Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.877
Filtrar
1.
Appl Microbiol Biotechnol ; 108(1): 477, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39352555

RESUMO

Herbivorax saccincola A7 is an anaerobic alkali-thermophilic lignocellulolytic bacterium that possesses a cellulosome and high xylan degradation ability. To understand the expression profile of extracellular enzymes by carbon sources, quantitative real-time PCR was performed on all cellulosomal and non-cellulosomal enzyme genes of H. saccincola A7 using cellulose and xylan as carbon sources. The results confirmed that the scaffolding proteins of H. saccincola A7 were expressed. In general, the cellulosomal genes belonging to the glycoside hydrolase families 9, 10, 11, and 48 were repressed when xylan was the sole carbon source, but these genes were significantly induced in the presence of cellulose. These results indicate that cellulose, not xylan, is a key inducer of cellulosomal genes in H. saccincola A7. The RsgI-like proteins, which regulate a carbohydrate-sensing mechanism in Clostridium thermocellum, were also found to be encoded in the H. saccincola A7 genome. To confirm the regulation by RsgI-like proteins, the relative expression of σI1-σI4 factors was analyzed on both carbon sources. The expression of alternative σI1 and σI2 factors was enhanced by the presence of cellulose. By contrast, the expression of σI3 and σI4 factors was activated by both cellulose and xylan. Taken together, the results reveal that the cellulosomal and non-cellulosomal genes of H. saccincola A7 are regulated through a carbohydrate-sensing mechanism involving anti-σ regulator RsgI-like proteins. KEY POINTS: • qRT-PCR performed on cellulosomal and non-cellulosomal genes of H. saccincola A7 • Cellulose is a key inducer of the cellulosome of H. saccincola A7 • H. saccincola A7 possesses a similar system of anti-σ regulator RsgI-like proteins.


Assuntos
Celulose , Celulossomas , Regulação Bacteriana da Expressão Gênica , Xilanos , Celulossomas/metabolismo , Celulossomas/genética , Celulose/metabolismo , Xilanos/metabolismo , Polissacarídeos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
2.
Bioresour Bioprocess ; 11(1): 87, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39276241

RESUMO

A key aspect of sustainable bioeconomy is the recirculation of renewable, agricultural waste streams as substrates for microbial production of high-value compounds. One approach is the bioconversion of corn stover, an abundant maize crop byproduct, using the fungal maize pathogen Ustilago maydis. U. maydis is already used as a unicellular biocatalyst in the production of several industrially-relevant compounds using plant biomass hydrolysates. In this study, we demonstrate that U. maydis can grow using untreated corn stover as its sole carbon source. We developed a small-scale bioreactor platform to investigate U. maydis processing of corn stover, combining online monitoring of fungal growth and metabolic activity profiles with biochemical analyses of the pre- and post-fermentation residues. Our results reveal that U. maydis primarily utilizes soluble sugars i.e., glucose, sucrose and fructose present in corn stover, with only limited exploitation of the abundant lignocellulosic carbohydrates. Thus, we further explored the biotechnological potential of enhancing U. maydis´ lignocellulosic utilization. Additive performance improvements of up to 120 % were achieved when using a maize mutant with increased biomass digestibility, co-fermentation with a commercial cellulolytic enzyme cocktail, and exploiting engineered fungal strains expressing diverse lignocellulose-degrading enzymes. This work represents a key step towards scaling up the production of sustainable compounds from corn stover using U. maydis and provides a tool for the detailed monitoring of the fungal processing of plant biomass substrates.

3.
Int J Biol Macromol ; 280(Pt 1): 135498, 2024 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-39255887

RESUMO

Organosolv lignin extracted from vine pruning residues was added to hydroxypropyl methylcellulose (HPMC)-based films using three strategies: i) lignin incorporated into the film (lignin-based film), ii) lignin nanoparticles (LNPs) incorporated into the film (LNPs-based film), and iii) lignin coated on HPMC films' surface (lignin-coated film). The films obtained were evaluated in terms of morphology, water barrier and mechanical properties, and antioxidant capacity. Results showed that LNPs incorporation did not affect the films´ water vapour permeability (WVP). Nonetheless, the lignin-based and lignin-coated films improved the water barrier properties of HPMC-based films, achieving a 31.5 and 36 % reduction of WVP, respectively. The morphological evaluation, performed by scanning electron microscopy, revealed films' morphology changes with the lignin incorporation, which was more evident in the lignin-based films. Fourier transform infrared spectroscopy (FTIR) showed minor changes in the film's structure using the different lignin incorporation methods. The mechanical properties were improved, including a significant increase in the tensile strength in the lignin-based and lignin-coated films. All films showed high radical scavenging activity (RSA) after 24 h, with a gradual increase in the lignin-coated films over time. The lignin-coated films showed to be the most promising incorporation strategy to improve the HPMC-based film's properties.

4.
Heliyon ; 10(17): e37508, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39290285

RESUMO

The gastrointestinal tract of goats serves as a habitat for anaerobic microbial populations that work together to break down complex plant material, including lignocellulose. This study explored the microbial diversity and metabolic profiles across different gastrointestinal tract compartments. Significant diversity differences among the compartments were observed (ANOSIM p < 0.006), with the abomasum showing a distinct species composition and a decreased alpha diversity (Mann-Whitney/Kruskal-Wallis test p = 0.00096), possibly due to its acidic environment. Dominant microbial phyla included Proteobacteria, Bacteroidetes, and Firmicutes, with Proteobacteria being the most prevalent in the abomasum (50.06 %). Genera like Proteus and Bacteroides were particularly prominent in the rumen and reticulum, highlighting their significant role in feed degradation and fermentation processes. Over 65 % of genes at Kyoto Encyclopedia of Genes and Genomes level 1 were involved in metabolism with significant xenobiotic biodegradation in the abomasum. The dbCAN2 search identified Glycoside Hydrolases as the most prevalent CAZyme class (79 %), followed by Glycosyltransferases, Polysaccharide Lyases, and Carbohydrate Esterases, with Carbohydrate-Binding Modules and Auxiliary Activities accounting for 1 % of the hits. Higher CAZyme abundance was observed in the reticulum and omasum compartments, possibly due to MAGs diversity. In conclusion, the gastrointestinal tract of South African goats harbors diverse CAZyme classes, with Glycoside Hydrolases predominating. Interestingly, higher CAZyme abundance in specific compartments suggested compartmentalized microbial activity, reflecting adaptation to dietary substrates.

5.
Curr Res Microb Sci ; 7: 100271, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39291138

RESUMO

Long seen as non-valorisable waste, agricultural co-products are increasingly used in biorefinery processes. Co-culture appears as new trend for to improve the degradation of lignocellulose and improve the production of bioproducts. The goal of the study was to setup inter-domain co-cultures with high capabilities of lignocellulose degradation using a pluridisciplinary approach combining bioinformatics, enzymology, transcriptomics. Different individual lignocellulolytic strains: Trichoderma reesei QM6a and three bacteria (Streptomyces coelicolor A3(2), Rhizobium sp.XylPr11 and Sphingobacterium prati AraPr2 affiliated from different phyla) were used in that study . Synergic activities have been observed and quantified in co-culture conditions, particularly for xylanases and peroxidases activities. The enzymatic activities for the co-cultures in the most interesting co-culture (T. reesei QM6a/S. coelicolor A3(2)) reached more up to 2 IU/mL and 430 IU/mL respectively for the xylanase and peroxidase. Furthermore, ATR-FTIR analysis showed a real impact of co-culture condition on the substrate compared to the monoculture specially for hemicellulose degradation. Transcriptomics of S. coelicolor A3(2) either in mono or co-culture showed a relative similar pattern profile whatever the condition analysed with a specific overexpression of certain CAZyme genes involved in glycolysis due to the hydrolytic role played by the fungal partner. This work provided the proof of concept for technological feasibility, pertinence and usefulness of interdomain co-culture.

6.
Biotechnol Biofuels Bioprod ; 17(1): 122, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39294712

RESUMO

BACKGROUND: The ability of lignocellulose degradation for filamentous fungi is always attributed to their efficient CAZymes system with broader applications in bioenergy development. ADP-ribosylation factor GTPase-activating proteins (Arf-GAPs), pivotal in fungal morphogenesis, lack comprehensive studies on their regulatory mechanisms in lignocellulose utilization. RESULTS: Here, the orthologs (TgGlo3 and TgGcs1) of Arf-GAPs in S. cerevisiae were characterized in Trichoderma guizhouense NJAU4742. The results indicated that overexpression of Tggcs1 (OE-Tggcs1) enhanced the lignocellulose utilization, whereas increased expression of Tgglo3 (OE-Tgglo3) elicited antithetical responses. On the fourth day of fermentation with rice straw as the sole carbon source, the activities of endoglucanase, cellobiohydrolase, xylanase, and filter paper of the wild-type strain (WT) reached 8.20 U mL-1, 4.42 U mL-1, 14.10 U mL-1, and 3.56 U mL-1, respectively. Compared to WT, the four enzymes activities of OE-Tggcs1 increased by 7.93%, 6.11%, 9.08%, and 12.92%, respectively, while those decreased to varying degrees of OE-Tgglo3. During the nutritional growth, OE-Tgglo3 resulted in the hyphal morphology characterized by sparsity and constriction, while OE-Tggcs1 led to a notable increase in vacuole volume. In addition, OE-Tggcs1 exhibited higher transport efficiencies for glucose and cellobiose thereby sustaining robust cellular metabolic rates. Further investigations revealed that Tgglo3 and Tggcs1 differentially regulated the transcription level of a dynamin-like GTPase gene (Tggtp), eliciting distinct redox states and apoptotic reaction, thus orchestrating the cellular response to lignocellulose utilization. CONCLUSIONS: Overall, these findings underscored the significance of TgArf-GAPs as pivotal regulators in lignocellulose utilization and provided initial insights into their differential modulation of downstream targets.

7.
Heliyon ; 10(17): e36802, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39296107

RESUMO

Two species of Xylaria (KM01, KM03) and Nemania sp.KM02 isolated from decaying plant biomass were evaluated for their ability to produce cellulases on maize cob, eucalyptus, and cypress substrates under solid-state fermentation. A total of 10 fungal samples from decaying plant biomass were collected from Karura forest based on morphological variations. The fungi isolated were screened for cellulase activity and positive isolates were selected for the study. ITS4 R and ITS86 F primers were used to identify the fungal isolates with accuracy ranging from 98 % to 100 %. The crude cellulases produced was assayed for FPase, exoglucanase, endoglucanase and ß-glucosidase. Cellulases of Xylaria sp. KM01 produced higher FPase and exoglucanase (2.01 ± 0.13 IU/ml and 0.94 ± 0.08 IU/ml) on pretreated maize cobs with 0.1M HCl at 121oC, while that of Xylaria sp.KM03 produced higher ß-glucosidase and endoglucanase (588.6 ± 64.2 IU/ml and 3.59 ± 0.02 IU/ml) on maize cobs pretreated with 0.1M NaOH at 121oC. However, cellulases of Xylaria sp. KM01 produced higher ß-glucosidase and FPase (629.7 ± 20.2 IU/ml and 1.67 ± 0.03 IU/ml) on untreated maize cobs after the 9th day of incubation, whereas cellulases of Xylaria sp.KM03 and Nemania sp.KM02 produced higher endoglucanase and exoglucanase (2.80 ± 0.21 IU/ml and 0.83 ± 0.02 IU/ml) on untreated maize cobs after the 3rd and 6th day of incubation. Saccharification of maize cobs by cellulase of Xylaria sp.KM03 produced the highest reducing sugars at 8 % substrate loading (10.17 ± 0.37 mg/ml) after 72 h of incubation. Simultaneous hydrolysis and fermentation of maize cobs by cellulase of Nemania sp.KM02 and Saccharomyces cerevisiae yielded higher bioethanol (28.72 ± 3.82 mg/ml) after 96 h of fermentation. Maize cob is established as a suitable feedstock for cellulases and bioethanol production.

8.
Bioresour Technol ; : 131506, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39299344

RESUMO

The presence of refractory lignocellulose presents a significant challenge in green waste (GW) composting. This research applied both a conventional iron-based Fenton-like process (with a Fenton-like reagent composed of 1.0 % Fe3O4 nanoparticles and 1.0 % H2O2) and three modified iron-based Fenton-like processes (with a Fenton-like reagent composed of 1.0 % Fe3O4 nanoparticles and 1.0 % oxalic acid/1.0 % sodium percarbonate/0.5 % Phanerochaete chrysosporium) in GW composting to systematically assess their impacts on lignocellulose degradation during GW composting. The results revealed that iron-based Fenton-like process modified sodium percarbonate exhibited the most significant effects on lignocellulose degradation. Compared with control, degradation rates for lignin, cellulose, and hemicellulose increased by 49.8 %, 39.3 %, and 26.2 % (p < 0.05), respectively. Furthermore, this process enhanced the relative abundance of bacterial communities linked to lignocellulose degradation, particularly Firmicutes and Bacteroidota. These findings offer valuable insights into optimizing GW composting, understanding reactive oxygen species dynamics, and the application of iron-based Fenton-like process.

9.
ChemSusChem ; : e202401063, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39319399

RESUMO

This study adapts the biphasic OrganoCat system into a flow-through (FT) reactor, using a heated tubular setup where a mixture of oxalic acid and 2-methyltetrahydrofuran (2-MTHF) is pumped through beech wood biomass. This method minimizes solvent-biomass contact time, facilitating rapid product removal and reducing the risk of secondary reactions. A comparative analysis with traditional batch processes reveals that the FT system, especially under severe conditions, significantly enhances extraction efficiency, yielding higher amounts of lignin and sugars with reduced solid residue. Notably, the FT system shows partial hydrolysis of the cellulose, which increases with temperature while not producing significant amounts of furfural or 5-HMF, indicating more efficient depolymerization of polysaccharides without substantial sugar degradation. A statistical design of experiments (DOE) using a Box-Behnken design elucidates the influence of process variables (time, solvent flow rate, temperature) on the yield. Key findings highlight reactor temperature as the dominant factor affecting yields, with process time showing a significant but less pronounced impact. This study demonstrates the potential of the FT OrganoCat system for efficient lignocellulosic biomass fractionation and represents an advancement towards continuous lignocellulose processing, contributing to our knowledge of process optimization for improved biorefinery applications.

10.
Int J Mol Sci ; 25(18)2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39337375

RESUMO

The rise of agro-industrial activities over recent decades has exponentially increased lignocellulose biomasses (LCB) production. LCB serves as a cost-effective source for fermentable sugars and other renewable chemicals. This study explores the use of microbial consortia, particularly thermophilic consortia, for LCB deconstruction. Thermophiles produce stable enzymes that retain activity under industrial conditions, presenting a promising approach for LCB conversion. This research focused on two microbial consortia (i.e., microbiomes) that were analyzed for enzyme production using a cheap medium, i.e., a mixture of spent mushroom substrate (SMS) and digestate. The secreted xylanolytic enzymes were characterized in terms of temperature and pH optima, thermal stability, and hydrolysis products from LCB-derived polysaccharides. These enzymes showed optimal activity aligning with common biorefinery conditions and outperformed a formulated enzyme mixture in thermostability tests in the digestate. Phylogenetic and genomic analyses highlighted the genetic diversity and metabolic potential of these microbiomes. Bacillus licheniformis was identified as a key species, with two distinct strains contributing to enzyme production. The presence of specific glycoside hydrolases involved in the cellulose and hemicellulose degradation underscores these consortia's capacity for efficient LCB conversion. These findings highlight the potential of thermophilic microbiomes, isolated from an industrial environment, as a robust source of robust enzymes, paving the way for more sustainable and cost-effective bioconversion processes in biofuel and biochemical production and other biotechnological applications.


Assuntos
Glicosídeo Hidrolases , Lignina , Consórcios Microbianos , Glicosídeo Hidrolases/metabolismo , Glicosídeo Hidrolases/genética , Lignina/metabolismo , Anaerobiose , Filogenia , Hidrólise , Biomassa , Polissacarídeos/metabolismo , Concentração de Íons de Hidrogênio , Bacillus licheniformis/enzimologia , Bacillus licheniformis/metabolismo , Bacillus licheniformis/genética , Temperatura , Estabilidade Enzimática
11.
J Sci Food Agric ; 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39324569

RESUMO

BACKGROUND: Various agricultural sidestreams have been demonstrated as feedstock to produce cellulose. To the best of our knowledge, there is no research work on the potential of agricultural sidestream from cowpea (Vigna unguiculata (L.) Walp.), a neglected and underutilised crop to produce cellulose fibres. Conventional methods to produce cellulose consume large amounts of chemicals (NaOH) and produce a high amount of effluent waste. Herein, we investigated extrusion pre-treatment without and with an alkali followed by bleaching as an alternative method to conventional alkaline pre-treatment followed by bleaching to produce cellulose fibres from cowpea sidestream. RESULTS: Cellulose extracted by extrusion without and with mild alkali followed by bleaching consumed about 20 times less NaOH compared to the conventional method and produced less effluent waste. Extrusion with mild alkali followed by bleaching resulted in higher cellulose yield, purity, and crystallinity compared to extrusion without an alkali followed by bleaching. However, the conventional method resulted in higher cellulose yield, purity and crystallinity compared to extrusion pre-treatment followed by bleaching. Scanning electron microscopy revealed that micro-sized cellulose fibres with an average diameter of 10-15 µm were extracted using both methods. Notably, cellulose fibres extracted using extrusion pre-treatment were shorter than those extracted using the conventional method. CONCLUSION: Extrusion pre-treatment is a promising continuous alternative to alkaline pre-treatment to produce micro-sized cellulose fibres from low-value, underutilised cowpea lignocellulosic sidestream, for potential use as a filler in composite plastics. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

12.
Nano Lett ; 24(38): 11968-11975, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39259027

RESUMO

The conversion of woody biomass to H2 through photocatalysis provides a sustainable strategy to generate renewable hydrogen fuel but was limited by the slow decomposition rate of woody biomass. Here, we fabricate ultrasmall TiO2 nanoparticles with tunable concentration of oxygen vacancy defects (VO-TiO2) as highly efficient photocatalysts for photocatalytic conversion of woody biomass to H2. Owing to the positive role of oxygen vacancy in reducing energy barrier for the generation of •OH which was the critical species to oxidize woody biomass, the obtained VO-TiO2 achieves rapid photocatalytic conversion of α-cellulose and poplar wood chip to H2 in the presence of Pt nanoclusters as the cocatalyst. As expected, the highest H2 generation rate in α-cellulose and poplar wood chip system respectively achieve 1146 and 59 µmol h-1 g-1, and an apparent quantum yield of 4.89% at 380 nm was obtained in α-cellulose aqueous solution.

13.
Data Brief ; 57: 110915, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39328963

RESUMO

A draft genome sequence of an isolate of Arthrobacter koreensis BSB from Santiniketan soil is being published. A. koreensis BSB produces lignocellulases, which are crucial in plant biomass degradation. It is a potential source of enzymes of digestive importance, especially lignocellulases. Genomic DNA was isolated from a single bacterial colony using a QIAgen Blood and Tissue kit (QIAgen Inc., Canada). Illumina HiSeq X performed the DNA sequence, employing 2 × 150 paired-end chemistry, and 8,725,587 reads were obtained, corresponding to a sequence coverage of 755X. The draft genome assembly formed 15 contigs > 200 base pairs in length (N50 value= 446, 958 and L50= 3). The genome size is 3,466,004 base pairs with an average GC percentage of 65.94 %. Annotation and prediction of genes were carried out with Prokka v.1.14.6, and 3,172 CDS, 3236 genes, 58 tRNA genes, 4 rRNA genes, and 2 tmRNA genes were identified.

14.
Bioresour Technol ; 413: 131452, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39245065

RESUMO

As the most abundant renewable carbon source, lignocellulose holds potential as a raw material for biofuels and biochar. The components required for biofuel production differ from those for biochar, so combining processes can reduce costs. Biofuel preparation necessitates cellulase treatment of lignocellulose. This study examines the effects of various enzyme treatment conditions (dosage, time, temperature) on lignocellulose, focusing on the properties of biochar derived from it (BC-SR). A mathematical model was constructed to study the relationship between enzyme treatment conditions and BC-SR properties. BC-SR exhibited high adsorption selectivity for bisphenol A and outperformed untreated biochar in fixed-bed column experiments, demonstrating greater removal efficiency and structural integrity. This study provides insights into the impact of enzymatic treatment on biochar and offers a cost-effective method for producing stable, efficient biochar. Additionally, a highly persistent biochar can enter the carbon trading market as a carbon-neutral technology, further realizing economic and environmental benefits.

15.
ChemSusChem ; : e202400955, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39255046

RESUMO

As a globally abundant source of biomass, lignocellulosic biomass has been the centre of  attention as a potential resource for green energy generation and  value-added chemical production. A key component of lignocellulosic biomass, lignin, which is comprised of aromatic monomers, is a potential feedstock for value added chemical production. The cleavage processes of the linkages between monomers to obtain high value products, however, requires significant investigation as it is a complex, non-facile process. This study focuses on the photocatalytic valorization of a ß-5 lignin model compound, a key linkage in the lignin structure. It was found that a greater yield of aromatic products were obtained from the photocatalytic conversion of ß-5 lignin model compound using carbon nitride (CN) when compared to Evonik P25 titanium dioxide (TiO2). Products of the ß-5 model compound photoconversion were determined and C-C bond cleavage was observed. It was also determined that the solvent participated in the reactions with the introduction of a cyano group to one of the products. Radical quenching experiments revealed that superoxide radicals participated in the CN photocatalytic conversion. These results reveal for the first time the products and possible mechanism of the photocatalytic transformation of ß-5 model compounds using  CN photocatalysis.

16.
Heliyon ; 10(17): e37520, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39309271

RESUMO

This study investigated the effects of different alkali catalysts (K2CO3, KOH, NaOH, and Na2CO3) on the yield and composition of biocrude oil and aqueous products obtained from hydrothermal liquefaction (HTL) of corn stover. HTL was performed in a laboratory-scale tubular reactor at 320 °C for 90 min and catalyst loading of 5.0 and 7.5 % (by weight of biomass). The composition of the biocrude oil and aqueous products was determined using GC-MS. Results revealed that hydroxide catalysts are more effective than carbonate catalysts in increasing biocrude oil yield. Notably, NaOH achieved a high conversion rate of 92-94 % daf (dry and ash-free basis), significantly surpassing the uncatalyzed HTL (69.4 % daf). The highest biocrude oil yield of 22.12-22.57 % daf was obtained using KOH. Si-containing compounds (e.g., silanes and siloxanes) were identified as the most abundant components in the biocrude oil, suggesting potential for further exploration in producing platform chemicals from these compounds.

17.
Curr Res Microb Sci ; 7: 100267, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39257938

RESUMO

Bambusa bambos (B.B) biomass is cellulose rich lignocellulosic material, containing 47.49% cellulose, 17.49% hemicellulose, 23.56% lignin was used as a potential substrate for bioethanol production. The research paper investigates the use of B.B biomass as a substrate for bio-ethanol production through a two-phase catalytic conversion process. Four water-regulated regimes were identified to optimize the conversion of lignocellulosic biomass to biofuel precursors. The catalytic hydrolysis of B.B using CuCl2 was conducted for 10 hours at 110˚C, in aprotic ionic liquid (1-Butyl-3-methylimidazolium chloride) medium. The concentrations of glucose and 5-hydroxymethylfurfural (5-HMF) were measured while varying the amount of water addition. Water played a crucial role in the conversion of cellulose to glucose and 5-HMF by influencing product yields through the interplay of transport properties like heat conduction and viscosity. The highest glucose yield was achieved at 60.82% when operating at a water inclusion rate of 115.72 µL water/h for a duration of 6 hours at 110˚C. On the other hand, the maximum HMF yield was observed as 5.84% at water inclusion rate of 77.15 µL water/h for 5 hours at 110˚C. Yeast mediated glucose fermentation resulted in a bioethanol concentration of 5.5 mg/mL utilizing 15 mg/mL of catalytically produced glucose at a temperature of 30°C. After catalytic hydrolysis, the ionic liquid was also efficiently recycled for a sustainable economy.

18.
Heliyon ; 10(16): e36343, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39258198

RESUMO

Renewable energy has been recognized as an alternative to fossil fuels as a step to transform the energy produced and consumed worldwide. Cyanobacteria and microalgae are currently being considered as substitutes to the traditional feedstock used to produce biofuels due to their ability to achieve high amounts of lipids under cellular stress conditions. The aim of this study was to investigate the utilization of Tolypothrix sp. CACIAM 22 cyanobacterial biomass as a feedstock for biodiesel production, specifically by examining the effects of supplementing with hydrolysate of Brazil nutshell (HBNS) on biomass generation, lipid production, fatty acid composition, and quality of synthesized biodiesel. The supplementation of HBNS led to a significant increase of 12g.L-1 in wet biomass production. The lipid content reached 41 % of the biomass produced in HBNS supplemented cultures when nitrate source was deprived. The quality evaluation of cyanobacteria-derived biodiesel was performed using Biodiesel Analyzer ver 2.2 software, revealing superior quality compared to biodiesel produced from plant sources. The biodiesel exhibited values of 23 h for oxidative stability, 65 for cetane number, and an iodine index of 31 (g I2. 100 g-1 fat), indicating promising potential as a renewable source. This study is the first to utilize HBNS as an organic supplement for cyanobacteria culture medium and assess its impact on biomass and lipid production in Tolypothrix sp., supporting the hypothesis of utilizing this biomass as a renewable feedstock for biodiesel production as a viable alternative to plant sources based on biomass production, lipid productivity, and biodiesel quality.

19.
Food Chem (Oxf) ; 9: 100219, 2024 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-39263258

RESUMO

Lignocellulosic biomass (LB) is promising feedstock for the production of various bio-based products. However, due to its heterogenous character, complex chemical structure and recalcitrance, it is necessary to know its structural composition in order to optimize pretreatment process and further (bio)conversion into bio-based products. Nuclear Magnetic Resonance (NMR) spectroscopy is a fast and reliable method that can provide advanced data on the molecular architecture and composition of lignocellulosic biomass. In this brief overview, characteristic examples of the use of high-resolution NMR spectroscopy for the investigation of various types of LB and their structural units are given and the main drawbacks and future perspectives are outlined.

20.
Bioresour Technol ; 412: 131422, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39233183

RESUMO

Rhodosporidium toruloides has emerged as a prominent candidate for producing single-cell oil from cost-effective feedstocks. In this study, the capability of R. toruloides to produce punicic acid (PuA), a representative plant unusual fatty acid, was investigated. The introduction of acyl lipid desaturase and conjugase (PgFADX) allowed R. toruloides to accumulate 3.7 % of total fatty acids as PuA. Delta-12 acyl lipid desaturase (PgFAD2) and diacylglycerol acyltransferase 2 were shown to benefit PuA production. The strain with PgFADX and PgFAD2 coexpression accumulated 12 % of its lipids as PuA from glucose, which translated into a PuA titer of 451.6 mg/L in shake flask condition. Utilizing wood hydrolysate as the feedstock, this strain produced 6.4 % PuA with a titer of 310 mg/L. Taken together, the results demonstrated that R. toruloides could serve as an ideal platform for the production of plant-derived high-value conjugated fatty acid using agricultural and forestry waste as feedstock.


Assuntos
Glucose , Madeira , Madeira/química , Glucose/metabolismo , Rhodotorula/metabolismo , Ácidos Linolênicos/metabolismo , Engenharia Genética , Ácidos Graxos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA