Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 377: 128927, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36940874

RESUMO

Acid stress in the anaerobic digestion process of liquor wastewater leads to low anaerobic treatment efficiency. Herein, chitosan-Fe3O4 was prepared, and its effects on anaerobic digestion processes under acid stress were studied. Results showed that chitosan-Fe3O4 increased the methanogenesis rate of anaerobic digestion of acidic liquor wastewater by 1.5-2.3 times and accelerated the restoration of acidified anaerobic systems. The analysis of sludge characteristics showed that chitosan-Fe3O4 promoted the secretion of proteins and humic substances in extracellular polymeric substances and increased the electron transfer activity of the system by 71.4%. Microbial community analysis indicated that chitosan-Fe3O4 enriched the abundance of Peptoclostridium, and Methanosaeta participated in direct interspecies electron transfer. Chitosan-Fe3O4 could promote the direct interspecies electron transfer pathway to maintain stable methanogenesis. These methods and results regarding the use of chitosan-Fe3O4 could be referred to for improving the efficiency of anaerobic digestion of high concentration organic wastewater under acid inhibition.


Assuntos
Quitosana , Águas Residuárias , Anaerobiose , Reatores Biológicos , Esgotos , Metano
2.
Bioresour Technol ; 368: 128375, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36414142

RESUMO

Substrate toxicity would limit the upgrading of waste biomass to medium-chain fatty acids (MCFAs). In this work, two fermentation modes of electro-fermentation (EF) and traditional fermentation (TF) with different concentration of liquor fermentation waste (20%, 40%, 60%) were used for MCFAs production as well as mechanism investigation. The highest caproate (4.04 g/L) and butyrate (13.96 g/L) concentrations were obtained by EF at 40% substrate concentration. TF experiments showed that the substrate concentration above 40% severely inhibited ethanol oxidation and products formation. Compared with TF mode, the total substrates consumption and product yields under EF mode were significantly increased by 2.6%-43.5% and 54.0%-83.0%, respectively. Microbial analysis indicated that EF effectively alleviated substrate toxicity and enriched chain elongation bacteria, particularly Clostridium_sensu_stricto 12, thereby promoting ethanol oxidation and products formation. Caproiciproducens tolerated high-concentration substrates to ensure normal lactate metabolism. This study provides a new way to produce MCFAs from high concentration wastewater.


Assuntos
Etanol , Ácidos Graxos , Fermentação , Biomassa , Análise Espectral
3.
Bioresour Technol ; 331: 125050, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33812744

RESUMO

Ultra-high-strength liquor wastewater (UHS-LWW) is rich in organic matter, and the required treatment is expensive. Here, an extremophilic strain Monascus pilosus YX-1125 was isolated for the direct conversion of UHS-LWW to short-chain fatty acids (SCFAs). Strain YX-1125 is an efficient SCFA producer with carbohydrate metabolic flexibility under multiple-stress conditions. Moreover, strain YX-1125 could tolerate up to 75 g/L, 100 g/L, and 50 g/L of ethanol, organic acids, and salt, respectively, without inhibition. In repeated-cycle fermentations, 17.8 g/L of butyric acid and 2.0 g/L of propionic acid were produced from UHS-LWW at the fifth cycle, which are the highest concentrations of wastewater-derived SCFAs reported to date. After SCFA recovery, a 98.9% COD reduction was achieved, which is estimated to reduce treatment costs by 91.7%. Results indicate that M. pilosus YX-1125 is a promising strain for the direct treatment of UHS-LWW, and for converting it into valuable biochemicals without any pre-treatment.


Assuntos
Monascus , Ácidos Graxos Voláteis , Fermentação , Águas Residuárias
4.
Bioresour Technol ; 268: 549-557, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30121544

RESUMO

An efficient approach of bioconverting the organic wastes in liquor wastewater (LW) and waste activated sludge (WAS) to valuable short-chain fatty acids (SCFAs) via anaerobic fermentation was explored. The maximal SCFAs concentration was 5400 mg COD/L with approximate 80.0% acetic and propionic acids under optimized conditions (LW/WAS ratio 1:1, pH 8 and fermentation 4 d). Mechanisms investigation found that the fermentation of LW/WAS made up the drawbacks of sole WAS fermentation by improving the bioavailable substrates and low C/N ratio to stimulate the microbial activities. The bioconversion efficiency of substrates for SCFAs generation was therefore enhanced. The humic acids present in LW could also play positive roles in SCFAs promotion. Moreover, the performance of LW/WAS fermentation was highly correlated with appropriate fermentation pH. The fermentative bacteria responsible for SCFAs production were highly enriched and the activities of key hydrolases, acid-forming enzymes and ATP concentration were greatly improved at pH 8.


Assuntos
Ácidos Graxos Voláteis , Fermentação , Águas Residuárias , Bactérias , Concentração de Íons de Hidrogênio , Esgotos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA