Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Biosens Bioelectron ; 261: 116488, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38905860

RESUMO

Long-stranded non-coding RNAs (lncRNA) have important roles in disease as transcriptional regulators, mRNA processing regulators and protein synthesis factors. However, traditional methods for detecting lncRNA are time-consuming and labor-intensive, and the functions of lncRNA are still being explored. Here, we present a surface enhanced Raman spectroscopy (SERS) based biosensor for the detection of lncRNA associated with liver cancer (LC) as well as in situ cellular imaging. Using the dual SERS probes, quantitative detection of lncRNA (DAPK1-215) can be achieved with an ultra-low detection limit of 952 aM by the target-triggered assembly of core-satellite nanostructures. And the reliability of this assay can be further improved with the R2 value of 0.9923 by an internal standard probe that enables the signal dynamic calibration. Meanwhile, the high expression of DAPK1-215 mainly distributed in the cytoplasm was observed in LC cells compared with the normal ones using the SERS imaging method. Moreover, results of cellular function assays showed that DAPK1-215 promoted the migration and invasion of LC by significantly reducing the expression of the structural domain of death associated protein kinase. The development of this biosensor based on SERS can provide a sensitive and specific method for exploring the expression of lncRNA that would be a potential biomarker for the screening of LC.


Assuntos
Neoplasias Hepáticas , Nanoestruturas , RNA Longo não Codificante , Análise Espectral Raman , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/química , Análise Espectral Raman/métodos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Nanoestruturas/química , Técnicas Biossensoriais/métodos , Ressonância de Plasmônio de Superfície/métodos , Linhagem Celular Tumoral , Limite de Detecção , Ouro/química
2.
Basic & Clinical Medicine ; (12): 333-338, 2024.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1018617

RESUMO

Objective To investigate the effects of aucubin(AU)on the proliferation,apoptosis,and cell cycle of human liver cancer cells line HepG2 and its mechanism of action.Methods HepG2 cells were cultured in vitro,CCK-8 method was applied to screen the optimal dosage concentration of AU.HepG2 cells were randomly grouped into a control group,an AU 12.5 mg/L group(AU L group),an AU 62.5 mg/L group(AU H group),and an AU H+Akt pathway agonist(SC79)group(AU H+SC79 group).The cell proliferation was observed in each group;5-Ethynyl-2′-deoxyuridine(EDU)method was applied to detect cell proliferation;Flow cytometry was applied to detect cell apoptosis and cell cycle;Western blot was applied to detect the expression levels of phosphorylated pro-tein kinase B(p-Akt),Akt,p-MDM2,MDM2,p-p53,and p53 proteins.Results AU concentrations of 12.5 and 62.5 mg/L were selected for subsequent experiments.Compared with 0 mg/L AU,the proliferation of 12.5 and 62.5 mg/L AU cells was obviously reduced(P<0.05);Compared with the control group,the number of suspended and exfoliated cells in the AU L and AU H groups gradually increased.Cells shrunk and became round.The propor-tion of G0/G1 phase cells,the proportion of EDU positive staining cells increased and the expression level of p-Akt/Akt and p-MDM2/MDM2 proteins decreased.The proportions of S and G2/M phase cells,the rate of cell apoptosis,and the expression level of p-p53/p53 protein all increased(P<0.05).Compared with the AU H group,the above changes in the AU H+SC79 group were recovered(P<0.05).After AU treatment,the tumor vol-ume and weight of transplanted nude mice decreased.Conclusions AU may inhibit the proliferation of liver cancer cells,induce cell cycle arrest and apoptosis by regulating the Akt/MDM2/p53 signaling pathway.

3.
China Pharmacy ; (12): 961-966, 2024.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1016719

RESUMO

OBJECTIVE To investigate the regulatory effect of autophagy on the resistance of human liver cancer cell Huh7 to lenvatinib. METHODS Using human liver cancer cell Huh7 as subject, the lenvatinib-resist cell model (Huh7-LR) was generated by the low-dose gradient method combined with long-term administration. The sensitivity of parental cell Huh7 and drug-resistant cell Huh7-LR to lenvatinib was detected by using CCK-8 assay and flow cytometry. Western blot assay and GFP-mCherry-LC3 plasmid transfection were performed to detect the expression levels of autophagic protein Beclin-1, autophagic adapter protein sequestosome 1 (p62), microtubule-associated protein 1 light chain 3 (LC3) and autophagic level. Furthermore, an autophagy activation model was constructed by cell starvation, the protein expression of p62 and autophagy level were detected by using Western blot assay and GFP-mCherry-LC3 plasmid transfection, and the effect of autophagy activation on the sensitivity of Huh7-LR cells to lenvatinib was detected by flow cytometry. RESULTS Compared with parental cells, the drug resistance index of Huh7-LR cells was 6.2; protein expression of p62 was increased significantly, while apoptotic rate, protein expression of Beclin-1 and LC3Ⅱ/ LC3Ⅰ ratio were all reduced significantly (P<0.05 or P<0.01); the level of autophagy was decreased to some extent. Autophagy activation could significantly increase the protein expression of p62 in Huh7-LR cells (P<0.05) and autophagy level, and significantly increase its apoptotic rate (P<0.05). CONCLUSIONS Autophagy is involved in lenvatinib resistance, and activating autophagy can reverse the resistance of liver cancer cells to lenvatinib to some extent.

4.
Oncol Lett ; 26(5): 476, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37809049

RESUMO

Osteopontin (OPN), a secreted phosphoglycoprotein, has important roles in tumor growth, invasion and metastasis in numerous types of cancers. Denticleless E3 ubiquitin protein ligase homolog (DTL), one of the CUL4-DDB1-associated factors (DCAFs), has also been associated with the invasion and metastasis of cancer cells. In the present study, OPN was found to induce DTL expression in liver cancer cells, and the results obtained using luciferase activity assays demonstrated that OPN could transcriptionally activate DTL expression in liver cancer cells. Furthermore, the results of the present study demonstrated that OPN could increase the expression of DTL via PI3K/AKT signaling. In conclusion, the present study demonstrated that OPN, as an extracellular matrix protein, is able to promote the growth and invasion of liver cancer cells through stimulation of the expression of DTL via the PI3K/AKT signaling pathway.

5.
Curr Issues Mol Biol ; 45(2): 1073-1085, 2023 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-36826016

RESUMO

This study investigated the effects of a long noncoding RNA, nuclear paraspeckle assembly transcript 1 (NEAT1) variant 1 (NEAT1v1) on drug resistance in liver cancer cell lines. NEAT1 knockdown activated mitogen-activated protein kinase (MAPK) signaling pathways, including MAPK kinase (MEK)/extracellular signal-regulated kinase (ERK), but suppressed AKT. Moreover, NEAT1 knockdown sensitized liver cancer cells to sorafenib and lenvatinib, both clinically used for treating hepatocellular carcinoma, whereas it conferred resistance to an AKT-targeted drug, capivasertib. NEAT1v1 overexpression suppressed MEK/ERK and activated AKT, resulting in resistance to sorafenib and lenvatinib and sensitization to capivasertib. Superoxide dismutase 2 (SOD2) knockdown reverted the effects of NEAT1v1 overexpression on the sensitivity to the molecular-targeted drugs. Although NEAT1 or SOD2 knockdown enhanced endoplasmic reticulum (ER) stress, concomitant with the suppression of AKT, taurodeoxycholate, an ER stress suppressor, did not restore AKT activity. Although further in vivo and clinical studies are needed, these results suggested that NEAT1v1 switches the growth modality of liver cancer cell lines from MEK/ERK-dependent to AKT-dependent mode via SOD2 and regulates sensitivity to the molecular-targeted drugs independent of ER stress.

6.
Protein Pept Lett ; 29(12): 1082-1087, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36173053

RESUMO

BACKGROUND: Previously, AF-956, which contains S356 of FAM83G and an N-terminal antenna peptide for entry into colon cancer cells, is markedly antiproliferative compared to a control peptide (AF-859), which lacks the N-terminal antenna peptide, by inducing apoptosis via the inhibition of HSP27 phosphorylation at residues S15 and S82. OBJECTIVE: Because FAM83G-derived peptides are promising lead compounds for colon cancer treatment, we reanalyzed the effect of AG-066, which contains S356 of FAM83G and an N-terminal antenna peptide for entry into the liver cancer cells. METHODS: HepG2 liver cancer cells were incubated with either AF-859 or AG-066 at a concentration of 54 µM at 37 °C for 24, 48, and 72 h. The effects of AF-859 and AG-066 on the cultured HepG2 cells were estimated using an inverted light microscope. Furthermore, the DNA ladder method and the dead cell assay were performed by applying Live/Dead Cell Staining Kit II. Erk phosphorylation was estimated by western blotting. RESULTS: Treatment with AG-066 markedly reduced HepG2 viable cell counts compared to the AF- 859-treated HepG2 cells, as evident from the significantly increased number of dead cells in the culture medium. Additionally, AG-066 treatment increased cellular DNA laddering. We found no difference in Erk phosphorylation status between the AG-066- and AF-859-treated groups. CONCLUSION: This study illustrated that the peptide with a structure based on FAM83G functions as a spontaneous apoptosis inducer for liver cancer cells. Hence, it is a promising lead compound for the treatment of liver cancer.


Assuntos
Carcinoma Hepatocelular , Neoplasias do Colo , Neoplasias Hepáticas , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Apoptose , Células Hep G2 , Peptídeos/farmacologia , Proliferação de Células
7.
Clin. transl. oncol. (Print) ; 24(1): 48-56, enero 2022.
Artigo em Inglês | IBECS | ID: ibc-203413

RESUMO

BackgroundPrimary liver cancer cells (PLCs) could more directly simulate the human tumor microenvironment. Compared with liver cancer cell lines, PLCs could reflect the human situation. As in previous studies, tumor stem cells were a small number of cancer cells in the microenvironment and considered to be one of the origins of liver cancer. This study aimed to screen stem cells in PLCs, analyze their biological characteristics, propose the possibility that liver cancer originated from stem cells.MethodsLiver cancer tissues of 17 patients were taken from the Affiliated Hospital of Guangdong Medical College, and PLCs were isolated by tissue slice method. The proliferation, tumor formation in nude mice, stem protein expression of PLCs were observed. C-kit+ liver cancer cells were screened and their biological characteristics were analyzed.ResultsPLCs could be stably passaged. Transmission electron microscopy indicated that the nucleus was irregular, there were many mitochondria, and the endoplasmic reticulum was irregularly distributed. PLCs could express E-Cadherin, Oct-4, β-Catenin, Sox2, CD326, C-kit, GPC3, Nanog. The proliferation curve of PLCs and Hep3B cells were similar, and they all could form tumors in nude mice. Flow-sorted C-kit+ PLCs, as well as C-kit+ Hep3B cells could highly express Bmi1, Sox2, Oct4, Notch1, Nanog, C-kit, β-Catenin, Smo, Nestin, ABCG2, ABCB1. And they also could clone and form tumors in vivo. But C-kit+ PLCs were more sensitive to chemotherapy drugs than C-kit+ liver cancer cell lines.ConclusionC-kit+ PLCs had the characteristics of tumor stem cells and were more sensitive to chemotherapy drugs.


Assuntos
Humanos , Ciências da Saúde , Neoplasias Hepáticas , Células-Tronco , Cultura Primária de Células , Microscopia Eletrônica , Células/imunologia
8.
Drug Deliv ; 29(1): 31-42, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34962215

RESUMO

In this study, we prepared a folic acid-functionalized SMMC-7721 liver cancer cell membrane (CM)-encapsulated paclitaxel nanocrystals system (FCPN) for hepatoma treatment. Transmission electron microscopy (TEM) characterization showed that FCPN was irregular spherical shapes with a particle size larger than 200 nm and a coated thickness of approximately 20 nm. In an in vitro release experiment, FCPN indicated a slowly release effect of paclitaxel (PTX). Cell experiments demonstrated that FCPN was taken up by SMMC-7721 cells and significantly inhibited the proliferation of SMMC-7721 cells, which illustrated that FCPN had good targeting ability compared with PN and CPN. According to the results of in vivo animal experiments, FCPN significantly inhibited tumor growth. Tissue distribution experiments proved that FCPN could accumulate significantly in tumor tissues, which further explained why FCPN had good targeting ability. These results clearly suggested that folate-functionalized homotypic CM bionic nanosystems might represent a very valuable method for liver cancer treatment in the future.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Carcinoma Hepatocelular/patologia , Ácido Fólico/química , Neoplasias Hepáticas/patologia , Paclitaxel/farmacologia , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Biomimética , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/química , Paclitaxel/administração & dosagem , Tamanho da Partícula , Polietilenoglicóis/química , Distribuição Aleatória , Propriedades de Superfície , Carga Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
9.
J Gastrointest Cancer ; 53(3): 537-542, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34159520

RESUMO

OBJECTIVES: To discover new natural effective anticancer agents and new antibacterial agents against antibiotic-resistant bacteria which are the most serious public health concern. Another important concern is drug delivery which is the transport of pharmaceutical compounds to have a therapeutic effect in organisms having a disease. Azurin is a promising anticancer agent produced from Pseudomonas aeruginosa. This study tried to test the effectiveness of the immobilization of azurin on nano-chitosan to enhance its anticancer and antibacterial activity against gastrointestinal cancer and its related bacteria. METHODS: We purified azurin protein from Pseudomonas aeruginosa and then immobilized it on nano-chitosan. The anticancer activity of the free and nano-azurin is tested against a gastric cancer cell line (CLS-145), pancreatic cancer cell line (AsPC-1), colon cancer cell line (HCT116), esophagus cancer cell line (KYSE-410), and liver cancer cell line (HepG2). The antibacterial activity of both free and immobilized azurin also is tested against bacterial species related to the gastrointestinal cancer biopsies: Helicobacter pylori, Bacteroides fragilis, Salmonella enterica, Fusobacterium nucleatum, and Porphyromonas gingivalis. RESULTS: Both free and nano-azurin showed high anticancer and antibacterial activity. Immobilization significantly increased the anticancer and antibacterial activity of the azurin CONCLUSION: Nano-azurin can be used as an effective anticancer and antibacterial agent against gastrointestinal cancer and bacterial species related to these cancers.


Assuntos
Antineoplásicos , Azurina , Quitosana , Neoplasias Gastrointestinais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Azurina/metabolismo , Azurina/farmacologia , Azurina/uso terapêutico , Bactérias , Quitosana/metabolismo , Quitosana/farmacologia , Humanos , Pseudomonas aeruginosa/metabolismo
10.
Clin Transl Oncol ; 24(1): 48-56, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34169442

RESUMO

BACKGROUND: Primary liver cancer cells (PLCs) could more directly simulate the human tumor microenvironment. Compared with liver cancer cell lines, PLCs could reflect the human situation. As in previous studies, tumor stem cells were a small number of cancer cells in the microenvironment and considered to be one of the origins of liver cancer. This study aimed to screen stem cells in PLCs, analyze their biological characteristics, propose the possibility that liver cancer originated from stem cells. METHODS: Liver cancer tissues of 17 patients were taken from the Affiliated Hospital of Guangdong Medical College, and PLCs were isolated by tissue slice method. The proliferation, tumor formation in nude mice, stem protein expression of PLCs were observed. C-kit+ liver cancer cells were screened and their biological characteristics were analyzed. RESULTS: PLCs could be stably passaged. Transmission electron microscopy indicated that the nucleus was irregular, there were many mitochondria, and the endoplasmic reticulum was irregularly distributed. PLCs could express E-Cadherin, Oct-4, ß-Catenin, Sox2, CD326, C-kit, GPC3, Nanog. The proliferation curve of PLCs and Hep3B cells were similar, and they all could form tumors in nude mice. Flow-sorted C-kit+ PLCs, as well as C-kit+ Hep3B cells could highly express Bmi1, Sox2, Oct4, Notch1, Nanog, C-kit, ß-Catenin, Smo, Nestin, ABCG2, ABCB1. And they also could clone and form tumors in vivo. But C-kit+ PLCs were more sensitive to chemotherapy drugs than C-kit+ liver cancer cell lines. CONCLUSION: C-kit+ PLCs had the characteristics of tumor stem cells and were more sensitive to chemotherapy drugs.


Assuntos
Neoplasias Hepáticas/patologia , Células-Tronco Neoplásicas/patologia , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Nus , Células Tumorais Cultivadas
11.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-932797

RESUMO

Objective:To investigate the effect of pulsed electric field (PEF) combined with low temperature plasma (LTP) on mouse liver cancer cell.Methods:H22 mouse liver cancer cells were divided into liver cancer group, PEF treatment group, LTP treatment group, combined group A (first PEF treatment immediately after LTP treatment), combined group B (first LTP treatment immediately after PEF treatment), combined group C (same as combined group A, but 20 minutes interval) and combined group D (same as combined group B, but 20 minutes interval). Cell viability was detected by cell counting, apoptosis was detected by flow cytometry, intracellular reative oxygen species (ROS) was marked by fluorescence and counted. Twenty healthy female Kunming mouse aged 4-6 weeks without specific pathogens were subcutaneous injected with liver cancer cells, and then were randomly divided into model group, PBS control group, PEF experimental group, LTP experimental group and combined group (LTP+ PEF, no interval) ( n=4). Tumor relative volume and tumor inhibition rate were measured. Results:The survival rates were liver cancer cell group (98.3±0.9)%, PEF treatment group (66.8±4.4)%, LTP treatment group (62.1±3.9)%, combined group A (43.7±3.7)%, combined group B (31.0±1.4)%, combined group C (46.8±2.9)%, combined group D (39.0±2.3)%. Compared with liver cancer cell group, the cell survival rate of all treatment groups was decreased, and the cell survival rate of the four combined treatment group was lower than that of PEF treatment group and LTP treatment group, the differences were statistically significant (all P<0.05). The survival rate of combined B group was the lowest. The results of apoptosis detection were consistent with those of cell survival rate. Under fluorescence microscope, the ROS fluorescence of cells in the combined group B was significantly increased, and the ROS fluorescence of cells in the LTP treatment group was more than that in the PEF treatment group, and the percentage of ROS positive cells in the combined group B was higher than that in the LTP treatment group and the PEF treatment group, with statistical significance (all P<0.05). Tumor relative volume and tumor inhibition rate in the combined group were better than those in the PEF and LTP groups, and the differences were statistically significant (all P<0.05). Conclusion:LTP combined with PEF has a better killing effect on H22 cells than PEF or LTP treatment, which is expected to be a new tumor therapy.

12.
Braz. j. biol ; 82: e256856, 2022. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1355846

RESUMO

The aim of the present study was to evaluate the in vitro antiproliferative activity of ethanolic extract of leaves and fruits Citrus paradisi plant on HepG-2 liver cell lines by MTT (3-(4, 5-dimethyl-2-thiazolyl)-2,5-diphenyl-2Hterazolium bromide) assay and to isolate and characterize the antiproliferative compounds by TLC (Thin layer chromatography) and FT-IR (Fourier transforms Infrared) spectroscopy. Qualitative phytochemical screening tests were performed to detect phytochemicals compounds from the crude extracts. Antioxidant activity of the plant extracts were characterized by using DPPH (2,2-Diphenyl-1-picrylhydrazyl) free radical scavenging method. The results showed that antioxidant activity using DPPH were found to be increased in a concentration dependent manner and decreased cell viability and cell growth inhibition in a dose dependent manner. The findings from this study indicated that fruit extract exhibited good antiproliferation and antioxidant potential. The seven functional groups of phytocompounds such as carboxylic acid, amine salt, aromatic compounds, cyclic alkene, aldehyde, fluoro compounds and alkene were detected by FT-IR which indicated that fruit extracts of Citrus paradisi possessed vast potential as a medicinal drug especially in liver cancer treatment.


O objetivo do presente estudo foi avaliar a atividade antiproliferativa in vitro do extrato etanólico de folhas e frutos da planta Citrus paradisi em linhagens de células hepáticas HepG-2 por MTT (3- (4, 5-dimetil-2-tiazolil) -2, Ensaio de brometo de 5-difenil-2H-terazólio) e isolar e caracterizar os compostos antiproliferativos por espectroscopia de TLC (cromatografia de camada fina) e FT-IR (infravermelho com transformadas de Fourier). Testes qualitativos de triagem fitoquímica foram realizados para detectar compostos fitoquímicos nos extratos brutos. A atividade antioxidante dos extratos vegetais foi caracterizada pelo método de eliminação de radicais livres DPPH (2,2-difenil-1-picrilhidrazil). Os resultados mostraram que a atividade antioxidante usando DPPH aumentou de uma maneira dependente da concentração e diminuiu a viabilidade celular e a inibição do crescimento celular de uma maneira dependente da dose. Os resultados deste estudo indicaram que o extrato de fruta exibiu bom potencial antiproliferação e antioxidante. Os sete grupos funcionais de fitocompostos, como ácido carboxílico, sal de amina, compostos aromáticos, alceno cíclico, aldeído, compostos de flúor e alceno, foram detectados por FT-IR, o que indicou que extratos de frutas de Citrus paradisi possuíam vasto potencial como medicamento, especialmente no tratamento de câncer do fígado.


Assuntos
Humanos , Citrus paradisi , Neoplasias Hepáticas/tratamento farmacológico , Extratos Vegetais/farmacologia , Linhagem Celular , Espectroscopia de Infravermelho com Transformada de Fourier , Compostos Fitoquímicos , Antioxidantes
13.
Braz. j. biol ; 822022.
Artigo em Inglês | LILACS-Express | LILACS, VETINDEX | ID: biblio-1468771

RESUMO

Abstract The aim of the present study was to evaluate the in vitro antiproliferative activity of ethanolic extract of leaves and fruits Citrus paradisi plant on HepG-2 liver cell lines by MTT (3-(4, 5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-terazolium bromide) assay and to isolate and characterize the antiproliferative compounds by TLC (Thin layer chromatography) and FT-IR (Fourier transforms Infrared) spectroscopy. Qualitative phytochemical screening tests were performed to detect phytochemicals compounds from the crude extracts. Antioxidant activity of the plant extracts were characterized by using DPPH (2,2-Diphenyl-1-picrylhydrazyl) free radical scavenging method. The results showed that antioxidant activity using DPPH were found to be increased in a concentration dependent manner and decreased cell viability and cell growth inhibition in a dose dependent manner. The findings from this study indicated that fruit extract exhibited good antiproliferation and antioxidant potential. The seven functional groups of phytocompounds such as carboxylic acid, amine salt, aromatic compounds, cyclic alkene, aldehyde, fluoro compounds and alkene were detected by FT-IR which indicated that fruit extracts of Citrus paradisi possessed vast potential as a medicinal drug especially in liver cancer treatment.


Resumo O objetivo do presente estudo foi avaliar a atividade antiproliferativa in vitro do extrato etanólico de folhas e frutos da planta Citrus paradisi em linhagens de células hepáticas HepG-2 por MTT (3- (4, 5-dimetil-2-tiazolil) -2, Ensaio de brometo de 5-difenil-2H-terazólio) e isolar e caracterizar os compostos antiproliferativos por espectroscopia de TLC (cromatografia de camada fina) e FT-IR (infravermelho com transformadas de Fourier). Testes qualitativos de triagem fitoquímica foram realizados para detectar compostos fitoquímicos nos extratos brutos. A atividade antioxidante dos extratos vegetais foi caracterizada pelo método de eliminação de radicais livres DPPH (2,2-difenil-1-picrilhidrazil). Os resultados mostraram que a atividade antioxidante usando DPPH aumentou de uma maneira dependente da concentração e diminuiu a viabilidade celular e a inibição do crescimento celular de uma maneira dependente da dose. Os resultados deste estudo indicaram que o extrato de fruta exibiu bom potencial antiproliferação e antioxidante. Os sete grupos funcionais de fitocompostos, como ácido carboxílico, sal de amina, compostos aromáticos, alceno cíclico, aldeído, compostos de flúor e alceno, foram detectados por FT-IR, o que indicou que extratos de frutas de Citrus paradisi possuíam vasto potencial como medicamento, especialmente no tratamento de câncer do fígado.

14.
Nanotechnol Sci Appl ; 14: 139-159, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34522092

RESUMO

BACKGROUND: We recently reported on preferential deposition of bare fluorescent diamond particles FDP-NV-700/800nm (FDP-NV) in the liver following intravenous administration to rats. The pharmacokinetics of FDP-NV in that species indicated short residency in the circulation by rapid clearance by the liver. Retention of FDP-NV in the liver was not associated with any pathology. These observations suggested that cancer therapeutics, such as doxorubicin, linked to FDP-NV, could potentially serve for anti-cancer treatment while sparing toxicities of peripheral organs. PURPOSE: To generate proof-of-concept (POC) and detail mechanisms of action of doxorubicin-coated FDP-NV-700/800nm (FDP-DOX) as a prospective chemotherapeutic for metastatic liver cancer. METHODS: FDP-DOX was generated by adsorption chemistry. Experimental design included concentration and time-dependent efficacy studies as compared with naïve (baren) FDP-NV in in vitro liver cancer cells models. Uptake of FDP-NV and FDP-DOX by HepG-2, Hep-3B and hCRC organoids were demonstrated by flow-cytometry and fluorescent microscopy. FDP-DOX pharmacodynamic effects included metabolic as well as cell death biomarkers Annexin V, TUNEL and LDH leakage. DOX desorpted from FDP-DOX was assessed by confocal microscopy and chemical assay of cells fractions. RESULTS: FDP-DOX efficacy was dose- and time-dependent and manifested in both liver cancer cell lines and human CRC organoids. FDP-DOX was rapidly internalized into cancer cells/organoids leading to cancer growth inhibition and apoptosis. FDP-DOX disrupted cell membrane integrity as evident by LDH release and suppressing mitochondrial metabolic pathways (AlamarBlue assay). Access of free DOX to the nuclei was confirmed by direct UV-Visible fluorescent assay and confocal microscopy of DOX fluorescence. CONCLUSION: The rapid uptake and profound cancer inhibition observed using FDP-DOX in clinically relevant cancer models, highlight FDP-DOX promise for cancer chemotherapeutics. We also conclude that the in vitro data justify further investment in in vivo POC studies.

15.
J Hepatocell Carcinoma ; 8: 823-836, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34350138

RESUMO

AIM: Metabolic reprogramming has recently attracted extensive attention for understanding cancer development. We aimed to demonstrate a genomic and transcriptomic landscape of metabolic reprogramming underlying liver cancer cell lines. METHODS: We investigated metabolic aberrant at both the transcriptome and genome levels using transcriptome and whole-exome sequencing data from 12 human liver cancer cell lines (hLCCLs) and one normal liver cell line. RESULTS: Three subgroups of hLCCLs characterized from transcriptome sequencing data exhibit significantly different aberrations in various metabolic processes, including amino acid, lipid, energy, and carbohydrate metabolism. Furthermore, whole-exome sequencing revealed distinct mutational signatures among different subgroups of hLCCLs and identified a total of 19 known driver genes implicated in metabolism. CONCLUSION: Our findings highlighted differential metabolic mechanisms in the development of liver cancer and provided a resource for further investigating its metabolic mechanisms.

16.
Saudi J Biol Sci ; 28(3): 1954-1961, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33732081

RESUMO

This study aimed to investigate the antiproliferative and antioxidant properties of crude venom from the nematocyst of Jellyfish Acromitus flagellates on human lung cancer (A549) and liver cancer (HepG2) cell lines. The prepared crude venom was subjected to analyses of the biochemical constituents, protein profiles, antioxidant and anticancer activities by standard methods. The extracted venom was pale-yellow in color and viscous/sticky. The biochemical composition such as, protein (1.547 mg/ml), lipid (0.039 mg/ml) and carbohydrate (0.028 mg/ml) was estimated. Protein profiles were determined by SDS PAGE, the result revealed that the molecular weight range from 205 - 3.5 kDa. The free radical scavenging activity was analyzed by the reducing potential (56.36%), DPPH (72.47%), hydroxyl (68.50%), superoxide anion (65.75%), and nitric oxide (33.04%). The cell viability was observed by using different concentrations (20 to 100 µg/ml) of crude venom on A549 and HepG2 cancer cell lines and the IC50 values were recorded in (60 µg/ml and 40 µg/ml) respectively, while it had none cytotoxic effects on Vero cell line up to the concentration of 90 µg/ml. These results suggest that crude venom from nematocyst of A. flagellatus possesses anti-cancer activity and able to develop novel drugs on marine-derived compounds.

17.
Acta Sci Pol Technol Aliment ; 19(2): 139-147, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32600010

RESUMO

BACKGROUND: Tocotrienols found in certain plant oils, like palm, rice bran, grapeseed and annatto seeds, have been reported to possess beneficial properties for humans, including cancer prevention. Since studies on their beneficial effects on human breast cancer cells have been extensively reviewed, the current understanding of how tocotrienols affect other cancer cells deserves further research. Therefore, the aim of this study was to investigate the antiproliferative and non-cytotoxic effects of tocotrienols on human hepatoma HepG2 and colon colorectal Caco-2 cell cultures. METHODS: The cells were exposed to alpha-, beta-, gamma- or delta-tocotrienols at various concentrations and the antiproliferative activities were measured using MTS-based CellTiter 96 followed by a methylene blue assay for counting cells to evaluate the potential toxicity. RESULTS: The research on HepG2 showed statistically similar cytotoxic effects for both beta- and delta-T3 with no effects for alpha- and gamma-T3. Promising results were found for alpha-, beta- and gamma-T3 against CaCo-2. CONCLUSIONS: The exact reasons for the sensitivity of liver cancer cells to tocotrienols are unknown. Inhibition is time and dose-dependent, therefore tocotrienols' homologs show very high toxic or no effects. Tocotrienols appeared to be effective against colon cancer cells. Still, future investigation is necessary to explain the different mechanism of actions to support the antiproliferative effects of these homologs against colon cancer cells.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Tocotrienóis/uso terapêutico , Antineoplásicos/farmacologia , Células CACO-2 , Proliferação de Células/efeitos dos fármacos , Células Hep G2 , Humanos , Óleos de Plantas/química , Tocotrienóis/farmacologia
18.
J Asian Nat Prod Res ; 22(5): 444-451, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-30887830

RESUMO

A series of aromatic or long-chain chrysin derivatives (1-10) were synthesized by esterification of chrysin and acyl chloride. The chemical structures of these compounds were determined by mass spectrum (MS), 1H NMR, and 13C NMR spectra. Though aromatic chrysin derivatives (1-9) with a rigid structure were hard to dissolve in common organic solvents, the long-chain chrysin derivative (10) with a flexible structure had better solubility, and its anticancer activity (IC50 = 14.79 µmol/L) against liver cancer cell lines was 5.4 times better than chrysin (IC50 = 74.97 µmol/L), which showed superposition of pharmacological activity.


Assuntos
Antineoplásicos , Linhagem Celular Tumoral , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Flavonoides , Estrutura Molecular , Relação Estrutura-Atividade
19.
Avicenna J Phytomed ; 9(4): 386-395, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31309076

RESUMO

OBJECTIVE: Rosa beggeriana Schrenk has been consumed in Iranian traditional medicine. In contrary to its close species (e.g. R. canina), there is no data on its medicinal properties. Therefore, we explored possible cytotoxic effects of R. beggeriana against two cancer cell lines. MATERIALS AND METHODS: The cytotoxic and anti-proliferative effects of R. beggeriana ethanolic and aqueous extracts on human liver cancer cells (LCLPI 11), breast cancer cells (MCF-7) and fibroblast-like cells (HSkMC) were evaluated by MTT, BrdU and TUNEL assays. RESULTS: Following 48 h, IC50 values for LCL-PI11 and MCF-7 cells were found to be 3.9 and 4.2 µg/mL for aqueous extract, and 2.3 and 2.7 µg/mL for ethanolic extract, respectively.BrdU assay data verified the MTT results and showed that both extracts inhibit cell proliferation as much as 5-fluorouracil does (p<0.05). The ethanolic extract had a more marked inhibitory effect compared to the aqueous extract (p<0.05). Besides both extracts were less effective against HSKMC cells compared to other cells lines.TUNEL assay results demonstrated that following 48 h, the aqueous extract induced about 19 and 24% apoptotic death in the LCL-PI 11 and MCF-7 cells, respectively (p<0.05). While at the same time, the ethanolic extract was more potent and caused about 83 and 91% death in the LCL-PI 11 and MCF-7 cells, respectively (p<0.05). CONCLUSION: These data indicate that both extracts have anti-proliferative and pro-apoptotic activities on these two cancer cell lines and these effects were more pronounced then their activities against normal cells. Also, the ethanolic extract was more potent than the aqueous extract. Further researches are necessary for finding and isolating effective anticancer ingredient of R. beggeriana.

20.
Biochem Biophys Res Commun ; 509(1): 268-274, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30583860

RESUMO

PURPOSE: Cancer stem cells (CSCs), also known as tumor-initiating cells, are involved in tumor progression, metastasis, and drug resistance. Hybrid liposomes (HLs) are nano-sized liposomal particles that can be easily prepared by ultrasonicating a mixture of vesicular and micellar molecules in buffer solutions. In this study, we investigated the inhibitory effects of HL on the growth of CSC subpopulations in liver cancer cells (HepG2) in vitro. METHODS: HLs composed of 90 mol% L-α-dimyristoylphosphatidylcholine and 10 mol% polyoxyethylene(23) dodecyl ether were prepared by sonication. Cell viability was determined by the trypan blue exclusion assay. In liver cancer cells, CSCs were identified by the presence of the cell surface marker proteins CD133 and EpCAM by flow cytometry. A soft agar colony formation assay was performed using HepG2 cells pretreated with HLs. RESULTS: HLs selectively inhibited liver cancer cell growth without affecting normal hepatocytes. Additionally, HLs induced apoptosis of HepG2 cells by a"ctivating caspase-3. Notably, the CD133(+)/EpCAM(+) CSC sub-population of liver cancer cells treated with HLs was reduced. Furthermore, HLs markedly decreased the number of colony-forming cells. Finally, we confirmed the fusion and accumulation of HLs into the cell membranes of CSCs using a fluorescently labeled lipid (NBDPC). Significant accumulation of HL/NBDPC into the CSCs (particularly EpCAM(+) cells) occurred in a dose-dependent manner. CONCLUSION: These results suggest that HLs are a novel nanomedical therapeutic agent for targeting CSCs in liver cancer therapy.


Assuntos
Dimiristoilfosfatidilcolina/farmacologia , Lipossomos/farmacologia , Neoplasias Hepáticas/terapia , Células-Tronco Neoplásicas/patologia , Polietilenoglicóis/farmacologia , Antibióticos Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Dimiristoilfosfatidilcolina/química , Doxorrubicina/farmacologia , Células Hep G2 , Humanos , Lipossomos/química , Neoplasias Hepáticas/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Polietilenoglicóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA