RESUMO
Background: Land use is a major factor determining stream water physicochemistry. However, most streams move from one land use type to another as they drain their watersheds. Here, we studied three land use scenarios in a tropical cloud forest zone in Mexico. We addressed three main goals, to: (1) assess how land use scenarios generate different patterns in stream physicochemical characteristics; (2) explore how seasonality (i.e., dry, dry-to-wet transition, and wet seasons) might result in changes to those patterns over the year; and (3) explore whether physicochemical patterns in different scenarios resulted in effects on biotic components (e.g., algal biomass). Methods: We studied Tropical Mountain Cloud Forest streams in La Antigua watershed, Mexico. Streams drained different three scenarios, streams with (1) an upstream section draining forest followed by a pasture section (F-P), (2) an upstream section in pasture followed by a forest section (P-F), and (3) an upstream forest section followed by coffee plantation (F-C). Physicochemistry was determined at the upstream and downstream sections, and at the boundary between land uses. Measurements were seasonal, including temperature, dissolved oxygen, conductivity, and pH. Water was analyzed for suspended solids, alkalinity, silica, chloride, sulfate, magnesium, sodium, and potassium. Nutrients included ammonium, nitrate, and phosphorus. We measured benthic and suspended organic matter and chlorophyll. Results: Streams presented strong seasonality, with the highest discharge and suspended solids during the wet season. Scenarios and streams within each scenario had distinct physicochemical signatures. All three streams within each scenario clustered together in ordination space and remained close to each other during all seasons. There were significant scenario-season interactions on conductivity (F = 9.5, P < 0.001), discharge (F = 56.7, P < 0.001), pH (F = 4.5, P = 0.011), Cl- (F = 12.2, P < 0.001), SO42- (F = 8.8, P < 0.001) and NH4+ (F = 5.4, P = 0.005). Patterns within individual scenarios were associated with stream identity instead of land use. Both P-F and F-C scenarios had significantly different physicochemical patterns from those in F-P in all seasons (Procrustes analysis, m12 = 0.05-0.25; R = 0.86-0.97; P < 0.05). Chlorophyll was significantly different among scenarios and seasons (F = 5.36, P = 0.015, F = 3.81, P = 0.42, respectively). Concentrations were related to physicochemical variables more strongly during the transition season. Conclusion: Overall, land use scenarios resulted in distinctive water physicochemical signatures highlighting the complex effects that anthropogenic activities have on tropical cloud forest streams. Studies assessing the effect of land use on tropical streams will benefit from assessing scenarios, rather than focusing on individual land use types. We also found evidence of the importance that forest fragments play in maintaining or restoring stream water physicochemistry.
Assuntos
Efeitos Antropogênicos , Cloretos , Antígua e Barbuda , Biomassa , Clorofila , Florestas , HalogêniosRESUMO
Land-use change has a direct impact on species survival and reproduction, altering their spatio-temporal distributions. It acts as a selective force that favours the abundance and diversity of reservoir hosts and affects host-pathogen dynamics and prevalence. This has led to land-use change being a significant driver of infectious diseases emergence. Here, we predict the presence of rodent taxa and map the zoonotic hazard (potential sources of harm) from rodent-borne diseases in the short and long term (2025 and 2050). The study considers three different land-use scenarios based on the shared socioeconomic pathways narratives (SSPs): sustainable (SSP1-Representative Concentration Pathway (RCP) 2.6), fossil-fuelled development (SSP5-RCP 8.5) and deepening inequality (SSP4-RCP 6.0). We found that cropland expansion into forest and pasture may increase zoonotic hazards in areas with high rodent-species diversity. Nevertheless, a future sustainable scenario may not always reduce hazards. All scenarios presented high heterogeneity in zoonotic hazard, with high-income countries having the lowest hazard range. The SSPs narratives suggest that opening borders and reducing cropland expansion are critical to mitigate current and future zoonotic hazards globally, particularly in middle- and low-income economies. Our study advances previous efforts to anticipate the emergence of zoonotic diseases by integrating past, present and future information to guide surveillance and mitigation of zoonotic hazards at the regional and local scale. This article is part of the theme issue 'Infectious disease macroecology: parasite diversity and dynamics across the globe'.
Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Ecossistema , Interações Hospedeiro-Patógeno , Fatores Socioeconômicos , Zoonoses/epidemiologia , Animais , Interações Hospedeiro-Parasita , Humanos , Doenças dos Roedores/epidemiologiaRESUMO
Historically, Argentina has been among the world leaders in the production and export of agricultural products. The country is increasingly confronted with severe conflicts that originate from trade-offs between actors involved in the agricultural sector. This work presents an integrated valuation of alternative land use scenarios in the Carcarañá River Lower Basin, offering a way to link the various value domains by involving a broad set of multidimensional indicators and stakeholder concerns. Twenty-one indicators that address all three pillars of sustainability, environmental, economic and social, are selected and quantified. Three scenarios are analyzed: the Actual scenario, dominated by industrial-scale agriculture that primarily yields soybeans, maize and wheat; a Conservation Agriculture scenario, promoting permanent soil cover by crop rotation and the implementation of untreated buffer zones around the cities; and a Short Sighted Exploitation scenario, contributing to short-term profits for agribusiness but increasing pressure on the natural resources. A decision support system is implemented in the Driver, Pressure, State, and Ecosystem Services indicator framework. The Conservation Agriculture scenario is identified as the best option by stakeholders grouped into Regulatory State, Civil Society and Consensus perspectives. A ranking change occurs when the valuation is carried out from the Private Sector point of view and the Actual scenario comes in first position. We dare to say that the methodology presented in this work is a socio-technical innovation that can contribute to the process needed to achieve broad consensus among the agribusiness actors in Argentina.