Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.132
Filtrar
1.
J Environ Sci (China) ; 147: 74-82, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003085

RESUMO

Endocrine disruptors such as bisphenol A (BPA) adversely affect the environment and human health. Laccases are used for the efficient biodegradation of various persistent organic pollutants in an environmentally safe manner. However, the direct application of free laccases is generally hindered by short enzyme lifetimes, non-reusability, and the high cost of a single use. In this study, laccases were immobilized on a novel magnetic three-dimensional poly(ethylene glycol) diacrylate (PEGDA)-chitosan (CS) inverse opal hydrogel (LAC@MPEGDA@CS@IOH). The immobilized laccase showed significant improvement in the BPA degradation performance and superior storage stability compared with the free laccase. 91.1% of 100 mg/L BPA was removed by the LAC@MPEGDA@CS@IOH in 3 hr, whereas only 50.6% of BPA was removed by the same amount of the free laccase. Compared with the laccase, the outstanding BPA degradation efficiency of the LAC@MPEGDA@CS@IOH was maintained over a wider range of pH values and temperatures. Moreover, its relative activity of was maintained at 70.4% after 10 cycles, and the system performed well in actual water matrices. This efficient method for preparing immobilized laccases is simple and green, and it can be used to further develop ecofriendly biocatalysts to remove organic pollutants from wastewater.


Assuntos
Compostos Benzidrílicos , Enzimas Imobilizadas , Lacase , Fenóis , Polietilenoglicóis , Poluentes Químicos da Água , Lacase/química , Lacase/metabolismo , Fenóis/química , Poluentes Químicos da Água/química , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Polietilenoglicóis/química , Quitosana/química , Hidrogéis/química , Biodegradação Ambiental , Disruptores Endócrinos/química
2.
Food Chem ; 460(Pt 2): 140583, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39089026

RESUMO

Thin-layer chromatography (TLC) hyphenated to bioassays is a modern tool used for discovery of biologically active compounds from complex mixtures. The first bioautographic assay for detecting laccase inhibitors on a TLC plate was developed in this study. The on-plate reaction of laccase with colourless ABTS that renders the blue ABTS∙+ radical was optimised. Combination of the enzymatic TLC-assay with a control TLC-assay, wherein ABTS∙+ radical is chemically generated and then applied on the TLC, allowed to differentiate between the pure laccase inhibitor sodium azide and radical scavengers such as gallic and kojic acids. The limit of detection and quantification for the method were 54.9 and 166 ng of sodium azide respectively. The methodology was applied successfully to a recently discovered laccase inhibitor chemotype: hydrazones. A model hydrazone was compared with several hydrazones synthesized for this study. For the first time, laccase inhibitors separated on a TLC plate can be detected individually.

3.
Food Chem ; 460(Pt 2): 140544, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39089023

RESUMO

A novel antibacterial film based on arabinoxylan (AX) was prepared by introducing ferulic acid (FA) to AX through a laccase-catalyzed procedure. The ferulic acid-arabinoxylan conjugates (FA-AX conjugates) have been characterized. Results showed that FA was successfully grafted onto the AX chains by covalent linkages, likely through nucleophilic addition between O-Ph in the phenolic hydroxyl group of FA, or through Michael addition via O-quinone intermediates. FA-AX conjugates showed improved crystallinity, thermal stability, and rheological properties, as well as a distinct surface morphology, compared with those of native AX. Moreover, FA-AX conjugates exhibited enhanced antibacterial ability against Staphylococcus aureus, Escherichia coli, Shewanella sp., and Pseudomonas sp. Mechanistic studies revealed that the enhanced antibacterial ability was due to the penetration of bacterial membrane by the phenolic molecule and the steric effect of FA-AX conjugates. The study demonstrates that the laccase-induced grafting method was effective in producing FA-AX conjugates; we have demonstrated its antibacterial ability and great potential in prolonging the shelf life of fresh seafood products.

4.
Talanta ; 279: 126630, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39098242

RESUMO

Laccase is well-known for its eco-friendly applications in environmental remediation and biotechnology, but its high cost and low stability have limited its practical use. Therefore, there is an urgent need to develop efficient laccase mimetics. In this study, a novel laccase-mimicking nanozyme (MBI-Cu) was successfully synthesized using 2-methylbenzimidazole (MBI) coordinated with Cu2+ by mimicking the copper active site and electron transfer pathway of natural laccase. MBI-Cu nanozyme exhibited excellent catalytic activity and higher stability than laccase, and was utilized to oxidize a series of phenolic compounds. Environmental pollutant aminophenol isomers were found to display different color in solution when catalytically oxidized by MBI-Cu, which provided a simple and feasible method to identify them by the naked eye. Based on the distinct absorption spectra of the oxidized aminophenol isomers, a colorimetric method for quantitatively detecting o-AP, m-AP, and p-AP was established, with detection limits of 0.06 µM, 0.27 µM, and 0.18 µM, respectively. Furthermore, by integrating MBI-Cu-based cotton pad colorimetric strips with smartphone and utilizing color recognition software to identify and analyze the RGB values of the images, a portable colorimetric sensing platform was designed for rapid detection of aminophenol isomers without the need for any analytical instrument. This work provides an effective reference for the design of laccase nanozymes and holds significant potential for applications in the field of environmental pollutant monitoring.

5.
Front Bioeng Biotechnol ; 12: 1441075, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39108598

RESUMO

The persistent expansion in world energy and synthetic compounds requires the improvement of renewable alternatives in contrast to non-sustainable energy wellsprings. Lignocellulose is an encouraging feedstock to be utilized in biorefineries for its conversion into value-added products, including biomaterials, biofuels and several bio-based synthetic compounds. Aside from all categories, biofuel, particularly bioethanol is the most substantial fuel derived from lignocellulosic biomass and can be obtained through microbial fermentation. Generally, extreme settings are required for lignocellulosic pretreatment which results in the formation of inhibitors during biomassdegradation. Occasionally, lignin polymers also act as inhibitors and are left untreated during the pretreatment, engendering inefficient hydrolysis. The valorization of lignocellulosic biomass by laccases can be viewed as a fundamental trend for improving bioethanol production. However, one of the main obstacles for developing commercially viable biofuel industries is the cost of enzymes, which can be resolved by utilizing laccases derived from microbial sources. Microbial laccases have been considered an exceptionally integral asset for delignification and detoxification of pretreated LCB, which amplify the resultant fermentation and saccharification processes. This review provides a summary of microbial laccases and their role in valorizing LCB to bioethanol, compelling enthralling applications in bio-refining industries all across the globe.

6.
Food Res Int ; 192: 114782, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39147480

RESUMO

Infection of grapevines with the grey mold pathogen Botrytis cinerea results in severe problems for winemakers worldwide. Browning of wine is caused by the laccase-mediated oxidation of polyphenols. In the last decades, Botrytis management has become increasingly difficult due to the rising number of resistances and the genetic variety of Botrytis strains. During the search for sustainable fungicides, polyphenols showed great potential to inhibit fungal growth. The present study revealed two important aspects regarding the effects of grape-specific polyphenols and their polymerized oxidation products on Botrytis wild strains. On the one hand, laccase-mediated oxidized polyphenols, which resemble the products found in infected grapes, showed the same potential for inhibition of growth and laccase activity, but differed from their native forms. On the other hand, the impact of phenolic compounds on mycelial growth is not correlated to the effect on laccase activity. Instead, mycelial growth and relative specific laccase activity appear to be modulated independently. All phenolic compounds showed not only inhibitory but also inductive effects on fungal growth and/or laccase activity, an observation which is reported for the first time. The simultaneous inhibition of growth and laccase activity demonstrated may serve as a basis for the development of a natural botryticide. Yet, the results showed considerable differences between genetically distinguishable strains, impeding the use of a specific phenolic compound against the genetic variety of wild strains. The present findings might have important implications for future understanding of Botrytis cinerea infections and sustainable Botrytis management including the role of polyphenols.


Assuntos
Botrytis , Lacase , Oxirredução , Polifenóis , Vitis , Botrytis/efeitos dos fármacos , Botrytis/crescimento & desenvolvimento , Botrytis/enzimologia , Lacase/metabolismo , Polifenóis/farmacologia , Vitis/microbiologia , Micélio/crescimento & desenvolvimento , Micélio/efeitos dos fármacos , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Vinho/microbiologia , Doenças das Plantas/microbiologia
7.
Front Microbiol ; 15: 1411264, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39113836

RESUMO

The diversity of Ganoderma remains largely unexplored, with little information available due to fungiphobia and the morphological plasticity of the genus. To address this gap, an ongoing study aims to collect and identify species with this genus using nuclear ribosomal DNA regions called the "Internal Transcribed Spacer" (ITS1-5.8S-ITS2 = ITS). In this study, a new species, Ganoderma segmentatum sp. nov., was discovered on the dead tree trunk of the medicinal plant, Vachellia nilotica. The species was identified through a combination of morpho-anatomical characteristics and phylogenetic analyses. This new species was closely related to Ganoderma multipileum, G. mizoramense, and G. steyaertanum, with a 99% bootstrap value, forming a distinct branch in the phylogenetic tree. Morphologically, G. segmentatum can be distinguished by its frill-like appearance on the margin of basidiome. Wilt or basal stem rot, a serious disease of trees caused by Ganoderma species and V. nilotica, is brutally affected by this disease, resulting in substantial losses in health and productivity. This Ganoderma species severely damages V. nilotica through deep mycelial penetration in the upper and basal stems of the host species. Pathogenic observational descriptions of G. segmentatum on dead tree trunks showed the exudation of viscous reddish-brown fluid from the basal stem portion, which gradually extended upward. Symptoms of this disease include decay, stem discoloration, leaf drooping, and eventual death, which severely damaged the medicinal tree of V. nilotica.

8.
J Mol Graph Model ; 132: 108844, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39116656

RESUMO

Many protein-ionic liquid investigations have examined laccase interactions. Laccases are a class of poly-copper oxidoreductases that retain significant biotechnological relevance owing to their notable oxidative capabilities and their application in the elimination of synthetic dyes, phenolic compounds, insecticides, and various other substances. This study investigates the impact of surface active ionic liquids (SAILs), namely, decyltrimethylammonium bromide [N10111][Br] and 1-decyl-3-methylimidazolium chloride [C10mim][Cl] as cationic surfactant ionic liquids and cholinium decanoate [Chl][Dec], an anionic surfactant ionic liquid, on the structure and function of laccase from the fungus Trametes versicolor (TvL) by the molecular dynamics (MD) simulation method. In summary, this study showed that laccase solvent-accessible surface area increased in the ionic liquid [Chl][Dec] while it decreased in the other two ionic liquids. Interestingly, [Chl][Dec] ionic liquid components formed hydrogen bonds with laccase, while [N10111][Br] and [C10mim][Cl] components were unable to form hydrogen bonds with laccase. The quantity of hydrogen bonds formed between water molecules and the enzyme was also diminished in the presence of [Chl][Dec] in comparison to the other two ionic liquids. especially at a concentration of 250 mM. In 250 mM concentrations of [N10111][Br] and [C10mim][Cl], clusters of long-chain cations are likely to form near the copper T1 site. However, even at low [Chl][Dec] concentrations, long [Dec]- chains were observed to penetrate the enzyme near the copper T1 site, and at 250 mM [Chl][Dec], a large cluster of anions occupied the opening of the active site. The results of the analysis also show that the interaction between the [Dec]- anion and the enzyme is stronger than the interaction between [N10111]+ and [C10mim]+ with laccase; in addition, the [Dec]- anion, compared to [Br]- and [Cl]- has a much greater tendency to bind with the enzyme residues.

9.
Biochim Biophys Acta Gen Subj ; : 130691, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39117046

RESUMO

Phenols and phenolic compounds are major plant metabolites used in industries to produce pesticides, dyes, medicines, and plastics. These compounds enter water bodies, soil, and living organisms via such industrial routes. Some polyphenolic compounds like phenolic acids, flavonoids have antioxidant and organoleptic qualities, as well as preventive effects against neurodegenerative illnesses, cardiovascular disease, diabetes, and cancer. However, many of the polyphenolic compounds, such as Bisphenol A, phthalates, and dioxins also cause major environmental pollution and endocrine disruption, once the dose level becomes objectionable. The development of reliable and rapid methods for studying their dose dependency, high-impact detrimental effects, and continuous monitoring of phenol levels in humans and environmental samples is a crucial necessity of the day. Enzymatic biosensors employing phenol oxidases like tyrosinase, peroxidase and laccase, utilizing electrochemical amperometric methods are innovative methods for phenol quantification. Enzymatic biosensing, being highly sensitive and efficacious technique, is illuminated in this review article as a progressive approach for phenol quantification with special emphasis on laccase amperometric biosensors. Even more, the review article discussion is extended up to nanozymes, composites of metal organic frameworks (MOFs), and molecularly imprinted polymers (MIPs) as some emerging species for electro-chemical sensing of phenols. Applications of phenol quantification and green biosensing are also specified. A concrete summary of the innovative polyphenol detection approaches with futuristic scope indicates a triumph over some existing constraints of the phenomenological approaches providing an informative aisle to the modern researchers towards the bulk readability.

10.
Environ Pollut ; : 124700, 2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39137875

RESUMO

Improper waste disposal or inadequate wastewater treatment can result in pharmaceuticals reaching water bodies, posing environmental hazards. In this study, crude extracts containing the laccase enzyme from Pleurotus florida, Pleurotus eryngii, and Pleurotus sajor caju were used to degrade the fluoroquinolone antibiotics (FQs) levofloxacin (LEV), norfloxacin (NOR), ciprofloxacin (CIP), ofloxacin (OFL), and enrofloxacin (ENR) in aqueous solutions. The results for the fungi derived laccase extracts were compared with those obtained using commercially sourced laccase. Proteomics analysis of the crude extracts confirmed the presence of laccase enzyme across all three tested species, with proteins matching those found in Trametes versicolor and Pleurotus ostreatus. In vivo studies were conducted using species pure lines of fungal whole cells. The highest degradation efficiency observed was 77.7% for LEV in the presence of P. sajor caju after 25 days of treatment. Degradation efficiencies ranged from approximately 60-72% for P. florida, 45-76% for P. eryngii, and 47-78% for P. sajor caju. A series of in vitro experiments were also conducted using crude extracts from the three species and outcomes compared with those obtained when commercial laccase was used confirmed laccase as the enzyme responsible for antibiotic removal. The degradation efficiencies in vitro surpassed those measured in vivo, ranging from approximately 91-98% for commercial laccase, 77-92% for P. florida, 76-92% for P. eryngii, and 78-88% for P. sajor caju. Liquid chromatography-high-resolution mass spectrometry (LC-MS/MS) identified the degradation products, indicating a consistent enzymatic degradation pathway targeting the piperazine moiety common to all tested FQs, irrespective of the initial antibiotic structure. Phytoplankton toxicity studies with Dunaliella tertiolecta were performed to aid in understanding the impact of emerging contaminants on ecosystems, and by-products were analysed for ecotoxicity to assess treatment efficacy. Laccase-mediated enzymatic oxidation shows promising results in reducing algal toxicity, notably with Pleurotus eryngii extract achieving a 97.7% decrease for CIP and a 90% decrease for LEV. These findings suggest the potential of these naturally sourced extracts in mitigating antibiotic contamination in aquatic ecosystems.

11.
Int J Biol Macromol ; 277(Pt 4): 134534, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39111464

RESUMO

A fungal laccase-mediator system capable of high effectively oxidizing tetracyclines under a wide pH range will benefit environmental protection. This study reported a directed evolution of a laccase PIE5 to improve its performance on tetracyclines oxidization at alkaline conditions. Two mutants, namely MutA (D229N/A244V) and MutB (N123A/D229N/A244V) were obtained. Although they shared a similar optimum pH and temperature as PIE5, the two mutants displayed approximately 2- and 5-fold higher specific activity toward the mediators ABTS and guaiacol at pHs 4.0 to 6.5, respectively. Simultaneously, their catalytic efficiency increased by 8.0- and 6.4-fold compared to PIE5. At a pH range of 5-8 and 28 °C, MutA or MutB at a final concentration of 2.5 U·mL-1 degraded 77 % and 81 % of 100 mg·L-1 tetracycline within 10 min, higher than PIE5 (45 %). Furthermore, 0.1 U·mL-1 MutA or MutB completely degraded 100 mg·L-1 chlortetracycline within 6 min in the presence of 0.1 mM ABTS. At pH 8.0, MutA degraded tetracycline and chlortetracycline following the routine pathways were reported previously based on LC-MS analysis.

12.
Int J Biol Macromol ; 277(Pt 4): 134583, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39122074

RESUMO

Laccase (EC 1.10.3.2), as eco-friendly biocatalysts, holds immense potential for sustainable applications across various environmental and industrial sectors. Despite the growing interest, the exploration of cold-adapted laccases, especially their unique properties and applicability, remains limited. In this study, we have isolated, cloned, expressed, and purified a novel laccase from Peribacillus simplex (GenBank: PP430751), which was derived from permafrost layer. The recombinant laccase (PsLac) exhibited optimal activity at 30 °C and a pH optimum of 3.5. Remarkably, PsLac exhibited remarkable stability in the presence of organic solvents, with its enzyme activity increasing by 20 % after being incubated in a 30 % trichloromethane solution for 12 h, compared to its initial activity. Furthermore, the enzyme preserved 100 % of its activity after undergoing eight freeze-thaw cycles. Notably, the catalytic center of PsLac contains Zn2+ instead of the typically observed Cu2+ found in other laccases, and metal-ion substitution experiments raised the catalytic efficiency to 3-fold when Zn2+ was replaced with Fe2+. Additionally, PsLac has demonstrated a proficient ability to degrade phenolic pollutants, such as hydroquinone, even at a low temperature of 16 °C, positioning it as a promising candidate for environmental bioremediation and contributing to cleaner production processes.

13.
Int J Mol Sci ; 25(15)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39126090

RESUMO

Recently, prokaryotic laccases from lactic acid bacteria (LAB), which can degrade biogenic amines, were discovered. A laccase enzyme has been cloned from Oenococcus oeni, a very important LAB in winemaking, and it has been expressed in Escherichia coli. This enzyme has similar characteristics to those previously isolated from LAB as the ability to oxidize canonical substrates such as 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 2,6-dimethoxyphenol (2,6-DMP), and potassium ferrocyanide K4[Fe(CN6)], and non-conventional substrates as biogenic amines. However, it presents some distinctiveness, the most characteristic being its psychrophilic behaviour, not seen before among these enzymes. Psychrophilic enzymes capable of efficient catalysis at low temperatures are of great interest due to their potential applications in various biotechnological processes. In this study, we report the discovery and characterization of a new psychrophilic laccase, a multicopper oxidase (MCO), from the bacterium Oenococcus oeni. The psychrophilic laccase gene, designated as LcOe 229, was identified through the genomic analysis of O. oeni, a Gram-positive bacterium commonly found in wine fermentation. The gene was successfully cloned and heterologously expressed in Escherichia coli, and the recombinant enzyme was purified to homogeneity. Biochemical characterization of the psychrophilic laccase revealed its optimal activity at low temperatures, with a peak at 10 °C. To our knowledge, this is the lowest optimum temperature described so far for laccases. Furthermore, the psychrophilic laccase demonstrated remarkable stability and activity at low pH (optimum pH 2.5 for ABTS), suggesting its potential for diverse biotechnological applications. The kinetic properties of LcOe 229 were determined, revealing a high catalytic efficiency (kcat/Km) for several substrates at low temperatures. This exceptional cold adaptation of LcOe 229 indicates its potential as a biocatalyst in cold environments or applications requiring low-temperature processes. The crystal structure of the psychrophilic laccase was determined using X-ray crystallography demonstrating structural features similar to other LAB laccases, such as an extended N-terminal and an extended C-terminal end, with the latter containing a disulphide bond. Also, the structure shows two Met residues at the entrance of the T1Cu site, common in LAB laccases, which we suggest could be involved in substrate binding, thus expanding the substrate-binding pocket for laccases. A structural comparison of LcOe 229 with Antarctic laccases has not revealed specific features assigned to cold-active laccases versus mesophilic. Thus, further investigation of this psychrophilic laccase and its engineering could lead to enhanced cold-active enzymes with improved properties for future biotechnological applications. Overall, the discovery of this novel psychrophilic laccase from O. oeni expands our understanding of cold-adapted enzymes and presents new opportunities for their industrial applications in cold environments.


Assuntos
Lacase , Oenococcus , Oenococcus/enzimologia , Oenococcus/genética , Lacase/metabolismo , Lacase/genética , Lacase/química , Especificidade por Substrato , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Sequência de Aminoácidos , Escherichia coli/genética , Escherichia coli/metabolismo , Clonagem Molecular , Cinética , Modelos Moleculares , Cristalografia por Raios X , Concentração de Íons de Hidrogênio
14.
Front Chem ; 12: 1412242, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39119518

RESUMO

Known for its tunable conductivity and stability, Polyaniline (PANI) is a valuable polymer for electronics and sensing devices. Challenges in solubility have been addressed by creating sulfonated PANI (SPANI), enhancing its practical use. Synthesizing SPANI from sulfonated aniline is intricate, but laccase biocatalysis offers an eco-conscious solution, effective even against high redox potential obstacles. This research monitored the Trametes versicolor laccase-induced oxidation of 3-ABSa via UV-vis spectroscopy, with a notable peak at 565 nm signifying SPANI synthesis, effective even at suboptimal pH. Mediators further boost this process. Moreover, NMR and spectroelectrochemistry confirm the green synthesis of SPANI by laccase, hinting that pH fine-tuning could improve yields, alongside the concurrent creation of azobenzene derivatives.

15.
Int J Biol Macromol ; 278(Pt 1): 134586, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39122072

RESUMO

Laccase, a prominent enzyme biomacromolecule, exhibits promising catalytic efficiency in degrading phenolic compounds like bisphenol A (BPA). The laccase immobilized on conventional materials frequently demonstrates restricted loading and suboptimal catalytic performance. Hence, there is a pressing need to optimized external surface utilization to enhance catalytic performance. Herein, we synthesized amino-functionalized modified silica particles with a hierarchical hollow silica spherical (HHSS) structure for laccase immobilization via crosslinking, resulting in HHSS-LE biocatalysts. Through Box-Behnken design (BBD) and response surface methodology (RSM), we achieved a remarkably high enzyme loading of up to 213.102 mg/g. The synergistic effect of adsorption by HHSS and degradation by laccase facilitated efficient removal of BPA. The HHSS-LE demonstrated superior BPA removal capabilities, with efficiencies exceeding 100 % in the 50-200 mg/L BPA concentration range. Compared to MCM-41 and solid silica spheres (SSS), HHSS showed the highest enzyme loading capacity and catalytic activity, underscoring its superior external surface utilization rate per unit mass. Remarkably, the HHSS-LE biocatalyst exhibited remarkable recyclability even after 11 successive cycles of reuse. By preparing high immobilization rate with efficient external surface utilization, this study lays the foundation for the design of universally applicable and efficient enzyme immobilization catalysts.

16.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124948, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39146630

RESUMO

Herein, a nanocomposite of Cu,Ce-containing phosphotungstates (Cu,Ce-PTs) with outstanding laccase-like activity was fabricated via a one-pot microwave-assisted hydrothermal method. Notably, it was discovered that both Fe3+ and Cr6+ could significantly enhance the electron transfer rates of Ce3+ and Ce4+, along with generous Cu2+ with high catalytic activity, thereby promoting the laccase-like activity of Cu,Ce-PTs. The proposed system can be used for the detection of Fe3+ and Cr6+ in a range of 0.667-333.33 µg/mL and 0.033-33.33 µg/mL with a low detection limit of 0.135 µg/mL and 0.0288 µg/mL, respectively. The proposed assay exhibits excellent reusability and selectivity and can be used in traditional Chinese medicine samples analysis.

17.
EFSA J ; 22(7): e8869, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38993590

RESUMO

The food enzyme laccase (benzenediol:oxygen oxidoreductase, i.e. EC 1.10.3.2) is produced with the non-genetically modified Trametes hirsuta strain AE-OR by Amano Enzyme Inc. A safety evaluation of this food enzyme was made previously, in which EFSA concluded that this food enzyme did not give rise to safety concerns when used in six food manufacturing processes. Subsequently, the applicant has requested to extend its use to include three additional processes and to revise the use levels. In this assessment, EFSA updated the safety evaluation of this food enzyme when used in a total of nine food manufacturing processes. Dietary exposure to the food enzyme-total organic solids (TOS) was calculated to be up to 0.030 mg TOS/kg body weight (bw) per day in European populations. Using the no observed adverse effect level previously reported (862 mg TOS/kg bw per day, the highest dose tested), the Panel derived a margin of exposure of at least 28,733. Based on the data provided for the previous evaluation and the revised margin of exposure in the present evaluation, the Panel concluded that this food enzyme does not give rise to safety concerns under the revised intended conditions of use.

18.
Oncol Lett ; 28(3): 416, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38988443

RESUMO

Transforming growth factor-ß (TGF-ß) signaling pathway serves a pivotal role in the pathogenesis of colorectal cancer (CRC). However, the specific molecular mechanisms by which the TGF-ß signaling pathway regulates CRC are still not fully understood. In the present study, metabolomics and transcriptomics were used to screen for key metabolites and regulatory genes most related to the regulation of the TGF-ß signaling pathway in CRC. Additionally, reverse transcription-quantitative PCR, western blotting and Transwell assays were performed to assess the process of epithelial-mesenchymal transition (EMT). Metabolomics analysis indicated that TGF-ß1 has an impact on purine metabolism, leading to an increase in the purine metabolite inosine. The increase of inosine is essential for facilitating EMT and cell migration in CRC cells. Furthermore, the integrated analysis of metabolomics and transcriptomics data revealed that TGF-ß1 induces the expression of laccase domain-containing 1 (LACC1), an enzyme involved in the regulation of inosine. Knockdown of LACC1 resulted in a reduction of TGF-ß1-induced alterations in inosine levels, EMT and cell migration in CRC cells. The results of the present study suggest that the TGF-ß signaling pathway is involved in the regulation of purine metabolism in CRC through the modulation of LACC1 expression. Furthermore, LACC1 appears to influence EMT and cell migration by elevating the levels of the purine metabolite inosine.

19.
Foods ; 13(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38998597

RESUMO

Plant-based protein is considered a sustainable protein source and has increased in demand recently. However, products containing plant-based proteins require further modification to achieve the desired functionalities akin to those present in animal protein products. This study aimed to investigate the effects of enzymes as cross-linking reagents on the physicochemical and functional properties of hybrid plant- and animal-based proteins in which lupin and whey proteins were chosen as representatives, respectively. They were hybridised through enzymatic cross-linking using two laccases (laccase R, derived from Rhus vernicifera and laccase T, derived from Trametes versicolor) and transglutaminase (TG). The cross-linking experiments were conducted by mixing aqueous solutions of lupin flour and whey protein concentrate powder in a ratio of 1:1 of protein content under the conditions of pH 7, 40 °C for 20 h and in the presence of laccase T, laccase R, or TG. The cross-linked mixtures were freeze-dried, and the powders obtained were assessed for their cross-linking pattern, colour, charge distribution (ζ-potential), particle size, thermal stability, morphology, solubility, foaming and emulsifying properties, and total amino acid content. The findings showed that cross-linking with laccase R significantly improved the protein solubility, emulsion stability and foaming ability of the mixture, whereas these functionalities were lower in the TG-treated mixture due to extensive cross-linking. Furthermore, the mixture treated with laccase T turned brownish in colour and showed a decrease in total amino acid content which could be due to the enzyme's oxidative cross-linking mechanism. Also, the occurrence of cross-linking in the lupin and whey mixture was indicated by changes in other investigated parameters such as particle size, ζ-potential, etc., as compared to the control samples. The obtained results suggested that enzymatic cross-linking, depending on the type of enzyme used, could impact the physicochemical and functional properties of hybrid plant- and animal-based proteins, potentially influencing their applications in food.

20.
BMC Plant Biol ; 24(1): 688, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39026161

RESUMO

BACKGROUND: Laccase (LAC) gene family plays a pivotal role in plant lignin biosynthesis and adaptation to various stresses. Limited research has been conducted on laccase genes in common beans. RESULTS: 29 LAC gene family members were identified within the common bean genome, distributed unevenly in 9 chromosomes. These members were divided into 6 distinct subclades by phylogenetic analysis. Further phylogenetic analyses and synteny analyses indicated that considerable gene duplication and loss presented throughout the evolution of the laccase gene family. Purified selection was shown to be the major evolutionary force through Ka / Ks. Transcriptional changes of PvLAC genes under low temperature and salt stress were observed, emphasizing the regulatory function of these genes in such conditions. Regulation by abscisic acid and gibberellins appears to be the case for PvLAC3, PvLAC4, PvLAC7, PvLAC13, PvLAC14, PvLAC18, PvLAC23, and PvLAC26, as indicated by hormone induction experiments. Additionally, the regulation of PvLAC3, PvLAC4, PvLAC7, and PvLAC14 in response to nicosulfuron and low-temperature stress were identified by virus-induced gene silence, which demonstrated inhibition on growth and development in common beans. CONCLUSIONS: The research provides valuable genetic resources for improving the resistance of common beans to abiotic stresses and enhance the understanding of the functional roles of the LAC gene family.


Assuntos
Lacase , Família Multigênica , Phaseolus , Filogenia , Estresse Fisiológico , Phaseolus/genética , Phaseolus/enzimologia , Phaseolus/fisiologia , Lacase/genética , Lacase/metabolismo , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Regulação da Expressão Gênica de Plantas , Genes de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA