Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.742
Filtrar
1.
J Hazard Mater ; 477: 135304, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39088957

RESUMO

The utilization of biomass-assisted pyrolysis in the recycling of spent lithium-ion batteries has emerged as a promising and reliable process. This article furnishes theoretical underpinnings and analytical insights into this method, showcasing sawdust pyrolysis reduction as an efficient means to recycle spent LiMn2O4 and LiNi0.6Co0.2Mn0.2O2 batteries. Through advanced thermogravimetry-gas chromatography-mass spectrometry analysis complemented by traditional thermodynamic demonstration, the synergistic effects of biomass pyrolysis reduction are elucidated, with minor autodecomposition and major carbothermal and gasthermal reduction pathways identified. The controlled manipulation of transition metals has demonstrated the capability to modulate surface pyrolysis gas catalytic reactions and facilitate the preparation of composite materials with diverse morphologies. Optimization of process conditions has culminated in recovery efficiency exceeding 99.0 % for LiMn2O4 and 99.5 % for LiNi0.6Co0.2Mn0.2O2. Economic and environmental analyses underscore the advantages of biomass reduction and recycling for these two types of spent LIBs: low energy consumption, environmental compatibility, and high economic viability.

2.
Angew Chem Int Ed Engl ; : e202409256, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39088255

RESUMO

Developing an anode material that has better performance efficiency than commercial graphite while keeping the features of economic scalability and environmental safety is highly desirable yet challenging. MOFs are a promising addition to the ongoing efforts, however, the relatively poor performance, chemical instability, and large-scale economic production of efficiency-proven pristine MOFs restrict their utility in real-life energy storage applications. Furthermore, hierarchical porosity for lucid mass diffusion, high-density lithiophilic sites are some of the structural parameters for improving the electrode performance. Herein, we have demonstrated the potential of economically scalable salicylaldehydate 3D-conjugated-MOF (Fe-Tp) as a high-performance anode in Li-ion batteries: the anode-specific capacity achieved up to 1447 mA h g-1 at 0.1 A g-1 and 89% of cyclic stability after 500 cycles at 1.0 A g-1.for pristine MOF. More importantly, incorporating 10% Fe-Tp doping in commercial graphite (MOFite) significantly enhanced lithium storage, doubling capacitance after 400 cycles. It signifies the potential practical utility of Fe-Tp as a performance booster for commercial anode material.

3.
Artigo em Inglês | MEDLINE | ID: mdl-39096308

RESUMO

SiOx anode materials are among the most promising candidates for next-generation high-energy-density lithium-ion batteries (LIBs). However, their commercial application is hindered by poor conductivity, low initial Coulombic efficiency (ICE), and an unstable solid electrolyte interface. Developing cost-effective SiOx anodes with high electrochemical performance is crucial for advanced LIBs. To tackle these issues, this study utilized APTES as a silicon source and carbon nanotubes (CNTs) as additives to prepare a T-SiOx/C/CNTs composite material with N doping and in situ carbon coating using a "molecular assembly combined with controlled pyrolysis" strategy under mild conditions. The in situ carbon coating, formed by the pyrolysis of organic groups on the molecular precursor, effectively protects the inner SiOx active material. The introduced CNTs enhance electron migration and improve the rigidity of the carbon coating layer. The prelithiated T-SiOx@C/CNTs electrode achieves an ICE of 91.6%, with a specific capacity of 622 mAh g-1 after 400 cycles at 1 A g-1 and 475.8 mAh g-1 after 800 cycles. Full cell tests with commercial NCM811 cathodes further demonstrate the potential of T-SiOx@C/CNTs as a highly promising anode material. This work provides some insights into the rational design of advanced anode materials for LIBs, paving the way for their future development and application.

4.
Nano Lett ; 24(29): 8902-8910, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39008627

RESUMO

Ion transportation at the interface significantly influences the electrochemical performance of the lithium ion battery, especially at high rates and low temperatures. Here, we develop a controlled self-assembly strategy for constructing a mesoporous carbon nanolayer with a uniform pore size and varied thicknesses on the two-dimensional monolayer MXene substrate. On the basis of the excellent electron conductivity of MXene, the mesoporous carbon layer is found with a voltage-driven ion accumulation effect, acting as an "ionic pump". The thicker mesoporous layer (∼2.28 nm) has the ability to accommodate a substantial quantity of ions, demonstrating enhanced ionic conductivity, remarkable cycling stability (192.8 mAh/g after 9400 cycles at 5.0 A/g), and outstanding rate capability at ambient and sub-zero temperatures (∼601 mAh/g at 0 °C and 0.05 A/g). This work provides valuable insights and guidance for the further development of high-performance electrode materials at high rates or low temperatures.

5.
ACS Appl Mater Interfaces ; 16(29): 38041-38052, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38993015

RESUMO

All-solid-state lithium-ion batteries (ASSLIBs) using sulfide electrolytes and high-capacity alloy-type anodes have attracted sizable interest due to their potential excellent safety and high energy density. Encapsulating insulating red phosphorus (P) inside nanopores of a carbon matrix can adequately activate its electrochemical alloying reaction with lithium. Therefore, the porosity of the carbon matrix plays a crucial role in the electrochemical performance of the resulting red P/carbon composites. Here, we use zeolite-templated carbon (ZTC) with monodisperse micropores and mesoporous carbon (CMK-3) with uniform mesopores as the model hosts of red P. Our results reveal that micropores enable more effective pore utilization for the red P loading, and the P@ZTC material can achieve a record-high content (65.0 wt %) of red P confined within pores. When used as an anode of ASSLIBs, the P@ZTC electrode delivers an ultrahigh capacity of 1823 mA h g-1 and a high initial Coulombic efficiency of 87.44%. After 400 deep discharge-charge cycles (running over 250 days) at 0.2 A g-1, the P@ZTC electrode still holds a reversible capacity of 1260 mA h g-1 (99.92% capacity retention per cycle). Moreover, a P@ZTC||LiNi0.8Co0.1Mn0.1O2 full cell can deliver a reversible areal capacity of over 3 mA h cm-2 at 0.1C after 100 cycles.

6.
ACS Appl Mater Interfaces ; 16(29): 38188-38197, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38993009

RESUMO

Silicon-based anodes have been attracting attention due to their high theoretical specific capacity, but their low initial Coulombic efficiency (ICE) seriously hinders their commercial application. Direct contact prelithiation is considered to be one of the effective means of solving this problem. By means of prelithiation, a specific solid electrolyte interphase (SEI) was constructed, which inhibited the volume expansion of the SiO/C composite anode during prelithiation and reduced the local current generated when the lithium source was in contact with the anode. On the one hand, it can reduce the side reactions derived from the decomposition of electrolytes in the prelithiation process, and on the other hand, it can slow down the prelithiation process and inhibit the volume expansion of the SiO/C composite anode in the prelithiation process. The results of XPS, TOF-SIMS, and other tests show that the use of an electrolyte whose main component is LiTFSI can construct SEI film whose main component is LiF, which to a certain extent can slow down the rate of prelithiation, reduce the local current generated when the lithium source is in contact with the negative electrode, minimize the occurrence of side reactions, and inhibit the volume expansion of the negative electrode material. The full battery assembled with NCM111 positive electrode still exhibits 83.5% capacity retention after 500 cycles at 1 C current density. These studies provide some ideas to enhance the performance of silicon-based materials.

7.
ACS Appl Mater Interfaces ; 16(29): 38458-38465, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39008897

RESUMO

Although silicon (Si) has a high theoretical capacity, the large volume expansion during lithiation has greatly hindered its application in high-energy-density lithium-ion batteries (LIBs). Among the strategies for improving the performance of Si anode, the role of binders should not be underestimated. Here, a novel strategy for designing a cross-linkable binder for Si anode has been proposed. The binder with hydroxyl and nitrile groups can be in situ covalently cross-linked through the amide group in the batteries. The cross-linked binder (c-POAH) shows high elasticity and strong adhesion to Si particles and the current collector. Si||Li half coin cells using the c-POAH binder have excellent cycle performance and the capacity retention ratio is 67.1% after 100 cycles at 0.2 C. Scanning electronic microscopy images show that the c-POAH binder can contribute to suppressing the pulverization of the Si anode. Moreover, the investigation with X-ray photoelectronic spectrum demonstrates that the decomposition of the liquid electrolyte on Si anode has been mitigated and the c-POAH binder can promote the formation of a more stable SEI film. Our strategy of endowing the binder with good elasticity through in situ cross-linking has opened up a new route for developing binders, which will definitely promote the application of Si anodes in high-energy-density LIBs.

8.
ACS Nano ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39058340

RESUMO

Li5V3O8, a lithiation product derived from the LiV3O8 cathode, has emerged as a promising intercalation-type anode material, boasting a theoretical capacity of 256 mA h g-1. Through a comprehensive combination of experimental and theoretical approaches, we demonstrate its capability to intercalate a substantial amount of Li+ at extremely high rates. Experimental findings reveal that Li5V3O8 exhibits outstanding high-rate capability (with a specific capacity of 152 mA h g-1, 60% of the theoretical capacity at 40 C) and exceptional cyclability (with a capacity retention of 80% after 11,000 cycles at 20 C). The structural changes in Li5V3O8 during the lithiation/delithiation cycles are subtle and reversible. First-principles calculations highlight a knock-off mechanism in Li+ diffusion within Li5V3O8, with an estimated energy barrier ranging from 0.16 to 0.38 eV, considerably lower than that of a direct hopping mechanism (0.62-1.44 eV). These ultrafast ion diffusion properties are attributed to interlock interactions among interstitial tetrahedral Li+ and neighboring octahedral lattice Li+, facilitating long-distance and chain-like Li+ diffusion. This study not only introduces an influential vanadium-based anode material with practical implications for fast-charging lithium-ion batteries but also provides fundamental insights into solid state Li+ diffusion kinetics.

9.
Injury ; : 111724, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39054232

RESUMO

Severe burns related to fires and explosions of lithium-ion batteries of electric motorcycles have not been reported to date. We retrospectively studied 419 patients admitted to our burn intensive care unit from January 2016 to December 2021. Of these 419 patients, 26 (22 male, 4 female; median age, 42 years) had burns related to lithium-ion battery fires and explosions, and all of their injury characteristics were similar to those of traditional flame burns. Lithium-ion battery-related burns were the eighth most common cause of burn injuries among all hospitalized patients. The 26 patients comprised 10 unemployed and 16 employed individuals. Twenty-three patients were injured at home during the battery charging process, and three were injured outdoors (one by a fire while the electric motorcycle was stationary and the others two by a fire while riding the motorcycle). The burn sites were distributed over the whole body; the burn area ranged from 10 % to 100 % of the total body surface area, and the burn depth ranged from superficial second-degree burns to third-degree burns. Twenty-three patients had inhalation injuries, and ten underwent prophylactic tracheostomy and intubation. Multiple operations were required for wound repair. Although convenient, lithium-ion electric motorcycles can also cause severe burns. To prevent these injuries, we must increase public safety awareness and education, develop new battery energy storage systems and battery management systems, and ensure the safety of batteries. Consumers should be aware of the potential dangers of lithium-ion batteries and comply with related security measures.

10.
Data Brief ; 55: 110614, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39015254

RESUMO

Battery technology is increasingly important for global electrification efforts. However, batteries are highly sensitive to small manufacturing variations that can induce reliability or safety issues. An important technology for battery quality control is computed tomography (CT) scanning, which is widely used for non-destructive 3D inspection across a variety of clinical and industrial applications. Historically, however, the utility of CT scanning for high-volume manufacturing has been limited by its low throughput as well as the difficulty of handling its large file sizes. In this work, we present a dataset of over one thousand CT scans of as-produced commercially available batteries. The dataset spans various chemistries (lithium-ion and sodium-ion) as well as various battery form factors (cylindrical, pouch, and prismatic). We evaluate seven different battery types in total. The manufacturing variability and the presence of battery defects can be observed via this dataset. This dataset may be of interest to scientists and engineers working on battery technology, computer vision, or both.

11.
Data Brief ; 55: 110616, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39006352

RESUMO

In this paper, the GSP655060Fe soft pack lithium-ion battery with a capacity of 1600 mAh is utilized, employing lithium iron phosphate as the positive electrode and graphite as the negative electrode. In order to comprehensively evaluate the performance of lithium batteries under the conditions of multi-application scenarios, the operating conditions of the battery were simulated under various external confinement pressures of 300 N, 400 N, 500 N, and 600 N, respectively, and the ambient temperatures of 10 ℃, 25 ℃, and 40 ℃, respectively, were controlled to thoroughly test the battery. One charge/discharge test was conducted on six batteries of the same model at multiplicities of 0.5 C, 1 C, 1.5 C, and 2 C, respectively. To ensure the accuracy and reliability of the experimental data, a Battery comprehensive tester Neware BTS-5V12A was utilized, which possesses high-precision voltage and current measurement capabilities with an error rate of only 0.05 %. This data plays an important role in battery research and development, new energy vehicles, electronic products, and other fields.

12.
Sci Rep ; 14(1): 16036, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992178

RESUMO

Accurately estimating Battery State of Charge (SOC) is essential for safe and optimal electric vehicle operation. This paper presents a comparative assessment of multiple machine learning regression algorithms including Support Vector Machine, Neural Network, Ensemble Method, and Gaussian Process Regression for modelling the complex relationship between real-time driving data and battery SOC. The models are trained and tested on extensive field data collected from diverse drivers across varying conditions. Statistical performance metrics evaluate the SOC prediction accuracy on the test set. Gaussian process regression demonstrates superior precision surpassing the other techniques with the lowest errors. Case studies analyse model competence in mimicking actual battery charge/discharge characteristics responding to changing drivers, temperatures, and drive cycles. The research provides a reliable data-driven framework leveraging advanced analytics for precise real-time SOC monitoring to enhance battery management.

13.
Materials (Basel) ; 17(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38998236

RESUMO

The binder ratio in a commercial lithium-ion battery is very low, but it is one of the key materials affecting the battery's performance. In this paper, polycarbonate-based polymers with liner or chain extension structures are proposed as binders. Then, dry LiFePO4 (LFP) electrodes with these binders are prepared using the solvent-free method. Polycarbonate-based polymers have a high tensile strength and a satisfactory bonding strength, and the rich polar carbonate groups provide highly ionic conductivity as binders. The batteries with poly (propylene carbonate)-plus (PPC-P) as binders were shown to have a long cycle life (350 cycles under 1 C, 89% of capacity retention). The preparation of dry electrodes using polycarbonate-based polymers can avoid the use of solvents and shorten the process of preparing electrodes. It can also greatly reduce the manufacturing cost of batteries and effectively use industrial waste gas dioxide oxidation. Most importantly, a battery material with this kind of polycarbonate polymer as a binder is easily recycled by simply heating after the battery is discarded. This paper provides a new idea for the industrialization and development of a novel binder.

14.
Materials (Basel) ; 17(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38998331

RESUMO

Lithium chloride (LiCl) is an inexpensive and environmentally friendly salt abundant in the ocean. However, the insolubility of LiCl in conventional electrolyte solvents prevents the practical use of LiCl for lithium-ion batteries. Here, we report a novel method to increase the solubility of LiCl in a conventional electrolyte. The solubility of LiCl in ethylene carbonate (EC)/dimethyl carbonate (DMC) (1/1, v/v) is about quadrupled by adding a small amount of anion receptor with two urea moieties as recognition sites connecting with an ether chain. Anion receptor is an organic molecule that can associate with anions. Our anion receptor is able to associate with chloride anion. The ionic conductivity of LiCl in EC/DMC increased from 0.023 mS cm-1 (without an anion receptor) to 0.075 mS cm-1 (with a 0.05 M anion receptor). The electrolyte in the presence of a 0.05 M receptor exhibits higher ionic conductivity, rate capability, and cyclability than the electrolyte without the receptor.

15.
Nanomaterials (Basel) ; 14(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38998701

RESUMO

The growing need for lithium-ion batteries, fueled by the widespread use of electric vehicles (EVs) and portable electronic devices, requires high energy density and safety. The cathode material Li1-x(NiyCozMn1-y-z)O2 (NCM) shows promise, but attaining high efficiency necessitates optimization of both composition and manufacturing methods. Polycrystalline LiNiCoMnO2 powders were synthesized and assessed in this investigation using a polyvinyl alcohol (PVA) solution method. The study examined different synthesis conditions, such as the PVA to metal ions ratio and the molecular weight of PVA, to assess their influence on powder characteristics. Electrochemical analysis indicated that cathode materials synthesized with a relatively high quantity of PVA with a molecular weight of 98,000 exhibited the highest discharge capacity of 170.34 mAh/g and a high lithium-ion diffusion coefficient of 1.19 × 10-9 cm2/s. Moreover, decreasing the PVA content, irrespective of its molecular weight, led to the production of powders with reduced surface areas and increased pore sizes. The adjustments of PVA during synthesis resulted in pre-sintering observed during the synthesis process, which had an impact on the long-term stability of batteries. The electrodes produced from the synthesized powders had a positive impact on the insertion and extraction of Li+ ions, thereby improving the electrochemical performance of the batteries. This study reveals that cathode materials synthesized with a high quantity of PVA with a molecular weight of 98,000 exhibited the highest discharge capacity of 170.34 mAh/g and a high lithium-ion diffusion coefficient of 1.19 × 10-9 cm2/s. The findings underscore the significance of optimizing methods for synthesizing PVA-based materials to enhance the electrochemical properties of NCM cathode materials, contributing to the advancement of lithium-ion battery technology. The findings underscore the significance of optimizing methods for synthesizing PVA-based materials and their influence on the electrochemical properties of NCM cathode materials. This contributes to the continuous progress in lithium-ion battery technology.

16.
Molecules ; 29(13)2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38998928

RESUMO

In conventional lithium-ion batteries (LIBs), the active lithium from the lithium-containing cathode is consumed by the formation of a solid electrolyte interface (SEI) at the anode during the first charge, resulting in irreversible capacity loss. Prelithiation additives can provide additional active lithium to effectively compensate for lithium loss. Lithium oxalate is regarded as a promising ideal cathode prelithiation agent; however, the electrochemical decomposition of lithium oxalate is challenging. In this work, a hollow and porous composite microsphere was prepared using a mixture of lithium oxalate, Ketjen Black and transition metal oxide catalyst, and the formulation was optimized. Owing to the compositional and structural merits, the decomposition voltage of lithium oxalate in the microsphere was reduced to 3.93 V; when being used as an additive, there is no noticeable side effect on the performance of the cathode material. With 4.2% of such an additive, the first discharge capacity of the LiFePO4‖graphite full cell increases from 139.1 to 151.9 mAh g-1, and the coulombic efficiency increases from 88.1% to 96.3%; it also facilitates the formation of a superior SEI, leading to enhanced cycling stability. This work provides an optimized formula for developing an efficient prelithiation agent for LIBs.

17.
Int J Mol Sci ; 25(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38999935

RESUMO

Lithium-ion batteries, as an excellent energy storage solution, require continuous innovation in component design to enhance safety and performance. In this review, we delve into the field of eco-friendly lithium-ion battery separators, focusing on the potential of cellulose-based materials as sustainable alternatives to traditional polyolefin separators. Our analysis shows that cellulose materials, with their inherent degradability and renewability, can provide exceptional thermal stability, electrolyte absorption capability, and economic feasibility. We systematically classify and analyze the latest advancements in cellulose-based battery separators, highlighting the critical role of their superior hydrophilicity and mechanical strength in improving ion transport efficiency and reducing internal short circuits. The novelty of this review lies in the comprehensive evaluation of synthesis methods and cost-effectiveness of cellulose-based separators, addressing significant knowledge gaps in the existing literature. We explore production processes and their scalability in detail, and propose innovative modification strategies such as chemical functionalization and nanocomposite integration to significantly enhance separator performance metrics. Our forward-looking discussion predicts the development trajectory of cellulose-based separators, identifying key areas for future research to overcome current challenges and accelerate the commercialization of these green technologies. Looking ahead, cellulose-based separators not only have the potential to meet but also to exceed the benchmarks set by traditional materials, providing compelling solutions for the next generation of lithium-ion batteries.


Assuntos
Celulose , Fontes de Energia Elétrica , Lítio , Celulose/química , Lítio/química , Química Verde/métodos
18.
ChemSusChem ; : e202400168, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39041861

RESUMO

Silicon-based anodes are becoming promising materials due to their high specific capacity. However, the intrinsically large volume change brought about by the alloying reaction results in the crushing of the active particles and destruction of the electrode structure, which severely limits its practical application. Various structured and modified silica-based anodes exhibit improved cycling stability and the demonstrated ability to mitigate their volume changes through interfacial and binder strategies. However, the issue of large volume changes in silicon-based anodes remains. Herein, we report a gel polymer electrolyte (GPE) prepared through an in situ thermal polymerization process that is suitable for SiOx anode materials and achieving long-term cycling stability. GPE-based cells essentially mitigate the volume change of SiOx anodes by guiding the unique lithiation/delithiation mechanism that tends to favor the formation and delithiation of amorphous-LixSi (a-LixSi) with smaller volume change, thereby mitigating electrode damage and cracking, and achieving the significant improvement in cycling performance. The prepared GPE-SiOx cells retained 693.80 mAh g-1 reversible capacity after 450 cycles at 500 mA g-1. In addition, the prelithiation process was incorporated to mitigate capacity fluctuations and improve the Initial Coulombic Efficiency (ICE), and a reversible capacity of 641.90 mAh g-1 was retained after 480 cycles.

19.
Angew Chem Int Ed Engl ; : e202409255, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984684

RESUMO

With the large-scale application of lithium-ion batteries (LIBs), a huge amount of spent LIBs will be generated each year and how to realize their recycling and reuse in a clean and effective way poses a challenge to the society. In this work, using the electrolyte of spent LIBs as solvent, we in-situ fluorinate the conductive three-dimensional porous copper foam by a facile solvent-thermal method and then coating it with a cross-linked sodium alginate (SA) layer. Benefiting from the solid-electrolyte interphase (SEI) that accommodating the volume change of internal CuF2 core and SA layer that inhibiting the dissolution of CuF2, the synthesized CuF2@void@SEI@SA cathode with a pomegranate-like structure (yolk-shell) exhibits a large reversible capacity of ~535 mAh g-1 at 0.05 A g-1 and superb cycling stability. This work conforms to the development concept of green environmental protection and comprehensively realizes the unity of environmental, social and economic benefits.

20.
J Colloid Interface Sci ; 674: 643-652, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38950463

RESUMO

Silicon-based material is regarded as one of the most promising anodes for next-generation high-performance lithium-ion batteries (LIBs) due to its high theoretical capacity and low cost. Harnessing silicon carbide's robustness, we designed a novel porous silicon with a sandwich structure of carbon/silicon carbide/Ag-modified porous silicon (Ag-PSi@SiC@C). Different from the conventional SiC interface characterized by a frail connection, a robust dual covalent bond configuration, dependent on SiC and SiOC, has been successfully established. Moreover, the innovative sandwich structure effectively reduces detrimental side reactions on the surface, eases volume expansion, and bolsters the structural integrity of the silicon anode. The incorporation of silver nanoparticles contributes to an improvement in overall electron transport capacity and enhances the kinetics of the overall reaction. Consequently, the Ag-PSi@SiC@C electrode, benefiting from the aforementioned advantages, demonstrates a notably elevated lithium-ion mobility (2.4 * 10-9 cm2·s-1), surpassing that of silicon (5.1 * 10-12 cm2·s-1). The half-cell featuring Ag-PSi@SiC@C as the anode demonstrated robust rate cycling stability at 2.0 A/g, maintaining a capacity of 1321.7 mAh/g, and after 200 cycles, it retained 962.6 mAh/g. Additionally, the full-cell, featuring an Ag-PSi@SiC@C anode and a LiFePO4 (LFP) cathode, exhibits outstanding longevity. Hence, the proposed approach has the potential to unearth novel avenues for the extended exploration of high-performance silicon-carbon anodes for LIBs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA