Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Sci (China) ; 146: 140-148, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38969442

RESUMO

Sulfonamide antibiotics (SAs) widely used have potentially negative effects on human beings and ecosystems. Adsorption and advanced oxidation methods have been extensively applied in SAs wastewater treatment. In this study, compared with Al3+@BC500 and Fe3+@BC500, La3+@BC500 for activating persulfate (S2O82-) had the best effect removal performance of sulfadiazine (SDZ) and sulfamethoxazole (SMX). Morphology, acidity, oxygen-containing functional groups, and loading of La3+@BC500 were analyzed by techniques, including EA, BET, XRD, XPS, FT-IR. XRD results show that with the increase of La3+ loading, the surface characteristics of biochar gradually changed from CaCO3 to LaCO3OH. Through EPR technology, it is proved that LaCO3OH on the surface of La3+@BC500 can not only activate S2O82- to generate SO4-•, but also to produce •OH. In the optimization experiment, the optimal dosage of La3+ is between 0.05 and 0.2 (mol/L)/g. SDZ had a good removal effect at pH (5-9), but SMX had a good removal effect only at pH=3. Zeta potential also proves that the material is more stable under acidic conditions. The removal process of SDZ is more in accord with pseudo-first-order kinetics (R2=0.9869), while SMX is more in line with pseudo-second order kinetics (R2=0.9926).


Assuntos
Antibacterianos , Lantânio , Sulfonamidas , Poluentes Químicos da Água , Poluentes Químicos da Água/química , Antibacterianos/química , Sulfonamidas/química , Lantânio/química , Carvão Vegetal/química , Adsorção , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos , Águas Residuárias/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA