defect in the T-lineage potential of Zbtb1-deficient lymphoid progenitors. Thus, in lymphoid progenitors, the Lmo2/Zbtb1/Cbfa2t3 complex directly binds to the Tcf7 locus and maintains responsiveness to the Notch-mediated inductive signaling to facilitate T-lineage differentiation.


Assuntos
Células Progenitoras Linfoides , Fatores de Transcrição , Células Progenitoras Linfoides/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Células-Tronco Hematopoéticas/metabolismo , Diferenciação Celular , Proteínas com Domínio LIM/genética , Proteínas com Domínio LIM/metabolismo
14.
Cells ; 11(13)2022 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-35805116

RESUMO

The oncogenic role of nuclear LIM domain only 2 (LMO2) as a transcriptional regulator is well established, but its function in the cytoplasm is largely unknown. Here, we identified LMO2 as a cytoplasmic activator for signal transducer and activator of transcription 3 (STAT3) signaling in glioma stem cells (GSCs) through biochemical and bioinformatics analyses. LMO2 increases STAT3 phosphorylation by interacting with glycoprotein 130 (gp130) and Janus kinases (JAKs). LMO2-driven activation of STAT3 signaling requires the LDB1 protein and leads to increased expression of an inhibitor of differentiation 1 (ID1), a master regulator of cancer stemness. Our findings indicate that the cytoplasmic LMO2-LDB1 complex plays a crucial role in the activation of the GSC signaling cascade via interaction with gp130 and JAK1/2. Thus, LMO2-LDB1 is a bona fide oncogenic protein complex that activates either the JAK-STAT signaling cascade in the cytoplasm or direct transcriptional regulation in the nucleus.


Assuntos
Glioma , Fator de Transcrição STAT3 , Proteínas Adaptadoras de Transdução de Sinal , Receptor gp130 de Citocina/metabolismo , Citoplasma/metabolismo , Proteínas de Ligação a DNA/metabolismo , Glioma/genética , Glioma/metabolismo , Glicoproteínas/metabolismo , Humanos , Janus Quinases/metabolismo , Proteínas com Domínio LIM/genética , Proteínas com Domínio LIM/metabolismo , Proteínas com Homeodomínio LIM/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fator de Transcrição STAT3/metabolismo , Fatores de Transcrição/metabolismo
15.
Biochem Biophys Res Commun ; 604: 43-50, 2022 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-35286869

RESUMO

Preeclampsia (PE) is a common obstetric disease caused by placenta development abnormality, typically characterized as inadequate trophoblast invasion and spiral artery remodeling. In this study, we found that LMO2 level was decreased in both cytotrophoblast (CTB) and interstitial extravillous trophoblast (iEVT) in human PE placentas, and LMO2 selectively promoted cell migration in iEVT derived HTR-8/SVneo cells whereas increased proliferation in CTB derived JEG-3 cells. In mechanism, LMO2 interacted with NCKAP1, leading to destruction of WAVE regulatory complex and increased lamellipodia formation in HTR-8/SVneo cells, whereas interacted with ß-catenin and up-regulated a number of core Wnt/Hippo pathway target genes in JEG-3 cells. This study revealed the differentially functional patterns of LMO2 in different trophoblast subtypes, and suggested LMO2 as a novel target for PE prediction, prevention and treatment in clinical.


Assuntos
Pré-Eclâmpsia , Trofoblastos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Feminino , Humanos , Proteínas com Domínio LIM/genética , Proteínas com Domínio LIM/metabolismo , Placenta/metabolismo , Placentação , Pré-Eclâmpsia/metabolismo , Gravidez , Proteínas Proto-Oncogênicas/metabolismo , Trofoblastos/metabolismo
16.
Diagn Pathol ; 17(1): 15, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-35094691

RESUMO

BACKGROUND: The distinction between acinic cell carcinoma (ACC) and secretory carcinoma (SC) of the salivary gland is hampered by the lack of specific diagnostic markers. It is known the cytoplasm of glandular cells in the salivary gland immunohistochemically expresses LIM Domain Only 2 (LMO2). Herein, we aim to evaluate the expression status of LMO2 in a large cohort of tumors of the salivary gland, with an emphasis on its significance in the distinction of ACC and SC. METHODS: Immunohistochemical stains were performed to evaluate the expression of LMO2 in normal tissues and tumors of salivary gland. RESULTS: LMO2 was expressed in normal serous acinar cells of the salivary gland. We also found the cytoplasmic immunostaining of LMO2 was specific and sensitive for the recognition of ACCs including those with morphological overlaps with SCs, whereas the cytoplasmic expression of LMO2 was not detected in SCs. CONCLUSIONS: LMO2 is useful for the recognition of ACC and is of potential value in distinguishing ACC from SC.


Assuntos
Carcinoma de Células Acinares , Carcinoma , Neoplasias das Glândulas Salivares , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Biomarcadores Tumorais/metabolismo , Carcinoma/patologia , Carcinoma de Células Acinares/diagnóstico , Carcinoma de Células Acinares/patologia , Humanos , Proteínas com Domínio LIM , Proteínas Proto-Oncogênicas/metabolismo , Neoplasias das Glândulas Salivares/patologia , Glândulas Salivares/patologia
17.
Elife ; 102021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34382935

RESUMO

Notch signaling primarily determines T-cell fate. However, the molecular mechanisms underlying the maintenance of T-lineage potential in pre-thymic progenitors remain unclear. Here, we established two murine Ebf1-deficient pro-B cell lines, with and without T-lineage potential. The latter expressed lower levels of Lmo2; their potential was restored via ectopic expression of Lmo2. Conversely, the CRISPR/Cas9-mediated deletion of Lmo2 resulted in the loss of the T-lineage potential. Introduction of Bcl2 rescued massive cell death of Notch-stimulated pro-B cells without efficient LMO2-driven Bcl11a expression but was not sufficient to retain their T-lineage potential. Pro-B cells without T-lineage potential failed to activate Tcf7 due to DNA methylation; Tcf7 transduction restored this capacity. Moreover, direct binding of LMO2 to the Bcl11a and Tcf7 loci was observed. Altogether, our results highlight LMO2 as a crucial player in the survival and maintenance of T-lineage potential in T-cell progenitors via the regulation of the expression of Bcl11a and Tcf7.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Diferenciação Celular/genética , Linhagem da Célula/genética , Proteínas com Domínio LIM/genética , Linfócitos T/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Feminino , Proteínas com Domínio LIM/metabolismo , Masculino , Camundongos
18.
J Immunol Methods ; 494: 113051, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33794223

RESUMO

The use of intracellular antibodies as templates to derive surrogate compounds is an important objective because intracellular antibodies can be employed initially for target validation in pre-clinical assays and subsequently employed in compound library screens. LMO2 is a T cell oncogenic protein activated in the majority of T cell acute leukaemias. We have used an inhibitory intracellular antibody fragment as a competitor in a small molecule library screen using competitive surface plasmon resonance (cSPR) to identify compounds that bind to LMO2. We selected four compounds that bind to LMO2 but not when the anti-LMO2 intracellular antibody fragment is bound to it. These findings further illustrate the value of intracellular antibodies in the initial stages of drug discovery campaigns and more generally antibodies, or antibody fragments, can be the starting point for chemical compound development as surrogates of the antibody combining site.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antígenos de Neoplasias/metabolismo , Fragmentos de Imunoglobulinas/metabolismo , Proteínas com Domínio LIM/metabolismo , Leucemia de Células T/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Linfócitos T/metabolismo , Anticorpos/metabolismo , Ligação Competitiva , Células Cultivadas , Descoberta de Drogas , Humanos , Fragmentos de Imunoglobulinas/genética , Espaço Intracelular , Conformação Proteica , Bibliotecas de Moléculas Pequenas , Ressonância de Plasmônio de Superfície , Proteína 1 de Leucemia Linfocítica Aguda de Células T/metabolismo , Linfócitos T/imunologia
19.
Virchows Arch ; 479(6): 1073-1078, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33811533

RESUMO

MYC rearrangements (MYC-R) confer unfavorable prognosis to large B-cell lymphomas (LBCL). Because of the low incidence of such genetic alteration, surrogates to screen MYC-R may be useful in daily practice. Previous studies suggested that clone 1A9-1 of LMO2 loss may be a good predictor for the presence of MYC-R in LBCL. The present study examines the utility of LMO2 clone SP51. For this purpose, we have analyzed 20 Burkitt lymphomas and 325 LBCL. Among them, 245 cases were studied prospectively using whole tissue sections, and 100 retrospectively by tissue microarrays. The cohort of CD10-positive prospective cases achieved the best results. Lack of LMO2 SP51 expression predicted the presence of MYC-R with high specificity, accuracy, positive and negative predictive value (PPV/NPV), and positive and negative likelihood ratios (PLR/NLR). Compared with MYC protein expression, LMO2 SP51 obtained significantly higher specificity, accuracy, PPV, and PLR (94%, 91%, 85%, and 14.33 vs 73%, 77%, 56%, and 3.26, respectively), and similar NPV and NLR (92% and 0.22 vs 95% and 0.12). Compared with LMO2 clone 1A9-1, the sensitivity of LMO2 SP51 was lower (79% vs 89%). We conclude that LMO2 SP51 may be a useful marker to screen MYC-R in CD10-positive LBCL.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/deficiência , Biomarcadores Tumorais , Rearranjo Gênico , Imuno-Histoquímica , Proteínas com Domínio LIM/deficiência , Linfoma Difuso de Grandes Células B/química , Linfoma Difuso de Grandes Células B/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas/deficiência , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/deficiência , Criança , Pré-Escolar , Feminino , Humanos , Linfoma Difuso de Grandes Células B/patologia , Masculino , Pessoa de Meia-Idade , Neprilisina/análise , Valor Preditivo dos Testes , Prognóstico , Estudos Prospectivos , Reprodutibilidade dos Testes , Estudos Retrospectivos , Análise Serial de Tecidos , Adulto Jovem
20.
Cancer Lett ; 503: 138-150, 2021 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-33503448

RESUMO

The androgen receptor (AR) is expressed in prostate fibroblasts in addition to normal prostate epithelial cells and prostate cancer (PCa) cells. Moreover, AR activation in fibroblasts dramatically influences prostate cancer (PCa) cell behavior. Androgen deprivation leads to deregulation of AR downstream target genes in both fibroblasts and PCa cells. Here, we identified LIM domain only 2 (LMO2) as an AR target gene in prostate fibroblasts using ChIP-seq and revealed that LMO2 can be repressed directly by AR through binding to androgen response elements (AREs), which results in LMO2 overexpression after AR deactivation due to normal prostate fibroblasts to cancer-associated fibroblasts (CAFs) transformation or androgen deprivation therapy. Next, we investigated the mechanisms of LMO2 overexpression in fibroblasts and the role of this event in non-cell-autonomous promotion of PCa cells growth in the androgen-independent manner through paracrine release of IL-11 and FGF-9. Collectively, our data suggest that AR deactivation deregulates LMO2 expression in prostate fibroblasts, which induces castration resistance in PCa cells non-cell-autonomously through IL-11 and FGF-9.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Benzamidas/farmacologia , Fibroblastos Associados a Câncer/metabolismo , Proteínas com Domínio LIM/metabolismo , Nitrilas/farmacologia , Feniltioidantoína/farmacologia , Neoplasias de Próstata Resistentes à Castração/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores Androgênicos/metabolismo , Regulação para Cima , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Sequenciamento de Cromatina por Imunoprecipitação , Fator 9 de Crescimento de Fibroblastos/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Interleucina-11/metabolismo , Masculino , Camundongos , Comunicação Parácrina , Cultura Primária de Células , Ativação Transcricional/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA