Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Mov Ecol ; 12(1): 68, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39350278

RESUMO

BACKGROUND: Anthropogenic activities occurring throughout the Sonoran Desert are replacing and fragmenting habitat and reducing landscape connectivity for the Sonoran desert tortoise (Gopherus morafkai). Understanding how the structure of the landscape influences tortoise habitat use and movement can help develop strategies for mitigating the impacts of these landscape alterations, which are conservation actions needed to support the species' long-term persistence. However, how natural and anthropogenic features influence fine-scale habitat use and movement of Sonoran desert tortoises remains unclear. METHODS: The goals of this study were to (1) understand how characteristics of the landscape shape tortoise habitat use and movement in order to (2) identify factors that may reduce habitat use or threaten landscape connectivity for the species by discouraging or restricting movement. We collected GPS telemetry data from 17 adult tortoises tracked for two summer monsoon seasons, when tortoises are most active, in a U.S. National Monument along the international border between Arizona, USA and Sonora, Mexico. We used Hidden Markov Models (HMMs) to assign GPS locations to an encamped or a moving state. We used the moving state data in integrated Step Selection Analyses (iSSA) to examine how range-resident Sonoran desert tortoises select habitat and respond to landscape features while moving. RESULTS: Tortoises selected to move through areas of intermediate vegetation cover and terrain ruggedness and avoided areas far from desert washes and close to low-traffic roads. Tortoises increased their speed when approaching or crossing low-traffic roads but showed no detectable response to a highway. CONCLUSION: Bare earth or high vegetation cover, flat or extremely rugged terrain, areas far from desert washes, and low-traffic roads may discourage or restrict tortoise movement. Therefore, preventing the development of roads, activities that degrade washes, and activities that thin, remove, or greatly increase vegetation cover may encourage tortoise habitat use and movement within those habitats.

2.
J Environ Manage ; 368: 122192, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39142105

RESUMO

The development and expansion of road networks pose considerable threats to natural habitats and wildlife, fostering a landscape of fear. In addition to direct mortality caused by road collisions, road construction and maintenance often result in habitat fragmentation and loss, impeding animal movement and gene flow between populations. Mountain ungulates are already confined to fragmented habitat patches and roads can cause substantial disturbances to their critical ecological processes, such as dispersal and migration. In this study, we employed two key mountain ungulates, the wild goat (Capra aegagrus) and mouflon (Ovis gmelini), as functional models to examine how road networks impact the quantity and connectivity of natural habitats in southwestern Iran, where extensive road construction has led to significant landscape changes. We used the MaxEnt method to predict species distribution, the circuit theory to evaluate habitat connectivity, and the Spatial Road Disturbance Index (SPROADI) to assess road impacts. During the modeling process, we selected eleven important variables and employed a model parametrization strategy to identify the optimal configuration for the MaxEnt model. For SPROADI index we used three sub-indices, including traffic intensity, vicinity impact, and fragmentation grade. We then integrated the results of these analyses to identify areas with the most significant environmental impacts of roads on the coherency of the natural habitats. The findings indicate that suitable habitats for wild goats are widely distributed across the study area, while suitable habitats for mouflon are primarily concentrated in the northeastern region. Conservation gap analysis revealed that only 8% of wild goat habitats and 7% of mouflon habitats are covered by protected areas (PAs). The SPROADI map highlighted that 23% of the study area is negatively influenced by road networks. Moreover, 30.4% of highest-probability corridors for mouflon, and 25.7% for wild goat, were highly vulnerable to the impacts of roads. Our combined approach enabled us to quantitatively assess species-specific vulnerability to the impacts of heavy road networks. This study emphasizes the urgent need to address the negative effects of road networks on wildlife habitats and connectivity corridors. Our approach effectively identifies sensitive areas, which can help inform mitigation strategies and support more effective conservation planning in significantly transformed landscapes.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Cabras , Animais , Medo , Irã (Geográfico)
3.
Curr Biol ; 34(17): 3894-3904.e3, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39127049

RESUMO

Globally, the majority of habitat loss is irreversible, and most species will never recover their former ranges. We have learned a great deal about what leads to population decline and extinction, but less about recovery. The recently downlisted giant panda provides a unique opportunity to understand the mechanisms of species recovery. In our study, we estimate giant panda suitable habitats, population density, and gene flow across landscapes to fully investigate the direct and indirect ecological mechanisms underlying bold conservation strategies. We found that the Giant Panda National Survey has modestly but systematically underestimated population size. China's effort to mitigate anthropogenic disturbances was associated with increased panda population density through improving habitat quality and reducing habitat fragmentation. Enhanced landscape connectivity reduced inbreeding via gene flow but indirectly increased inbreeding temporarily due to high local panda density. Although the panda's recovery has been geographically uneven, we provide evidence for improving connectivity and gene flow resulting from conservation efforts. If these processes can be sustained and improved, the panda's path to recovery will be less encumbered by loss of genetic diversity, fostering hope that the present rate of recovery will not be stalled. Findings from this study will not only help guide future giant panda conservation management but also provide a model for how a more mechanistic examination of the genetic processes underlying species recovery can foster the development of more effective strategies for endangered species recovery.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Fluxo Gênico , Ursidae , Ursidae/fisiologia , Ursidae/genética , Animais , Conservação dos Recursos Naturais/métodos , China , Densidade Demográfica , Espécies em Perigo de Extinção , Dinâmica Populacional
4.
Mol Ecol ; : e17500, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39188095

RESUMO

Disentangling the roles of structural landscape factors and animal movement behaviour can present challenges for practitioners managing landscapes to maintain functional connectivity and achieve conservation goals. We used a landscape genetics approach to combine robust demographic, behavioural and genetic datasets with spatially explicit simulations to evaluate the effects of anthropogenic barriers (dams, culverts) and natural landscape resistance (gradient, elevation) affecting dispersal behaviour, genetic connectivity and genetic structure in a resident population of Westslope Cutthroat Trout (Oncorhynchus clarkii lewisi). Analyses based on 10 years of sampling effort revealed a pattern of restricted dispersal, and population genetics identified discrete population clusters between distal tributaries and the mainstem stream and no structure within the mainstem stream. Demogenetic simulations demonstrated that, for this population, the effects of existing anthropogenic barriers on population structure are redundant with effects of restricted dispersal associated with the underlying environmental resistance. Our approach provides an example of how extensive field sampling combined with landscape genetics can be incorporated into spatially explicit simulation modelling to explore how, together, movement ecology and landscape resistance can be used to inform decisions around restoration and connectivity.

5.
Philos Trans R Soc Lond B Biol Sci ; 379(1909): 20230163, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39034705

RESUMO

This theme issue features 18 papers exploring ecological interactions, encompassing metabolic, social, and spatial connections alongside traditional trophic networks. This integration enriches food web research, offering insights into ecological dynamics. By examining links across organisms, populations, and ecosystems, a hierarchical approach emerges, connecting horizontal effects within organizational levels vertically across biological organization levels. The inclusion of interactions involving humans is a key focus, highlighting the need for their integration into ecology given the complex interactions between human activities and ecological systems in the Anthropocene. The comprehensive exploration in this theme issue sheds light on the interconnectedness of ecological systems and the importance of considering diverse interactions in understanding ecosystem dynamics. This article is part of the theme issue 'Connected interactions: enriching food web research by spatial and social interactions'.


Assuntos
Ecossistema , Cadeia Alimentar , Humanos , Animais , Atividades Humanas , Fitoplâncton/metabolismo , Água do Mar/microbiologia , Peixes/metabolismo , Pesqueiros/legislação & jurisprudência
6.
Pest Manag Sci ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-39031908

RESUMO

BACKGROUND: Pine wilt disease has caused significant economic, ecological, and social losses in China, but there is a notable lack of research on the dynamic process of its propagation and diffusion over long timescales. This study revealed the spatial and temporal spread of the natural invasion of pine wilt disease through an analysis of long time series at macroscopic scales. We analysed and verified by simulations the driving mechanisms of host and wind fields in the natural spread of pine wilt disease. RESULTS: The research findings indicate that from 1982 to 2019, the number of counties affected by pine wilt disease in the Yangtze River Delta region of China exhibited a pattern of 'steady increase-fluctuation-outbreak'. The host forest played a decisive role in the natural spread of the disease, while the wind field played a supporting role. The study revealed specific contributions from various factors, where host forest landscape connectivity, host forest area share, mean wind speed, and wind frequency accounted for 31.8%, 28.7%, 22.6%, and 8.8%, respectively. The interaction of increased host forest area and increased wind speed can significantly increase the risk of pine wilt disease transmission. To validate these findings, vectorial metacellular automata simulations of pine nematode transmission in the Yangtze River Delta were conducted, yielding results with an accuracy of 0.803. CONCLUSION: By quantifying the contribution of host forest connectivity to the natural spread of pine wilt disease, this research offers a scientific foundation and innovative insights for preventing and controlling its dissemination. © 2024 Society of Chemical Industry.

7.
Trends Ecol Evol ; 39(8): 726-733, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38705769

RESUMO

The continuing biodiversity losses through agricultural expansion and intensification are dramatic. We argue that a mix of on- and off-field measures is needed, overcoming the false dichotomy of the land sharing-sparing debate. Protected land is essential for global biodiversity, while spillover between farmed and natural land is key to reducing species extinctions. This is particularly effective in landscapes with small and diversified fields. Focusing only on protected land fails to conserve a wealth of species, which often provide major ecosystem services such as pest control, pollination, and cultural benefits. On-field measures must minimise yield losses to prevent increased demand for food imports from biodiversity-rich regions, requiring enforcement of high social-ecological land-use standards to ensure a good life for all.


Assuntos
Agricultura , Biodiversidade , Conservação dos Recursos Naturais , Conservação dos Recursos Naturais/métodos , Agricultura/métodos
8.
Glob Chang Biol ; 30(5): e17299, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38700905

RESUMO

While climate change has been shown to impact several life-history traits of wild-living animal populations, little is known about its effects on dispersal and connectivity. Here, we capitalize on the highly variable flooding regime of the Okavango Delta to investigate the impacts of changing environmental conditions on the dispersal and connectivity of the endangered African wild dog (Lycaon pictus). Based on remote sensed flood extents observed over 20 years, we derive two extreme flood scenarios: a minimum and a maximum flood extent, representative of very dry and very wet environmental periods. These conditions are akin to those anticipated under increased climatic variability, as it is expected under climate change. Using a movement model parameterized with GPS data from dispersing individuals, we simulate 12,000 individual dispersal trajectories across the ecosystem under both scenarios and investigate patterns of connectivity. Across the entire ecosystem, surface water coverage during maximum flood extent reduces dispersal success (i.e., the propensity of individuals to disperse between adjacent subpopulations) by 12% and increases dispersal durations by 17%. Locally, however, dispersal success diminishes by as much as 78%. Depending on the flood extent, alternative dispersal corridors emerge, some of which in the immediate vicinity of human-dominated landscapes. Notably, under maximum flood extent, the number of dispersing trajectories moving into human-dominated landscapes decreases by 41% at the Okavango Delta's inflow, but increases by 126% at the Delta's distal end. This may drive the amplification of human-wildlife conflict. While predicting the impacts of climate change on environmental conditions on the ground remains challenging, our results highlight that environmental change may have significant consequences for dispersal patterns and connectivity, and ultimately, population viability. Acknowledging and anticipating such impacts will be key to effective conservation strategies and to preserve vital dispersal corridors in light of climate change and other human-related landscape alterations.


Assuntos
Distribuição Animal , Mudança Climática , Ecossistema , Inundações , Animais , Canidae/fisiologia , Espécies em Perigo de Extinção
9.
Ecol Appl ; 34(4): e2968, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38562000

RESUMO

Understanding how habitat attributes (e.g., patch area and sizes, connectivity) control recruitment and how this is modified by processes operating at larger spatial scales is fundamental to understanding population sustainability and developing successful long-term restoration strategies for marine foundation species-including for globally threatened reef-forming oysters. In two experiments, we assessed the recruitment and energy reserves of oyster recruits onto remnant reefs of the oyster Saccostrea glomerata in estuaries spanning 550 km of coastline in southeastern Australia. In the first experiment, we determined whether recruitment of oysters to settlement plates in three estuaries was correlated with reef attributes within patches (distances to patch edges and surface elevation), whole-patch attributes (shape and size of patches), and landscape attributes (connectivity). We also determined whether environmental factors (e.g., sedimentation and water temperature) explained the differences among recruitment plates. We also tested whether differences in energy reserves of recruits could explain the differences between two of the estuaries (one high- and one low-sedimentation estuary). In the second experiment, across six estuaries (three with nominally high and three with nominally low sedimentation rates), we tested the hypothesis that, at the estuary scale, recruitment and survival were negatively correlated to sedimentation. Overall, total oyster recruitment varied mostly at the scale of estuaries rather than with reef attributes and was negatively correlated with sedimentation. Percentage recruit survival was, however, similar among estuaries, although energy reserves and condition of recruits were lower at a high- compared to a low-sediment estuary. Within each estuary, total oyster recruitment increased with patch area and decreased with increasing tidal height. Our results showed that differences among estuaries have the largest influence on oyster recruitment and recruit health and this may be explained by environmental processes operating at the same scale. While survival was high across all estuaries, growth and reproduction of oysters on remnant reefs may be affected by sublethal effects on the health of recruits in high-sediment estuaries. Thus, restoration programs should consider lethal and sublethal effects of whole-estuary environmental processes when selecting sites and include environmental mitigation actions to maximize recruitment success.


Assuntos
Ostreidae , Animais , Ostreidae/fisiologia , Espécies em Perigo de Extinção , Estuários , Dinâmica Populacional , Austrália
10.
J Environ Manage ; 357: 120778, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38581899

RESUMO

Mining is increasing worldwide and is typically associated with highly negative environmental impacts, such as habitat loss and fragmentation. To counteract these effects and improve restoration practices, decisions, such as setting mine rehabilitation goals, could incorporate the assessment and restoration of landscape connectivity into their regional and local-scale planning. The overarching goal of this work was to assess landscape connectivity for flora and fauna and explore mine-rehabilitation scenarios that can be used as a tool for prioritising biodiversity outcomes. Our study area comprised the Fitzroy Basin (Queensland, Australia), where the disturbance footprints from mining cover a cumulative area of 121,239 ha. We considered two scenarios: rehabilitation to agriculture and restoration to native ecosystems. To compare these scenarios, we created differential maps, which highlighted that restoring to native ecosystems represented connectivity gains over agricultural rehabilitation goals. These maps revealed three ways to prioritise rehabilitation outcomes, giving priority to mines that: 1) presented medium to high connectivity values, 2) covered a large area of influence (contributing to connectivity on a larger scale, regardless of current flow values), and 3) showed a gain of important paths/corridors. We explored four case studies and found that three benefited from restoration outcomes, while the fourth did not benefit by either scenario. Our methods can be used for decision-making in restoration ecology and conservation, including mine rehabilitation priorities and goals, as well as for evaluating connectivity gains or losses.


Assuntos
Ecossistema , Objetivos , Conservação dos Recursos Naturais , Biodiversidade , Resultado do Tratamento
11.
Ying Yong Sheng Tai Xue Bao ; 35(2): 489-500, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38523107

RESUMO

The expansion of roads exacerbates the fragmentation of ecological networks and obstructs landscape connectivity. Scientific analysis of the impacts of different grades of roads on landscape connectivity and ecological networks is crucial for guiding road planning and ecological conservation. Based on the data of 2020 road network, land cover types, and digital elevation models, we used morphological spatial pattern analysis and circuit theory to construct ecological networks within different species dispersal distances (1, 3, 5, 10 km) in Fuzhou. We analyzed the impacts of roads of different grades (motorway, urban expressway, primary and secondary highway) on landscape connectivity at the landscape-patch-corridor scale. The results showed that at the landscape scale, overall landscape connectivity was significantly positively correlated with species dispersal distance. The motorway, urban expressway, primary and secondary highway had the lowest decline rate of overall landscape connectivity within a 10 km species dispersal range, being reduced by 15.6%, 5.3%, 1.5% and 5.2%, respectively. At the patch scale, in the comparison of roads of different grades, motorway led to the highest decline rate of patch connectivity within 1 and 5 km species dispersal range, while primary highway led to the highest decline rate of patch connectivity within 3 and 10 km species dispersal range. At the corridor scale, urban expressway led the highest increase rate of indices. The cost-weighted distance of the overall least-cost path, the ratio of cost-weighted distance to length, ove-rall effective resistance, and total corridor length within 5 km species dispersal range were increased by 43.4%, 33.2%, 57.3%, and 7.3%, respectively. As the distance of species dispersal increased, the patches with high importance were reduced from the northern, central, and northwestern regions to the northern regions, leading to a decrease in the living space of species, and the key corridors were gradually extending from the northwestern and southern regions to the central regions. Our results can guide the construction and optimization of Fuzhou's ecological network from an overall perspective, and provide a scientific basis for biodiversity conservation, ecological restoration, and road network planning under the context of limited land resource utilization.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Conservação dos Recursos Naturais/métodos , Cidades , Biodiversidade , China
12.
Sci Total Environ ; 924: 171579, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38460691

RESUMO

How to increase the usable land area by adhering to environmentally friendly ecological restoration of mines with limited funds is a challenge that many cities are currently facing. Cost-benefit analysis (CBA) can provide efficient and effective restoration decisions for abandoned mine land (AML) ecological restoration with limited financial resources. Thus, this study proposes an integrated approach for coupling ecological benefits and restoration costs, including hotspots/coldspots analysis based on five ecosystem services (ESs), landscape connectivity analysis based on graph theory model, hidden costs, and project implementation costs to prioritize AML restoration. The study was conducted on 54 abandoned mine lands (AMLs) in Chaoyang city, the ecological security barrier of China's northern sand prevention belt (NSPB). The comprehensive analysis prioritized the restoration of AMLs into four levels, of which 9 mines were in priority I, where restoration was recommended as a priority, and 22 mines were in priority II, where restoration could be carried out within the affordability of funds. In addition, our model indicates areas with high ecological benefits, in which the ecological source area (7423.66 km2) and the ecosystem service hotspots area (2028.44 km2) are mostly distributed in the southwestern part of Chaoyang city, the two mountain ranges of Songling mountain and Nuruerhu mountain. This study provides scientific spatial guidance to ensure that the AMLs realizes effective restoration and management.

13.
Sci Rep ; 14(1): 3414, 2024 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341478

RESUMO

African swine fever (ASF) is an infectious and highly fatal disease affecting wild and domestic swine, which is unstoppably spreading worldwide. In Europe, wild boars are one of the main drivers of spread, transmission, and maintenance of the disease. Landscape connectivity studies are the main discipline to analyze wild-species dispersal networks, and it can be an essential tool to predict dispersal-wild boar movement routes and probabilities and therefore the associated potential ASF spread through the suitable habitat. We aimed to integrate wild boar habitat connectivity predictions with their occurrence, population abundance, and ASF notifications to calculate the impact (i.e., the capacity of a landscape feature to favor ASF spread) and the risk (i.e., the likelihood of a habitat patch becoming infected) of wild boar infection across Europe. Furthermore, we tested the accuracy of the risk of infection by comparing the results with the temporal distribution of ASF cases. Our findings identified the areas with the highest impact and risk factors within Europe's central and Eastern regions where ASF is currently distributed. Additionally, the impact factor was 31 times higher on habitat patches that were infected vs non-infected, proving the utility of the proposed approach and the key role of wild boar movements in ASF-spread. All data and resulting maps are openly accessible and usable.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Suínos , Animais , Febre Suína Africana/epidemiologia , Sus scrofa , Europa (Continente)/epidemiologia , Fatores de Risco
14.
J Environ Manage ; 352: 120073, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38266522

RESUMO

Models and metrics to measure ecological connectivity are now well-developed and widely used in research and applications to mitigate the ecological impacts of climate change and anthropogenic habitat loss. Despite the prevalent application of connectivity models, however, relatively little is known about the performance of these methods in predicting functional connectivity patterns and organism movement. Our goal in this paper was to compare different connectivity models in their abilities to predict a wide range of simulated animal movement patterns. We used the Pathwalker software to evaluate the performance of several connectivity model predictions based on graph theory, resistant kernels, and factorial least-cost paths. In addition, we assessed the efficacy of synoptic and patch-based approaches to defining source points for analysis. In total, we produced 28 different simulations of animal movement. As we expected, we found that the choice of connectivity model used was the variable that most influenced prediction accuracy. Moreover, we found that the resistant kernels approach consistently provided the strongest correlations to the simulated underlying movement processes. The results also suggested that the agent-based simulation approach itself can often be the best analytical framework to map functional connectivity for ecological research and conservation applications, given its biological realism and flexibility to implement combinations of movement mechanism, dispersal threshold, directional bias, destination bias and spatial composition of source locations for analysis. In doing so, we provide novel insights to guide future functional connectivity analyses. In future research, we could use the same model for several different species groups and see how this reliability depends on the species analyzed. This could bring to light other elements that play an essential role in predicting connectivity.


Assuntos
Algoritmos , Ecossistema , Animais , Reprodutibilidade dos Testes , Simulação por Computador , Software , Conservação dos Recursos Naturais/métodos
15.
PeerJ ; 11: e16333, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37901466

RESUMO

It has been recognized that well-connected networks of protected areas are needed to halt the continued loss of global biodiversity. The recently signed Kunming-Montreal biodiversity agreement commits countries to protecting 30% of terrestrial lands in well-connected networks of protected areas by 2030. To meet these ambitious targets, land-use planners and conservation practitioners will require tools to identify areas important for connectivity and track future changes. In this study we present methods using circuit theoretic models with a subset of sentinel park nodes to evaluate connectivity for a protected areas network. We assigned a lower cost to natural areas within protected areas, under the assumption that animal movement within parks should be less costly given the regulation of activities. We found that by using mean pairwise effective resistance (MPER) as an indicator of overall network connectivity, we were able to detect changes in a parks network in response to simulated land-use changes. As expected, MPER increased with the addition of high-cost developments and decreased with the addition of new, low-cost protected areas. We tested our sentinel node method by evaluating connectivity for the protected area network in the province of Ontario, Canada. We also calculated a node isolation index, which highlighted differences in protected area connectivity between the north and the south of the province. Our method can help provide protected areas ecologists and planners with baseline estimates of connectivity for a given protected area network and an indicator that can be used to track changes in connectivity in the future.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Conservação dos Recursos Naturais/métodos , Biodiversidade , Modelos Teóricos , Ontário
16.
Naturwissenschaften ; 110(6): 52, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37889338

RESUMO

Anthropogenic land use and climate change are the greatest threats to biodiversity, especially for many globally endangered reptile species. Earth snakes (Conopsis spp.) are a poorly studied group endemic to Mexico. They have limited dispersal abilities and specialized niches, making them particularly vulnerable to anthropogenic threats. Species distribution models (SDMs) were used to assess how future climate and land-cover change scenarios might influence the distribution and habitat connectivity of three earth snakes: Conopsis biserialis (Taylor and Smith), C. lineata (Kennicott), and C. nasus (Günther). Two climate models, CNRM-CM5 (CN) and MPI-ESM-LR (MP) (Representative Concentration Pathway 85), were explored with ENMeval Maxent modelling. Important SDM environmental variables and environmental niche overlap between species were also examined. We found that C. biserialis and C. lineata were restricted by maximum temperatures whereas C. nasus was restricted by minimum ones and was more tolerant to arid vegetation. C. biserialis and C. lineata were primarily distributed in the valleys and mountains of the highlands of the TMBV, while C. nasus was mainly distributed in the Altiplano Sur (Zacatecano-Potosino). C. lineata had the smallest potential distribution and suffered the greatest contraction in the future whereas C. nasus was the least affected species in future scenarios. The Sierra de las Cruces and the Sierra Chichinautzin were identified as very important areas for connectivity. Our results suggest that C. lineata may be the most vulnerable of the three species to anthropogenic and climate changes whereas C. nasus seems to be less affected by global warming than the other species.


Assuntos
Biodiversidade , Ecossistema , México , Mudança Climática
17.
J Environ Manage ; 345: 118888, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37690245

RESUMO

Global urbanization has not only promoted social and economic development, but also contributed to seriously ecological challenges. As a type of sustainable landscape patterns, ecological security pattern is considered as an effective spatial pathway to simultaneously conserve ecological security and maintain social-economic development. However, the fragmentation issue of ecological sources of ecological security pattern has not been effectively addressed, although many case studies have been conducted to identify ecological security pattern. In this study, we used spatial conservation prioritization to identify the ecological security pattern of the city belt along the Yellow River in Ningxia, China. Ecological sources were selected using Zonation model while ecological corridors and key ecological nodes were identified with circuit model. The results showed that the ecological security pattern was composed of 97 ecological sources, 226 ecological corridors, 267 pinch points and 22 barriers, covering a total area of 7713.1 km2 and accounting for 34% of the study area. Ecological sources were concentrated in the Helan Mountain, Xiang Mountain and along the Yellow River. Besides, ecological corridors were dense in the southern and eastern part of the study area. Both indicated that the Yellow River and Helan Mountain were the conservation hotspots. Landscape connectivity of ecological sources identified through Zonation-based spatial conservation prioritization was better than that with the scoring approach based on ecosystem service importance. Particularly, in the Zonation approach the landscape connectivity increased with 44% while the average patch area increased with 28% when comparing with the scoring approach. The spatial conservation prioritization approach proposed in this study provides a new effective tool to construct ecological security pattern, which is conducive to the synergic enhancement of landscape connectivity and ecosystem services conservation.


Assuntos
Ecologia , Ecossistema , Conservação dos Recursos Naturais , Cidades , Análise Espacial , China
18.
Environ Sci Pollut Res Int ; 30(38): 89597-89615, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37454379

RESUMO

The construction of ecological security pattern aims to determine the bottom line of ecological land supply and effective spatial distribution and provides a scientific basis for ensuring regional ecological security. The basic paradigm of "source recognition-resistance surface creation-corridor identification-key areas determination" was used to construct the ecological security pattern of Hohhot City in 2009 and 2019. The circuit theory was employed to determine the demand for protection and restoration of crucial ecological area and to divide the core ecological protection and restoration area, the core restoration area, the core protection area, and the general ecological protection area; then, the optimization of Hohhot's ecological security pattern could be proposed. The results show that there was no interconnected and closed ecological network in 2009 and 2019 in the study area, and the area of significant ecological elements were decreasing: ecological source areas decreased from 266.97 to 261.21 km2, the number of ecological corridors decreased from 10 to 6, and the total area of ecological protection and restoration areas decreased from 342.15 to 199.91 km2. The results show that in the past 10 years, the ecological space in Hohhot had problems such as quality degradation, fragmentation intensifying, and effective landscape connectivity declining. It is urgent to optimize the ecological sources layout, strengthen the restoration of barrier areas and the protection of pinch point areas, and improve habitat connectivity to ensure the improved regional ecological security. Our results can provide a scientific reference for coordinating ecological protection and economic development, as well as the policy formulation and implementation of relevant departments.


Assuntos
Conservação dos Recursos Naturais , Cidades , China , Desenvolvimento Econômico , Ecossistema , Ecologia
19.
J Environ Manage ; 345: 118647, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37490840

RESUMO

In a large-scale region, governance for connectivity in an ecological system often conflicts with management boundaries, causing inefficiencies. Collaboration among management organizations in different areas can help overcome this problem. However, few studies quantified the collaborations' practical relationship with connectivity, considering that some potentially connected paths are easy to neglect by managers. In this paper, collaborations among government agencies in project application process were analyzed, and a multilevel social-ecological network analysis (SENA) approach was developed to identify the collaboration's effect on genetically connected coastal areas. The network framework and methods were shown in a case of coastal saltmarsh conservation and development in the Yellow River Delta, China. Collaboration patterns in conservation and development networks were analyzed and compared among local, subregional, and regional government agencies working in genetically connected coastal areas. Project information flow, reflecting communication frequency and decision-making chances among government agencies was quantified and correlated with ecological connectivity to inform governance effects. Results showed areas with the potential to realize social-ecological alignment, where collaborative networks were measured by network density (percentage of connected network edges). The current reveals that development has more significant potential than conservation at most levels to overcome the misalignment of the social-ecological system, also known as scale mismatch. Empirical evidence also showed a correlation between communication capacity in development networks and improved ecological conditions. The multilevel SENA advanced in this paper can be used for natural resource management when connectivity plays a major role.


Assuntos
Conservação dos Recursos Naturais , Meio Social , Conservação dos Recursos Naturais/métodos , Recursos Naturais , Ecossistema , Comunicação , China
20.
Conserv Biol ; 37(6): e14148, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37424356

RESUMO

Civilizations, including ancient ones, have shaped global ecosystems in many ways through coevolution of landscapes and humans. However, the cultural legacies of ancient and lost civilizations are rarely considered in the conservation of the Eurasian steppe biome. We used a data set containing more than 1000 records on localities, land cover, protection status, and cultural values related to ancient steppic burial mounds (kurgans); we evaluated how these iconic and widespread landmarks can contribute to grassland conservation in the Eurasian steppes, which is one of the most endangered biomes on Earth. Using Bayesian logistic generalized regressions and proportional odds logistic regressions, we examined the potential of mounds to preserve grasslands in landscapes with different levels of land-use transformation. We also compared the conservation potential of mounds inside and outside protected areas and assessed whether local cultural values support the maintenance of grasslands on them. Kurgans were of great importance in preserving grasslands in transformed landscapes outside protected areas, where they sometimes acted as habitat islands that contributed to habitat conservation and improved habitat connectivity. In addition to steep slopes hindering ploughing, when mounds had cultural value for local communities, the probability of grassland occurrence on kurgans almost doubled. Because the estimated number of steppic mounds is about 600,000 and similar historical features exist on all continents, our results may be applicable at a global level. Our results also suggested that an integrative socioecological approach in conservation might support the positive synergistic effects of conservation, landscape, and cultural values.


Contribución de los valores culturales para la conservación esteparia en los antiguos montículos funerarios de Eurasia Resumen Las civilizaciones modernas y antiguas han moldeado de muchas maneras los ecosistemas globales mediante la coevolución del paisaje y la humanidad. Sin embargo, pocas veces se considera el legado cultural de las civilizaciones perdidas o antiguas para la conservación del bioma de la estepa euroasiática. Usamos un conjunto de datos que contiene más de 1,000 registros de las localidades, cobertura del suelo, estado de protección y valores culturales relacionados con los antiguos montículos funerarios de esta estepa (kurgans). Después analizamos cómo estos símbolos icónicos y distribuidos extensamente pueden contribuir a la conservación de los pastizales en la estepa euroasiática, uno de los biomas en mayor peligro de extinción. Analizamos el potencial de conservación de los montículos en paisajes con diferentes niveles de transformación en el uso de suelo mediante regresiones logísticas generalizadas bayesianas y regresiones logísticas de probabilidades proporcionales. También comparamos el potencial de conservación de los montículos dentro y fuera de las áreas protegidas y evaluamos si los valores culturales locales conservan los pastizales dentro de estas mismas áreas. Los kurgans fueron de gran importancia para la conservación de los pastizales en los paisajes transformados ubicados fuera de las áreas protegidas, en donde llegaron a fungir como hábitats aislados que contribuyeron a la conservación y conectividad del hábitat. Además de que las pendientes pronunciadas impiden el arado, cuando los montículos contaban con valor cultural para las comunidades locales, la probabilidad de que el pastizal se ubicara sobre un kurgan casi se duplicó. Ya que se estima que el número de montículos esteparios ronda los 6,000 y que rasgos históricos similares existen en todos los continentes, nuestros resultados pueden aplicarse a nivel global. Nuestros resultados también sugieren que una estrategia socio-ecológica integradora para la conservación podría respaldar los efectos sinérgicos positivos de la conservación, el paisaje y los valores culturales.


Assuntos
Biodiversidade , Ecossistema , Humanos , Conservação dos Recursos Naturais/métodos , Teorema de Bayes , Pradaria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA