Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Signal ; 119: 111172, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38604342

RESUMO

Simvastatin is an inhibitor of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase, which is a rate-limiting enzyme of the cholesterol synthesis pathway. It has been used clinically as a lipid-lowering agent to reduce low-density lipoprotein (LDL) cholesterol levels. In addition, antitumor activity has been demonstrated. Although simvastatin attenuates the prenylation of small GTPases, its effects on cell division in which small GTPases play an important role, have not been examined as a mechanism underlying its cytostatic effects. In this study, we determined its effect on cell division. Cell cycle synchronization experiments revealed a delay in mitotic progression in simvastatin-treated cells at concentrations lower than the IC50. Time-lapse imaging analysis indicated that the duration of mitosis, especially from mitotic entry to anaphase onset, was prolonged. In addition, simvastatin increased the number of cells exhibiting misoriented anaphase/telophase and bleb formation. Inhibition of the spindle assembly checkpoint (SAC) kinase Mps1 canceled the mitotic delay. Additionally, the number of cells exhibiting kinetochore localization of BubR1, an essential component of SAC, was increased, suggesting an involvement of SAC in the mitotic delay. Enhancement of F-actin formation and cell rounding at mitotic entry indicates that cortical actin dynamics were affected by simvastatin. The cholesterol removal agent methyl-ß-cyclodextrin (MßCD) accelerated mitotic progression differently from simvastatin, suggesting that cholesterol loss from the plasma membrane is not involved in the mitotic delay. Of note, the small GTPase RhoA, which is a critical factor for cortical actin dynamics, exhibited upregulated expression. In addition, Rap1 was likely not geranylgeranylated. Our results demonstrate that simvastatin affects actin dynamics by modifying small GTPases, thereby activating the spindle assembly checkpoint and causing abnormal cell division.


Assuntos
Pontos de Checagem da Fase M do Ciclo Celular , Sinvastatina , Sinvastatina/farmacologia , Humanos , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Células HeLa , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Mitose/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Proteína rhoA de Ligação ao GTP/metabolismo
2.
J Biol Chem ; 300(1): 105484, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37992804

RESUMO

Sterols are hydrophobic molecules, known to cluster signaling membrane-proteins in lipid rafts, while methyl-ß-cyclodextrin (MßCD) has been a major tool for modulating membrane-sterol content for studying its effect on membrane proteins, including the transient receptor potential (TRP) channels. The Drosophila light-sensitive TRP channels are activated downstream of a G-protein-coupled phospholipase Cß (PLC) cascade. In phototransduction, PLC is an enzyme that hydrolyzes phosphatidylinositol 4,5-bisphosphate (PIP2) generating diacylglycerol, inositol-tris-phosphate, and protons, leading to TRP and TRP-like (TRPL) channel openings. Here, we studied the effects of MßCD on Drosophila phototransduction using electrophysiology while fluorescently monitoring PIP2 hydrolysis, aiming to examine the effects of sterol modulation on PIP2 hydrolysis and the ensuing light-response in the native system. Incubation of photoreceptor cells with MßCD dramatically reduced the amplitude and kinetics of the TRP/TRPL-mediated light response. MßCD also suppressed PLC-dependent TRP/TRPL constitutive channel activity in the dark induced by mitochondrial uncouplers, but PLC-independent activation of the channels by linoleic acid was not affected. Furthermore, MßCD suppressed a constitutively active TRP mutant-channel, trpP365, suggesting that TRP channel activity is a target of MßCD action. Importantly, whole-cell voltage-clamp measurements from photoreceptors and simultaneously monitored PIP2-hydrolysis by translocation of fluorescently tagged Tubby protein domain, from the plasma membrane to the cytosol, revealed that MßCD virtually abolished the light response when having little effect on the light-activated PLC. Together, MßCD uncoupled TRP/TRPL channel gating from light-activated PLC and PIP2-hydrolysis suggesting the involvement of distinct nanoscopic lipid domains such as lipid rafts and PIP2 clusters in TRP/TRPL channel gating.


Assuntos
Proteínas de Drosophila , Lipídeos de Membrana , Canais de Potencial de Receptor Transitório , Fosfolipases Tipo C , beta-Ciclodextrinas , Animais , beta-Ciclodextrinas/farmacologia , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Lipídeos de Membrana/metabolismo , Células Fotorreceptoras de Invertebrados/efeitos dos fármacos , Células Fotorreceptoras de Invertebrados/metabolismo , Esteróis/metabolismo , Canais de Potencial de Receptor Transitório/efeitos dos fármacos , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/metabolismo , Fosfolipases Tipo C/metabolismo , Transdução de Sinal Luminoso/efeitos dos fármacos
3.
Vet Microbiol ; 289: 109952, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38141399

RESUMO

Rabies is an ancient zoonotic disease caused by the rabies virus (RABV), and a sharp increase in rabies cases and deaths were observed following the COVID-19 pandemic, indicating that it still poses a severe public health threat in most countries in the world. Cholesterol is one of the major lipid components in cells, and the exact role of cholesterol in RABV infection remains unclear. In this study, we initially observed that cellular cholesterol levels were significantly elevated in RABV infected cells, while cholesterol depletion by using methyl-ß-cyclodextrin (MßCD) could restrict RABV entry. We further found that decreasing the cholesterol level of the viral envelope could change the bullet-shaped morphology of RABV and dislodge the glycoproteins on its surface to affect RABV entry. Moreover, the depletion of cholesterol could decrease lysosomal cholesterol accumulation to inhibit RABV fusion. Finally, it was found that the depletion of cholesterol by MßCD was due to the increase of oxygen sterol production in RABV-infected cells and the enhancement of cholesterol efflux by activating liver X receptor alpha (LXRα). Together, our study reveals a novel role of cholesterol in RABV infection, providing new insight into explore of effective therapeutics for rabies.


Assuntos
Vírus da Raiva , Raiva , Animais , Raiva/prevenção & controle , Raiva/veterinária , Adsorção , Pandemias , Colesterol
4.
Neurochem Res ; 48(10): 3190-3201, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37395917

RESUMO

This study aims to investigate the effect of insulin-like growth factor 1 (IGF-1) combined with osteopontin (OPN) on the protein expression levels and growth of neuronal axons and its possible mechanism. In this study, IGF-1 combined with OPN promoted neuronal axon growth through the IGF-1R/Akt/mTOR signaling pathway in lipid rafts, and the effect was better than that of either agent alone. This effect was suppressed when given the mTOR inhibitor rapamycin or the lipid raft cholesterol extraction agent methyl-ß-cyclodextrin (M-ß-CD). Rapamycin could inhibit the expression of phosphorylated ribosomal S6 protein (p-S6) and phosphorylated protein kinase B (p-Akt) and limit axon growth. In addition to the above effects, M-ß-CD significantly downregulated the expression of phosphorylated insulin-like growth factor 1 receptor (p-IR). To further investigate the changes in lipid rafts when stimulated by different recombinant proteins, membrane lipid rafts were isolated to observe the changes by western blot. The expression levels of insulin-like growth factor 1 receptor (IR) and P-IR in the IGF-1 combined with OPN group were the highest. When M-ß-CD was administered to the lipid rafts of neurons, the enrichment of IR by IGF-1 combined with OPN was weakened, and the p-IR was decreased. Our study found that IGF-1 combined with OPN could promote axon growth by activating the IGF-1R/Akt/mTOR signaling pathway in neuronal lipid rafts.


Assuntos
Fator de Crescimento Insulin-Like I , Proteínas Proto-Oncogênicas c-akt , Axônios/metabolismo , Fator de Crescimento Insulin-Like I/farmacologia , Microdomínios da Membrana/metabolismo , Neurônios/metabolismo , Osteopontina , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Ratos
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 302: 123012, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37329832

RESUMO

Thiophenol and its derivatives are compounds with high toxicity to organisms and environmental pollution, so it is necessary to detect the level of thiophenols in the environment and biological samples. The probes 1a-b were obtained by introducing the 2,4-dinitrophenyl ether group into diethylcoumarin-salicylaldehyde based compounds. And they can form host-guest compounds with methylated ß-cyclodextrin (M-ß-CD), the association constants of inclusion complexes are 49.2 M-1, 125 M-1 respectively. The fluorescence intensities of probes 1a-b at 600 nm (1a) and 670 nm (1b) increased significantly in thiophenols detection. Meanwhile, with the addition of M-ß-CD, the hydrophobic cavity of M-ß-CD significantly increased the fluorescence intensity of probes 1a-b, thus the detection limits of probes 1a-b to thiophenols were reduced from 410 nM, 365 nM to 62 nM, 33 nM respectively. Whereas, the good selectivity and short response time of probes 1a-b towards thiophenols was not affected in the presence of M-ß-CD. Moreover, probes 1a-b were used for further water sample detection and HeLa cell imaging experiments due to their good response to thiophenols and the results suggested that probes 1a-b had the potential to detect the content of thiophenols in water samples and living cells.


Assuntos
Corantes Fluorescentes , Fenóis , Humanos , Corantes Fluorescentes/química , Células HeLa , Compostos de Sulfidrila/química , Água
6.
Arch Oral Biol ; 150: 105675, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36989864

RESUMO

INTRODUCTION: Cholesterol is a key lipid molecule within cell membranes. This is especially true in cavelolas, invaginated membrane nanodomains, which present the protein caveolin-1 (CAV-1). It is important to note that this structure is involved in many cell signalling pathways. Additionally, high cholesterol is seen in different tumor types but little is known in regards to oral tongue squamous cell carcinoma (OTSCC). The aim of this study was to evaluate the influence of cholesterol depletion on primary (SCC-25) and metastatic (HSC-3) OTSCC cell lines. MATERIALS AND METHODS: Cell membrane fluidity, cell viability, gene and protein expression of CAV-1 and of epithelial-mesenchymal transition (EMT) markers, cell migration in Myogel and invasion-myoma assay were evaluated after cholesterol depletion with methyl-ß-cyclodextrin (MßCD - 7.5, 10 or 15 mM) RESULTS: Decreased cell viability and increased membrane fluidity of SCC-25 cells was seen with cholesterol depletion but cell viability was less affected and there was no effect on membrane fluidity in HSC-3. Cholesterol depletion also decreased CAV-1 at 6 h but increased it after 24 h.; both epithelial and mesenchymal EMT genes were upregulated after 6 h, followed by downregulation at 24 h in SCC-25. In HSC-3, CAV-1 was downregulated, and E-cadherin gene (ECAD) was upregulated at 6 h. Only the protein ß-catenin in SCC-25 was affected, and cell migration of both cell lines was decreased, affecting SCC-25 more intensely. The invasive capacity within human myoma organotypic model was increased in SCC-25 and decreased in HSC-3. CONCLUSION: Cholesterol depletion affects CAV-1 and ECAD inversely. This affect also depends on cell type since the invasive capacity was augmented in primary cells while decreased in metastatic cells.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Mioma , Neoplasias da Língua , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Carcinoma de Células Escamosas/patologia , Caveolina 1/metabolismo , Neoplasias da Língua/patologia , Caderinas/metabolismo , Movimento Celular , Linhagem Celular , Colesterol , Linhagem Celular Tumoral
7.
BMC Biol ; 21(1): 31, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36782158

RESUMO

BACKGROUND: Intracellular hemoglobin polymerization has been supposed to be the major determinant for the elevated rigidity/stiffness of sickle erythrocytes from sickle cell anemia (SCA) patients. However, the contribution of the cell envelope remains unclear. RESULTS: In this study, using atomic force microscopy (AFM), we compared the normal and sickled erythrocyte surfaces for stiffness and topography. AFM detected that sickle cells had a rougher surface and were stiffer than normal erythrocytes and that sickle cell ghosts had a rougher surface (for both outer and inner surfaces) and were thicker than normal ghosts, the latter implying a higher membrane-associated hemoglobin content/layer in the sickle cell envelope. Compared to healthy subjects, the SCA patients had lower plasma lipoprotein levels. AFM further revealed that a mild concentration of methyl-ß-cyclodextrin (MßCD, a putative cholesterol-depleting reagent) could induce an increase in roughness of erythrocytes/ghosts and a decrease in thickness of ghosts for both normal and sickle cells, implying that MßCD can alter the cell envelope from outside (cholesterol in the plasma membrane) to inside (membrane-associated hemoglobin). More importantly, MßCD also caused a more significant decrease in stiffness of sickle cells than that of normal erythrocytes. CONCLUSIONS: The data reveal that besides the cytosolic hemoglobin fibers, the cell envelope containing the membrane-associated hemoglobin also is involved in the biomechanical properties (e.g., stiffness and shape maintenance) of sickle erythrocytes.


Assuntos
Anemia Falciforme , Eritrócitos , Humanos , Microscopia de Força Atômica , Anemia Falciforme/etiologia , Anemia Falciforme/metabolismo , Membrana Eritrocítica/metabolismo , Hemoglobinas/metabolismo
8.
Rev Med Virol ; 33(2): e2413, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36504273

RESUMO

Lipid rafts are ubiquitous in cells. They are identified as cholesterol and glycosphingolipid enriched microdomains on cellular membranes. They serve as platforms for cellular communications by functioning in signal transduction and membrane trafficking. Such structural organisation fulfils cellular needs for normal function, but at the same time increases vulnerability of cells to pathogen invasion. Viruses rely heavily on lipid rafts in basically every stage of the viral life cycle for successful infection. Various mechanisms of lipid rafts modification exploited by diverse viruses for attachment, internalisation, membrane fusion, genome replication, assembly and release have been brought to light. This review focuses on virus-raft interactions and how a wide range of viruses manipulate lipid rafts at distinct stages of infection. The importance of virus-raft interactions in viral infections has inspired researchers to discover and develop antivirals that target this interaction, such as statins, methyl-ß-cyclodextrin, viperin, 25-hydroxycholesterol and even anti-malarial drugs. The therapeutic modulations of lipid rafts as potential antiviral intervention from in vitro and in vivo evidence are discussed herein.


Assuntos
Antivirais , Microdomínios da Membrana , Humanos , Microdomínios da Membrana/química , Membrana Celular , Transdução de Sinais
9.
J Mol Liq ; 366: 120292, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36101854

RESUMO

During the current outbreak of the novel coronavirus disease 2019 (COVID-19), researchers have examined several antiviral drugs with the potential to inhibit the proliferation of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The antiviral drug acyclovir (AVR), which is used to treat COVID-19, in complex with methyl-ß-cyclodextrin (Mß-CD) was examined in the solution and solid phases. UV-visible and fluorescence spectroscopic analyses confirmed that the guest (AVR) was included inside the host (Mß-CD) cavity. A solid inclusion complex of AVR was prepared by co-precipitation, physical mixing, kneading, and bath sonication methods at a 1:1 ratio of Mß-CD:AVR. The prepared Mß-CD:AVR inclusion complex was characterized using Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM) analysis. Phase solubility studies indicated the Mß-CD:AVR inclusion complex exhibited a higher stability constant and linear enhancement in AVR solubility with increasing Mß-CD concentrations. In silico analysis of the Mß-CD/AVR inclusion complex confirmed that AVR drugs show potential as inhibitors of SARS-CoV-2 3C-like protease (3CLpro) receptors. Results obtained using the PatchDock and FireDock servers indicated that the most favorable docking ligand was Mß-CD:AVR, which interacted with SARS-CoV-2 (3CLPro) protease inhibitors with high geometric shape complementarity scores (2522 and 5872) and atomic contact energy (-313.77 and -214.70 kcal mol-1). Our results suggest that the Mß-CD/AVR inclusion complex inhibits the main protease of SARS-CoV-2, although further wet-lab experiments are needed to verify these findings.

10.
J Membr Biol ; 255(6): 739-746, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35986776

RESUMO

G protein-coupled receptors (GPCRs) constitute the largest class of membrane proteins that transduce signals across the plasma membrane and orchestrate a multitude of physiological processes within cells. The serotonin1A receptor is a crucial neurotransmitter receptor in the GPCR family involved in a multitude of neurological, behavioral and cognitive functions. We have previously shown, using a combination of experimental and simulation approaches, that membrane cholesterol acts as a key regulator of organization, dynamics, signaling and endocytosis of the serotonin1A receptor. In addition, we showed that membrane cholesterol stabilizes the serotonin1A receptor against thermal deactivation. In the present work, we explored the molecular basis of cholesterol-induced thermal stability of the serotonin1A receptor. For this, we explored the possible role of the K101 residue in a cholesterol recognition/interaction amino acid consensus (CRAC) motif in transmembrane helix 2 in conferring the thermal stability of the serotonin1A receptor. Our results show that a mutation in the K101 residue leads to loss in thermal stability of the serotonin1A receptor imparted by cholesterol, independent of membrane cholesterol content. We envision that our results could have potential implications in structural biological advancements of GPCRs and design of thermally stabilized receptors for drug development.


Assuntos
Lisina , Serotonina , Serotonina/análise , Serotonina/metabolismo , Receptor 5-HT1A de Serotonina/genética , Receptor 5-HT1A de Serotonina/metabolismo , Colesterol/química , Membrana Celular/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
11.
Acta Pharm Sin B ; 12(3): 1432-1446, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35530160

RESUMO

In the microscale, bacteria with helical body shapes have been reported to yield advantages in many bio-processes. In the human society, there are also wisdoms in knowing how to recognize and make use of helical shapes with multi-functionality. Herein, we designed atypical chiral mesoporous silica nano-screws (CMSWs) with ideal topological structures (e.g., small section area, relative rough surface, screw-like body with three-dimension chirality) and demonstrated that CMSWs displayed enhanced bio-adhesion, mucus-penetration and cellular uptake (contributed by the macropinocytosis and caveolae-mediated endocytosis pathways) abilities compared to the chiral mesoporous silica nanospheres (CMSSs) and chiral mesoporous silica nanorods (CMSRs), achieving extended retention duration in the gastrointestinal (GI) tract and superior adsorption in the blood circulation (up to 2.61- and 5.65-times in AUC). After doxorubicin (DOX) loading into CMSs, DOX@CMSWs exhibited controlled drug release manners with pH responsiveness in vitro. Orally administered DOX@CMSWs could efficiently overcome the intestinal epithelium barrier (IEB), and resulted in satisfactory oral bioavailability of DOX (up to 348%). CMSWs were also proved to exhibit good biocompatibility and unique biodegradability. These findings displayed superior ability of CMSWs in crossing IEB through multiple topological mechanisms and would provide useful information on the rational design of nano-drug delivery systems.

12.
Cell Signal ; 96: 110356, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35605761

RESUMO

It has become clear that lipid rafts functions as signaling hotspots connecting cell surface receptors to intracellular signaling pathways. However, the exact involvement of lipid rafts in receptor tyrosine kinase signaling is still poorly understood. In this study, we have analyzed platelet-derived growth factor (PDGF) receptor ß (PDGFR-ß) signaling in two different cell lines depleted of cholesterol, and as a consequence, disruption of lipid rafts. Cholesterol depletion of BJ-hTERT fibroblasts using methyl-ß-cyclodextrin (MßCD) did not affect PDGFR-ß activation as measured by its tyrosine phosphorylation. However, we did observe a small reduction in AKT phosphorylation and a more robust decrease of ERK1/2 activation. In contrast, in the osteosarcoma cell line U2OS, we noticed a deficient receptor activation. Interestingly, in U2OS cells, the ERK1/2 pathway was unaffected, but instead AKT and SRC signaling was reduced. These results suggest that cell type specific wiring of signaling pathways can lead to differential sensitivity to cholesterol depletion. Furthermore, MßCD treatment had a much more pronounced morphological effect on U2OS compared to BJ-hTERT cells. This is consistent with a previous report claiming that cancer cells are more sensitive to cholesterol depletion than normal cells. Our data supports the possibility that cholesterol lowering drugs may impede tumor growth.


Assuntos
Sistema de Sinalização das MAP Quinases , Proteínas Proto-Oncogênicas c-akt , Colesterol/metabolismo , Microdomínios da Membrana/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Fator de Crescimento Derivado de Plaquetas/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinases da Família src/metabolismo
13.
J Lipid Res ; 63(5): 100206, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35390404

RESUMO

Previous work from us and others has suggested that cholesterol is an important lipid in the context of the organization of the actin cytoskeleton. However, reorganization of the actin cytoskeleton upon modulation of membrane cholesterol is rarely addressed in the literature. In this work, we explored the signaling crosstalk between cholesterol and the actin cytoskeleton by using a high-resolution confocal microscopic approach to quantitatively measure changes in F-actin content upon cholesterol depletion. Our results show that F-actin content significantly increases upon chronic cholesterol depletion, but not during acute cholesterol depletion. In addition, utilizing inhibitors targeting the cholesterol biosynthetic pathway at different steps, we show that reorganization of the actin cytoskeleton could occur due to the synergistic effect of multiple pathways, including prenylated Rho GTPases and availability of membrane phosphatidylinositol 4,5-bisphosphate. These results constitute one of the first comprehensive dissections of the mechanistic basis underlying the interplay between cellular actin levels and cholesterol biosynthesis. We envision these results will be relevant for future understating of the remodeling of the actin cytoskeleton in pathological conditions with altered cholesterol.


Assuntos
Actinas , Citoesqueleto , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Colesterol/metabolismo , Citoesqueleto/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/farmacologia
14.
Biomolecules ; 11(12)2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34944535

RESUMO

Plasma membrane H+-ATPase is known to be detected in detergent-resistant sterol-enriched fractions, also called "raft" domains. Studies on H+-ATPase reconstituted in artificial or native membrane vesicles have shown both sterol-mediated stimulations and inhibitions of its activity. Here, using sealed isolated plasma membrane vesicles, we investigated the effects of sterol depletion in the presence of methyl-ß-cyclodextrin (MßCD) on H+-ATPase activity. The rate of ATP-dependent ∆µH+ generation and the kinetic parameters of ATP hydrolysis were evaluated. We show that the relative sterols content in membrane vesicles decreased gradually after treatment with MßCD and reached approximately 40% of their initial level in 30 mM probe solution. However, changes in the hydrolytic and H+-transport activities of the enzyme were nonlinear. The extraction of up to 20% of the initial sterols was accompanied by strong stimulation of ATP-dependent H+-transport in comparison with the hydrolytic activity of enzymes. Further sterol depletion led to a significant inhibition of active proton transport with an increase in passive H+-leakage. The solubilization of control and sterol-depleted vesicles in the presence of dodecyl maltoside negated the differences in the kinetics parameters of ATP hydrolysis, and all samples demonstrated maximal hydrolytic activities. The mechanisms behind the sensitivity of ATP-dependent H+-transport to sterols in the lipid environment of plasma membrane H+-ATPase are discussed.


Assuntos
Vesículas Extracelulares/metabolismo , Hidrogênio/metabolismo , Pisum sativum/enzimologia , ATPases Translocadoras de Prótons/metabolismo , Esteróis/metabolismo , Trifosfato de Adenosina/química , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glucosídeos/farmacologia , Hidrólise/efeitos dos fármacos , Transporte de Íons , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , beta-Ciclodextrinas/farmacologia
15.
J Adv Res ; 29: 23-32, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33842002

RESUMO

Introduction: Ca2+-activated Cl- channel TMEM16A is expressed in endothelial cells, and contributes to many diseases such as hypertension, blood-brain barrier dysfunction, and pulmonary hypertension. It remains unclear whether TMEM16A regulates endothelial angiogenesis, which participates in many physiological and pathological processes. Cholesterol regulates many ion channels including TMEM16A, and high cholesterol levels contribute to endothelial dysfunction. It remains to be determined whether cholesterol regulates TMEM16A expression and function in endothelial cells. Objective: This study aimed to investigate whether cholesterol regulated TMEM16A expression and function in endothelial angiogenesis. Methods: Whole-cell patch clamp techniques were used to record Ca2+-activated Cl- currents in human aortic endothelial cells (HAECs) and HEK293 cells transfected with TMEM16A-overexpressing plasmids. Western blot was used to examine the expression of TMEM16A and DNA methyltransferase 1 (DNMT1) in HAECs. CCK-8 assay, would healing assay, and tube formation assay were used to test endothelial cell proliferation, migration and angiogenesis, respectively. Results: TMEM16A mediates the Ca2+-activated Cl- channel in HAECs. Cholesterol treatment inhibited TMEM16A expression via upregulation of DNMT1 in HAECs, and the inhibitory effect of cholesterol on TMEM16A expression was blocked by 5-aza, the DNMT1 inhibitor. In addition, direct application of cholesterol inhibited TMEM16A currents in heterologous HEK293 cells with an IC50 of 0.1209 µM. Similarly, cholesterol directly inhibited TMEM16A currents in HAECs. Furthermore, TMEM16A knockdown increased in vitro tube formation, cell migration and proliferation of HAECs, and TMEM16A overexpression produced the opposite effect. Conclusion: This study reveals a novel mechanism of cholesterol-mediated TMEM16A inhibition, by which cholesterol reduces TMEM16A expression via DNMT1-mediated methylation and directly inhibits channel activities. TMEM16A channel inhibition promotes endothelial cell angiogenesis.


Assuntos
Anoctamina-1/antagonistas & inibidores , Canais de Cloreto/metabolismo , Colesterol/farmacologia , Células Endoteliais/efeitos dos fármacos , Neovascularização Patológica/metabolismo , Anoctamina-1/metabolismo , Aorta/metabolismo , Barreira Hematoencefálica/metabolismo , Cálcio/metabolismo , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Células Endoteliais/metabolismo , Células HEK293 , Humanos , Hipertensão/metabolismo , Técnicas de Patch-Clamp
16.
Artigo em Inglês | MEDLINE | ID: mdl-33429076

RESUMO

Endocytosis and intracellular trafficking constitute important regulatory features associated with G protein-coupled receptor (GPCR) function. GPCR endocytosis involves several remodeling events at the plasma membrane orchestrated by a concerted interplay of a large number of proteins and membrane lipids. Although considerable literature exists on the protein framework underlying GPCR endocytosis, the role of membrane lipids in this process remains largely unexplored. In order to explore the role of membrane cholesterol (an essential and important lipid in higher eukaryotes) in GPCR endocytosis, we monitored the effect of acute cholesterol depletion using methyl-ß-cyclodextrin (MßCD) on endocytosis and intracellular trafficking of the serotonin1A receptor, an important neurotransmitter GPCR. Our results show that the serotonin1A receptor exhibits agonist-induced clathrin-mediated endocytosis with a concentration-dependent inhibition in internalization with increasing concentrations of MßCD, which was restored upon cholesterol replenishment. Interestingly, subsequent to internalization under these conditions, serotonin1A receptors were re-routed toward lysosomal degradation, instead of endosomal recycling observed under normal conditions, thereby implicating membrane cholesterol in modulation of intracellular trafficking of the receptor. This raises the possibility of a novel cholesterol-dependent role of intracellular sorting proteins in GPCR trafficking. These results differ from our previous observations on the endocytosis of the serotonin1A receptor upon statin-induced chronic cholesterol depletion, in terms of endocytic pathway. We conclude that analysis of complex cellular trafficking events such as GPCR endocytosis under acute and chronic cholesterol depletion conditions should be carried out with caution due to fundamental differences underlying these processes.


Assuntos
Membrana Celular/metabolismo , Colesterol/metabolismo , Endocitose , Receptor 5-HT1A de Serotonina/metabolismo , Células HEK293 , Humanos , Transporte Proteico
17.
Front Physiol ; 12: 758458, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35295163

RESUMO

A mammalian plasma membrane is a structure on which several layers of complexity are built. The first order of complexity comes from the heterogeneity of lipid-ordered domains. Gangliosides in concert with cholesterol are preferentially packed on the outer leaflet and form lipid-ordered domains, commonly known as lipid rafts. The formation and dynamics of these domains impact nearly all membrane protein functions and are an intensely studied topic. However, tools suited for lipid domain alteration are extremely limited. Currently, methyl-ß-cyclodextrin (MßCD) appears to be the most common way to disrupt lipid domains, which is believed to operate via cholesterol extraction. This significantly limits our ability in membrane biophysics research. Previously, we found that N-(3-oxo-dodecanoyl) homoserine lactone (3oc), a small signaling chemical produced by Pseudomonas aeruginosa, is highly efficient in altering lipid-ordered domains. In this study, 3oc was compared with MßCD in a series of biochemical, biophysical, and cell biological analyses. Per molarity, 3oc is more efficient than MßCD in domain alteration and appears to better retain membrane lipids after treatment. This finding will provide an essential reagent in membrane biophysics research.

18.
Front Microbiol ; 11: 597794, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33224131

RESUMO

Cholesterol is an essential component of lipid rafts in cellular plasma membranes. Although lipid rafts have been reported to have several functions in multiple stages of the life cycles of many different enveloped viruses, the mechanisms by which non-enveloped viruses, which lack outer lipid membranes, infect host cells remain unclear. In this study, to investigate the dependence of non-enveloped avian reovirus (ARV) infection on the integrity of cholesterol-rich membrane rafts, methyl-ß-cyclodextrin (MßCD) was used to deplete cellular membrane cholesterol at the ARV attachment, entry, and post-entry stages. Treatment with MßCD significantly inhibited ARV replication at both the entry and post-entry stages in a dose-dependent manner, but MßCD had a statistically insignificant effect when it was added at the attachment stage. Moreover, MßCD treatment markedly reduced syncytium formation, which occurs at a relatively late stage of the ARV life cycle and is involved in cell-cell transmission and release. Furthermore, the addition of exogenous cholesterol reversed the effects mentioned above. Colocalization data also showed that the ARV proteins σC, µNS, and p10 prefer to localize to cholesterol-rich lipid raft regions during ARV infection. Altogether, these results suggest that cellular cholesterol in lipid rafts plays a critical role in ARV replication.

19.
Virus Res ; 290: 198174, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32980402

RESUMO

Cholesterol is an essential constituent of the cell membrane that modulates several physiological events, including virus entry into the host. Duck virus enteritis (DVE) is a contagious and lethal infection that attacks several species of waterfowl. Anatid herpesvirus 1 (AnHV-1) is the causative agent of duck viral enteritis and classified under subfamily Alphaherpesvirinae. In this study, the effect of cholesterol depletion in both host cell membrane and viral envelope on the infectivity of AnHV-1 was explored. Cholesterol depletion of chicken embryo fibroblast cells (DF-1) by methyl-ß-cyclodextrin (MßCD) inhibited the infectivity of AnHV-1. This inhibitory effect was moderately reversed by the exogenous replenishment of cholesterol in the cells. Furthermore, the inhibition of endogenous cholesterol synthesis by a statin drug also inhibited the infectivity of AnHV-1. Presumably, the removal of cholesterol from AnHV-1 envelope might be disrupting the viral envelope resulting in its diminished infectivity. The presence of a relatively hydrophobic cavity in MßCD can be used to extract cholesterol from the cell membrane. Loss of infectivity of the virus might be due to the effects of MßCD mediated cholesterol depletion from the cell membrane. The results implicate that the cell membrane cholesterol is vital for the infectivity of AnHV-1 in DF-1 cells, and its depletion from virion curtails the infectivity by destabilizing the envelope.


Assuntos
Membrana Celular/química , Colesterol/genética , Colesterol/metabolismo , Mardivirus/química , Mardivirus/fisiologia , Internalização do Vírus/efeitos dos fármacos , Animais , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/genética , Membrana Celular/virologia , Embrião de Galinha , Colesterol/biossíntese , Colesterol/farmacologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/virologia , Interações entre Hospedeiro e Microrganismos , Técnicas In Vitro , Mardivirus/genética , Vírion/genética , Vírion/fisiologia
20.
Exp Cell Res ; 395(1): 112169, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32653410

RESUMO

It has been reported that cholesterol-lowing agents can ameliorate severity of myocarditis. However, the beneficial effect of the agents has been claimed to be independent of cholesterol reduction as there is no significant change in the plasma cholesterol level in myocarditis. In the present study, using experimental autoimmune myocarditis (EAM) rats as an animal model, we demonstrated that EAM induced elevation of cholesterol level and impaired cholesterol efflux capacity in the cardiac tissue. Moreover, serum high-density lipoprotein (HDL) content was reduced and HDL function associated protein Paraoxonase 1 (PON1) activity was decreased. Besides, the major structural protein within HDL, Apolipoprotein A1 (ApoA1) expression in the cardiac tissues was significantly reduced while the level of serum ApoA1 was not significantly altered. Importantly, cholesterol depleting agent methyl-ß-cyclodextrin (MßCD) alleviated the development of EAM, as monitored by decreased ratio of heart weight to body weight (HW/BW), decreased infiltration of inflammatory cells and collagen deposition, improved cardiac function, reduced expression of apoptosis-related protein Bax, Fas, FasL and caspase-3 and increased level of anti-apoptotic protein Bcl-2. These results suggest that reduction of cholesterol level in cardiac tissue could suppress EAM-induced cardiac apoptosis through both intrinsic and extrinsic apoptotic pathways.


Assuntos
Apoptose/fisiologia , Doenças Autoimunes/imunologia , Colesterol/metabolismo , Hipercolesterolemia/metabolismo , Miocardite/metabolismo , Animais , Caspase 3/metabolismo , Colesterol/imunologia , Citocinas/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Masculino , Miocardite/imunologia , Miocárdio/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA