Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(38): 11921-11928, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39268850

RESUMO

Advanced photodetectors are crucial for high-fidelity optical communication. However, the tradeoff between high external quantum efficiency (EQE) and high light fidelity (Li-Fi) frequency often limits data transmission accuracy and timeliness. Here, we report a photodetector consisting of lead sulfide (PbS) colloidal quantum dots (CQDs) with near-infrared responsiveness and perovskite frameworks responsible for the charge transport to overcome the EQE × Li-Fi constraint. Optimizing the PbS CQDs distribution and trap depth in the perovskite layer enhances charge injection, achieving a device gain of 11892% for 1200 nm photons and a response frequency of 24 kHz at -2 V. The device exhibits a record EQE × Li-Fi frequency product of 106 Hz. We have applied the detector to near-infrared optical communications at a data transfer rate of 2000 bits per second (2 kbps) to demonstrate the advances in high fidelity, the device retains over 98% of the original waveform information in its output.

2.
Sensors (Basel) ; 24(17)2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39275618

RESUMO

The analysis of utilising unmanned aerial vehicles (UAVs) to form flying networks in obstacle conditions and various algorithms for obstacle avoidance is conducted. A planning scheme for deploying a flying LiFi network based on UAVs in a production facility with obstacles is developed and described. Such networks are necessary to ensure reliable data transmission from sensors or other sources of information located in dangerous or hard-to-reach places to the crisis centre. Based on the planning scheme, the following stages are described: (1) laying the LiFi signal propagation route in conditions of interference, (2) placement of the UAV at the specified points of the laid route for the deployment of the LiFi network, and (3) ensuring the reliability of the deployed LiFi network. Strategies for deploying UAVs from a stationary depot to form a flying LiFi network in a room with obstacles are considered, namely the strategy of the first point for the route, the strategy of radial movement, and the strategy of the middle point for the route. Methods for ensuring the uninterrupted functioning of the flying LiFi network with the required level of reliability within a given time are developed and discussed. To implement the planning stages for deploying the UAV flying LiFi network in a production facility with obstacles, the "Simulation Way" and "Reliability Level" software tools are developed and described. Examples of utilising the proposed software tools are given.

3.
Sensors (Basel) ; 24(18)2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39338767

RESUMO

Fifth-generation mobile networks (5G) are designed to support enhanced Mobile Broadband, Ultra-Reliable Low-Latency Communications, and massive Machine-Type Communications. To meet these diverse needs, 5G uses technologies like network softwarization, network slicing, and artificial intelligence. Multi-connectivity is crucial for boosting mobile device performance by using different Wireless Access Technologies (WATs) simultaneously, enhancing throughput, reducing latency, and improving reliability. This paper presents a multi-connectivity testbed from the 5G-CLARITY project for performance evaluation. MultiPath TCP (MPTCP) was employed to enable mobile devices to send data through various WATs simultaneously. A new MPTCP scheduler was developed, allowing operators to better control traffic distribution across different technologies and maximize aggregated throughput. Our proposal mitigates the impact of limitations on one path affecting others, avoiding the Head-of-Line blocking problem. Performance was tested with real equipment using 5GNR, Wi-Fi, and LiFi -complementary WATs in the 5G-CLARITY project-in both static and dynamic scenarios. The results demonstrate that the proposed scheduler can manage the traffic distribution across different WATs and achieve the combined capacities of these technologies, approximately 1.4 Gbps in our tests, outperforming the other MPTCP schedulers. Recovery times after interruptions, such as coverage loss in one technology, were also measured, with values ranging from 400 to 500 ms.

4.
Sensors (Basel) ; 24(10)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38793940

RESUMO

Mobile visible light communication (VLC) is key for integrating lighting and communication applications in the 6G era, yet there exists a notable gap in experimental research on mobile VLC. In this study, we introduce a mobile VLC system and investigate the impact of mobility speed on communication performance. Leveraging a laser-based light transmitter with a wide coverage, we enable a light fidelity (LiFi) system with a mobile receiving end. The system is capable of supporting distances from 1 m to 4 m without a lens and could maintain a transmission rate of 500 Mbps. The transmission is stable at distances of 1 m and 2 m, but an increase in distance and speed introduces interference to the system, leading to a rise in the Bit Error Rate (BER). The mobile VLC experimental system provides a viable solution to the issue of mobile access in the integration of lighting and communication applications, establishing a solid practical foundation for future research.

5.
Sensors (Basel) ; 23(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37177456

RESUMO

Given the growing number of devices and their need for internet access, researchers are focusing on integrating various network technologies. Concerning indoor wireless services, a promising approach in this regard is to combine light fidelity (LiFi) and wireless fidelity (WiFi) technologies into a hybrid LiFi and WiFi network (HLWNet). Such a network benefits from LiFi's distinct capability for high-speed data transmission and from the wide radio coverage offered by WiFi technologies. In this paper, we describe the framework for the HWLNet architecture, providing an overview of the handover methods used in HLWNets and presenting the basic architecture of hybrid LiFi/WiFi networks, optimization of cell deployment, relevant modulation schemes, illumination constraints, and backhaul device design. The survey also reviews the performance and recent achievements of HLWNets compared to legacy networks with an emphasis on signal to noise and interference ratio (SINR), spectral and power efficiency, and quality of service (QoS). In addition, user behaviour is discussed, considering interference in a LiFi channel is due to user movement, handover frequency, and load balancing. Furthermore, recent advances in indoor positioning and the security of hybrid networks are presented, and finally, directions of the hybrid network's evolution in the foreseeable future are discussed.

6.
Artigo em Inglês | MEDLINE | ID: mdl-36834127

RESUMO

The coronavirus (COVID-19) has arisen as one of the most severe problems due to its ongoing mutations as well as the absence of a suitable cure for this virus. The virus primarily spreads and replicates itself throughout huge groups of individuals through daily touch, which regretfully can happen in several unanticipated way. As a result, the sole viable attempts to constrain the spread of this new virus are to preserve social distance, perform contact tracing, utilize suitable safety gear, and enforce quarantine measures. In order to control the virus's proliferation, scientists and officials are considering using several social distancing models to detect possible diseased individuals as well as extremely risky areas to sustain separation and lockdown procedures. However, models and systems in the existing studies heavily depend on the human factor only and reveal serious privacy vulnerabilities. In addition, no social distancing model/technique was found for monitoring, tracking, and scheduling vehicles for smart buildings as a social distancing approach so far. In this study, a new system design that performs real-time monitoring, tracking, and scheduling of vehicles for smart buildings is proposed for the first time named the social distancing approach for limiting the number of vehicles (SDA-LNV). The proposed model employs LiFi technology as a wireless transmission medium for the first time in the social distance (SD) approach. The proposed work is considered as Vehicle-to-infrastructure (V2I) communication. It might aid authorities in counting the volume of likely affected people. In addition, the proposed system design is expected to help reduce the infection rate inside buildings in areas where traditional social distancing techniques are not used or applicable.


Assuntos
COVID-19 , Humanos , COVID-19/prevenção & controle , Controle de Doenças Transmissíveis/métodos , SARS-CoV-2 , Quarentena/métodos , Distanciamento Físico
7.
Sensors (Basel) ; 23(3)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36772352

RESUMO

Since light fidelity (LiFi) and wireless fidelity (WiFi) do not interfere with one another, a LiFi/WiFi hybrid network may provide superior performance to existing wireless options. With many users and constant changes, a network can easily become overloaded, leading to slowdowns and fluctuations in data transfer speeds. Access point assignment (APA) is required with the increase of users, which can negatively impact the system performance and quality-of-service (QoS) due to mobility and line-of-sight (LOS) blockage. Many variables could influence the APA process; these variables are considered as criteria, such as the network capacity, the degree of blockage, the speed of the connected user, etc. Unlike conditional APA methods, recent studies have considered treating these variables as "evaluation criteria". Considering these criteria can offer better and more accurate results, eventually enhancing the APA process and QoS. However, the variety of these criteria, the conflict amongst them, their weights (importance), and priority have not been addressed so far. Moreover, treating the criteria equally might result in inaccurate outcomes. Therefore, to solve this issue, it is essential to investigate the impact of each criterion on the APA process. In this work, a multicriteria decision-making (MCDM) problem is formulated to determine a network-level selection for each user over a period of time The decision problem is modeled as a hierarchy that fragments a problem into a hierarchy of simple and small subproblems, and the selection of the AP network among various alternatives is a considered as an MCDM problem. Based on the previous works, we are not aware of any previous research attempts using MCDM methods in the LiFi research area for network selection. Therefore, this work proposes an access point assignment framework using an MCDM approach for users in a hybrid LiFi/WiFi network. The experiment was conducted based on four phases: Five criteria were identified and evaluated with eleven APs (alternatives). The outcome of this phase was used to build the decision matrix and an MCDM was developed and built based on user mobility and blockages with various scenarios using all the criteria; The analytic hierarchy process (AHP) was employed to identify the criterion of the subjective weights of each criterion and to determine the degree of importance supported by experts' judgement. Determining the weights in the AHP process considered various investigations, including the consistency ratio (CR) and the AHP consensus indicator, which is calculated using the rank-based maximum likelihood method (RGMM) and Shannon entropy techniques. The VIekriteri-Jumsko KOmpromisno Rangiranje (VIKOR) method is adopted in the selection of the optimal AP for the proper selection of whether a LiFi or WiFi AP must serve the users. The integrated AHP-VIKOR was effective for solving the APA and was the best solution based on using weighted criteria simultaneously. Moreover, the ranking outcomes of the developed integrated AHP-VIKOR approach were evaluated using sensitivity analysis. The result of this work takes the APA for hybrid LiFi networks to a new perspective.

8.
Sensors (Basel) ; 23(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36772633

RESUMO

One of the main challenges in the deployment of visible light communication (VLC) in realistic application fields, such as intelligent transportation systems (ITSs), is represented by the presence of large background noise levels on top of the optical signal carrying the digital information. A versatile and effective digital filtering technique is, hence, crucial to face such an issue in an effective way. In this paper, we present an extensive experimental evaluation of a complete VLC system, embedding a software-defined-radio (SDR)-based digital signal processing (DSP) filter stage, which is tested either indoors, in the presence of strong artificial 100-Hz stray illumination, and outdoors, under direct sunlight. The system employs low-power automotive LED lamps, and it is tested for baud rates up to 1 Mbaud. We experimentally demonstrate that the use of the DSP technique improves 10× the performance of the VLC receiver over the original system without the filtering stage, reporting a very effective rejection of both 100-Hz and solar noise background. Indoors, the noise margin in the presence of strong 100-Hz noise is increased by up to 40 dB, whilst in the outdoor configuration, the system is capable of maintaining error-free communication in direct sunlight conditions, up to 7.5 m, improving the distance by a factor of 1.6 compared to the case without filtering. We believe that the proposed system is a very effective solution for the suppression of various types of noise effects in a large set of VLC applications.

9.
Sensors (Basel) ; 24(1)2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38203081

RESUMO

A hybrid network has recently been proposed as a framework for a high-speed wireless communication network. Basically, it integrates light fidelity (LiFi) with radio frequency wireless gigabit alliance (WiGig) networks that operate, simultaneously, in a completely different frequency band. To assign the best access point (AP) and provide enough resources for each user, an effective load-balancing (LB) strategy is needed. However, the traditional LB strategies involve sophisticated iterative computing procedures whenever the user distribution changes. Hence, the first contribution of this work is to offer a more adaptable, two-step, conditional, and most-correlated distribution (CMCD) algorithm. Thus, the low-complexity most-correlated distribution (MCD) LB scheme is applied, and the average data rates for all users are then calculated. If the results achieve the predefined performance threshold (PDT), the decisions will be confirmed; otherwise, the proposed scheme automatically switches to the more accurate, but more complex, consecutive assign WiGig first separate optimization algorithms (CAWFS) algorithm. The suggested algorithm provides a clear performance-complexity trade-off, which could be simply controlled by choosing the suitable performance tolerance factor. The second contribution of this paper is the correlation-weighted majority voting (CWMV) method, which attempts to benefit from as many prior decision votes as possible, instead of relying just on one vote. In the CWMV technique, the weight of each vote is calculated based on the correlation between the history distribution vectors and the new user distribution vector. A significant increase in the system performance is evident from the simulation results.

10.
Sensors (Basel) ; 22(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36433454

RESUMO

A new technique to reduce flicker noise generated in light-fidelity (Li-Fi) transmission links based on the white light-emitting diode (LED) is proposed. Here, flicker noise with a frequency of 120 Hz, which is twice the frequency of AC power (60 Hz), is generated. The proposed technique is implemented in the receiver of the Li-Fi link. It can reduce flicker noise regardless of various digital modulation formats. In addition, there is no need to change the structure of the electrical circuit driving the LED to reduce the flicker noise. As a result, the non-return to-zero-on-off-keying (NRZ-OOK) signal waveform is tilted according to the flicker noise waveform. We implement the derivative equalization with a pseudo-flicker weight function to reduce the flicker noise. The derivative value of the NRZ-OOK signal mixed with flicker noise becomes larger than that without the flicker noise. In the proposed technique, the derivative value between adjacent sampling points is suppressed below the preset thresholds when it is greater than the preset threshold. Furthermore, a pseudo-flicker weight function is applied to accelerate the flicker noise reduction. As a result, using the proposed technique, a 2 dB signal-to-noise ratio (SNR) gain is obtained based on the bit error rate (BER) threshold (3.5 × 10-5) corresponding to 10% flicker modulation, which is known to have no serious effect on human health. This means that it is possible to implement a Li-Fi transmission link based on an illumination environment with a flicker modulation reduced from 10% to 7%.


Assuntos
Estimulação Luminosa , Humanos , Razão Sinal-Ruído
11.
Sensors (Basel) ; 22(19)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36236681

RESUMO

Since LiFi and WiFi do not interfere with one another, a LiFi/WiFi hybrid network may provide superior performance to existing wireless options. With a large number of users and constant changes, a network can easily become overloaded, leading to slowdowns and fluctuations in data transfer speeds. Handover (HO) increases significantly with an increase in users, which can negatively impact system performance and quality of service (QoS) due to connection loss and/or delay. Innovative three-phase handover management and AP transition (TPHM-APT) is proposed with the goals of maintaining a steady link with reduced HOs for all connected users, meeting high per-user data rates, and having low outage performance. The proposed scheme primarily focuses on reducing the total number of HOs, which improves reliability and keeps user densities low on individual LiFi APs, which conserves bandwidth and energy. Conventional methods of HO management and user assignment, such as those based on signal strength strategy (SSS), involve reallocating users to a different AP the moment they encounter a HO. Our technique consists of three stages that focus on the optical gain, the incidence angle of the receiver FOV, and user mobility speed for decision-making. Specifically, a data rate threshold (DRT), which is equivalent to the data rate gained from the optical gain, is used to determine whether users must be served by a LiFi or a WiFi AP. In addition, an incidence angle threshold (IAT) is identified to manage the handover process and user AP transition with the consideration of the user mobility threshold (UMT). The proposed method considers load balancing (LB) among all connected users as well. This approach is evaluated using Monte Carlo simulations with MATLAB. Mathematical expressions are derived to analyze the performance of the proposed method. Different aspects, for example, Outage Probability, HO Overhead, User density, System Average Throughput (SAT), and Average Data Rate Requirement (ADRR), are studied. Analysis shows performance gains in overall system performance in terms of system data rates, fairness, and HO rates. Simulation results show that against the standard HO scheme and traditional HO skipping and APA methods, the proposed scheme can effectively decrease HO rates, save LiFi resources, and increase user throughput. It also shows good correspondence to the analysis and reveals the associated trade-offs that occur when moving between the span of narrow to wide FOVs and vice versa (HO rates and APS). The proposed scheme achieves almost identical results for low-density and high-density systems as well, with different ADRR and HO overhead values.

12.
PeerJ Comput Sci ; 8: e1009, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091990

RESUMO

Background: Cities are shifting toward providing more efficient services and the Internet of Things (IoT) becoming the future of things. The shift toward using eco-friendlier LED lights in lighting cities is another genuine game-changer in the future of Light Fidelity technology (Li-Fi). Li-Fi is a visible light communication (VLC) technology that uses Light Emitting Diodes (LED) bulbs for communication. The utilisation of thousands of light sources around a city acting as wireless access points and delivering location-based content will shift cities towards being smart sustainable cities. Recently, this technology got huge attention from the research community and different research has been conducted to improve this filed. However, there is a noticeable need to develop real-world systems that utilise Li-Fi technology. Methods: This article aims to contribute to developing a Geo-Li-Fi system that uses LED lights to provide the services for collecting contextual data and delivering location-based services (LBS) in different areas of the city. The system is described along with details of its design, implementation and development. Moreover, the overall set-up of the testbed that used to evaluate the proposed system is presented. In addition, an experiment is conducted using a real-world scenario to test the functionality of the system and report the outputs. Results: The effect of the system is discussed according to different aspects of sustainability which include economic, social and environmental aspects. The system was tested in indoor and outdoor environments, and it can be seen that the sunlight does not affect the ability of LEDs to deliver the content during the daytime. Regarding the transmission range of the LED lamp, it can be seen that it is affected by different factors. It depends mainly on the power of lamp, so it will be increased significantly when the power of LED is increased. Also, an increase in the beam angle will result in wider coverage area which affected by the intensity.

13.
Nanomaterials (Basel) ; 12(15)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35957002

RESUMO

Visible light communication (VLC) is a versatile enabling technology for following high-speed wireless communication because of its broad unlicensed spectrum. In this perspective, white light-emitting diodes (LED) provide both illumination and data transmission simultaneously. To accomplish a VLC system, receiver antennas play a crucial role in receiving light signals and guiding them toward a photodetector to be converted into electrical signals. This paper demonstrates an optical receiver antenna based on luminescent solar concentrator (LSC) technology to exceed the conservation of etendue and reach a high signal-to-noise ratio. This optical antenna is compatible with all colors of LEDs and achieves an optical efficiency of 3.75%, which is considerably higher than the similar reported antenna. This antenna is fast due to the small attached photodetector-small enough that it can be adapted for electronic devices-which does not need any tracking system. Moreover, numerical simulation is performed using a Monte Carlo ray-tracing model, and results are extracted in the spectral domain. Finally, the fate of each photon and the chromaticity diagram of the collected photons' spectra are specified.

14.
Adv Sci (Weinh) ; 9(20): e2200637, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35508607

RESUMO

Developing high performance, low-cost solid-state light emitters in the telecom wavelength bandwidth is of paramount importance for infrared light-based communications. Colloidal quantum dot (CQD) based light emitting diodes (LEDs) have shown tremendous advances in recent times through improvement in synthesis chemistry, surface property, and device structures. Despite the tremendous advancements of CQD based LEDs in the visible range with efficiency reaching theoretical limits, their short-wave infrared (SWIR) counterparts mainly based on lead chalcogenide CQDs, have shown lower performance (≈8%). Here the authors report on highly efficient SWIR CQD LEDs with a recorded EQE of 11.8% enabled by the use of a binary CQD matrix comprising QD populations of different bandgaps at the emission wavelength of 1550 nm. By further optimizing the optical out-coupling via the use of a hemispherical lens to reduce optical waveguide loss, the EQE of the LED increased to 18.6%. The CQD LED has an electrical bandwidth of 2 MHz, which motivated them to demonstrate its use in the first SWIR free-space optical transmission link based entirely on CQD technology (photodetector and light emitter) opening a new window of applications for CQD optoelectronics.

15.
Sensors (Basel) ; 22(7)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35408100

RESUMO

Vehicle-to-vehicle communication based on visible light communication has gained much attention. This work proposes a smart license plate receiver incorporated with a fluorescent concentrator, enabling a fast vehicle-to-vehicle communication with a large field of view and high optical gain. Communication performance is experimentally analyzed using off-the-shelf light-emitting diode-based headlamps for low-latency direct line of sight channel. Additionally, a blue laser diode-based beam-steering and tracking system, through image processing of taillights with a steerable mirror, is investigated. Data rates of 54 Mbps from the headlamps and 532 Mbps from the beam-steering channel with ±25° are demonstrated. In addition, real-time video streaming through the beam-steering channel is presented.

16.
Sensors (Basel) ; 21(20)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34696049

RESUMO

Indoor smart-farming based on artificial grow lights has gained attention in the past few years. In modern agricultural technology, the growth status is generally monitored and controlled by radio-frequency communication networks. However, it is reported that the radio frequency (RF) could negatively impact the growth rate and the health condition of the vegetables. This work proposes an energy-efficient solution replacing or augmenting the current RF system by utilizing light-emitting diodes (LEDs) as the grow lights and adopting visible light communications and optical camera communication for the smart-farming systems. In particular, in the proposed system, communication data is modulated via a 24% additional green grow LED light that is also known to be beneficial for the growth of the vegetables. Optical cameras capture the modulated green light reflected from the vegetables for the uplink connection. A combination of white ceiling LEDs and photodetectors provides the downlink, enabling an RF-free communication network as a whole. In the proposed architecture, the smart-farming units are modularized, leading to flexible mobility. Following theoretical analysis and simulations, a proof-of-concept demonstration presents the feasibility of the proposed architecture by successfully demonstrating the maximum data rates of 840 b/s (uplink) and 20 Mb/s (downlink).


Assuntos
Aplicações da Informática Médica , Dispositivos Ópticos , Fazendas , Monitorização Fisiológica , Ondas de Rádio
17.
Sensors (Basel) ; 21(16)2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34450893

RESUMO

Optical wireless LANs (OWLs) constitute an emerging networking paradigm for indoor scenarios' fit to different smart cities' fields of applications. Commercial products employing this technology have been made available on the market in recent years. In this work, we investigate, through a set of indoor communication experiments based on commercially available products, how different environmental and usage modes affect the performance of the system, addressing the presence of multiple users, the position and mobility of the mobile devices, the handover among adjacent cells and the effect of background lighting. Our finding shows that the system is quite robust with respect to the variation of operational conditions. We show that, in most conditions, the links can reliably sustain a stable throughput, achieving at least 50% of the throughput achieved with using the maximum light intensity of the transmitting lamp, while they are affected in a very mild way by factors like position and height of the mobile device, and virtually unaffected by variations in the background light.


Assuntos
Iluminação , Tecnologia sem Fio
18.
Sensors (Basel) ; 21(14)2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34300661

RESUMO

Optical wireless communication (OWC) is one of the promising candidates for beyond fifth-generation communication (B5G). Depending on the type of transmitters, receivers, and information carriers applied in the system, OWC can be categorized into visible light communication, light fidelity, free-space optical communication, optical camera communication, etc. In addition to these OWC subcategories, this paper proposes light-emitting diode (LED)-to-LED communication as another subcategory of OWC technique. Furthermore, we show an experimental demonstration of the multiple-input multiple-output (MIMO) LED-to-LED communication system using red, green, and blue colored LEDs. We believe that LED-to-LED communication is an effective solution to resolve the communication burden arising from massive connectivity in B5G internet of things. Along with the measurement results of the transmitter LED, receiver LED, and the channel properties, it is shown that the MIMO LED-to-LED system is able to successfully recover the transmitted signal with low inter-channel interferences due to the receiver LED's unique characteristics. Finally, the bit error rate (BER) performance of the MIMO LED-to-LED system is shown in comparison with the BER performance of the single-input single-output (SISO) LED-to-LED system. We successfully implemented the 3 × 3 MIMO LED-to-LED communication system using RGB colors at a data rate of 30.62 kbps over a 10 cm transmission distance along with direct current biased optical orthogonal frequency division multiplexing (DCO-OFDM) modulation and zero-forcing (ZF) equalizer.

19.
Sensors (Basel) ; 21(7)2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33918501

RESUMO

Light Fidelity (LiFi) is a new candidate for wireless networking that utilizes the visible light spectrum and exploits the existing lighting infrastructure in the form of light-emitting diodes (LEDs). It provides point-to-point and point-to-multipoint communication on a bidirectional channel at very high data rates. However, the LiFi has small coverage, and its optical gain is closely related to the receiver's directionality vis-à-vis the transmitter, therefore it can experience frequent service outages. To provide reliable coverage, the LiFi is integrated with other networking technologies such as wireless fidelity (WiFi) thus forming a hybrid system. The hybrid LiFi/WiFi system faces many challenges including but not limited to seamless integration with the WiFi, support for mobility, handover management, resource sharing, and load balancing. The existing literature has addressed one or the other aspect of the issues facing LiFi systems. There are limited free source tools available to holistically address these challenges in a scalable manner. To this end, we have developed an open-source simulation framework based on the network simulator 3 (ns-3), which realizes critical aspects of the LiFi wireless network. Our developed ns-3 LiFi framework provides a fully functional AP equipped with the physical layer and medium access control (MAC), a mobility model for the user device, and integration between LiFi and WiFi with a handover facility. Simulation results are produced to demonstrate the mobility and handover capabilities, and the performance gains from the LiFi-WiFi hybrid system in terms of packet delay, throughput, packet drop ratio (PDR), and fairness between users. The source code of the framework is made available for the use of the research community.

20.
Sensors (Basel) ; 21(4)2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33557179

RESUMO

For Li-Fi wireless links based on a white light emitting diode, an adaptive differential equalization (ADE) technique that reduces various noises such as interference noise and shot one generated from ambient light sources is pro-posed. The ADE technique reduces noise by taking advantage of the fact that the derivative between adjacent sampling points of signal with digital waveform is very different from that of noise with the random analog waveform. Furthermore, a weighting function that reflects the Poisson characteristics of shot noise is applied to the ADE technique in order to maximize the reduction efficiency of ambient noise. The signal-to-noise ratio of input non-return-to-zero-on-off keying (NRZ-OOK) signal is improved by 7.5 dB at the first-generation forward error correction (FEC) threshold (the bit error rate (BER) of 8 × 10-5) using the optical wireless experimental link. In addition, it is confirmed that it is possible to maintain the transmission performance corresponding to the BER of 1 × 10-5 by using the proposed ADE technique, even when the intensity of the ambient light source increases by 6 dB.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA