Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 773
Filtrar
2.
Front Immunol ; 15: 1398990, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39086489

RESUMO

Background: More and more evidence supports the association between myocardial infarction (MI) and osteoarthritis (OA). The purpose of this study is to explore the shared biomarkers and pathogenesis of MI complicated with OA by systems biology. Methods: Gene expression profiles of MI and OA were downloaded from the Gene Expression Omnibus (GEO) database. The Weighted Gene Co-Expression Network Analysis (WGCNA) and differentially expressed genes (DEGs) analysis were used to identify the common DEGs. The shared genes related to diseases were screened by three public databases, and the protein-protein interaction (PPI) network was built. GO and KEGG enrichment analyses were performed on the two parts of the genes respectively. The hub genes were intersected and verified by Least absolute shrinkage and selection operator (LASSO) analysis, receiver operating characteristic (ROC) curves, and single-cell RNA sequencing analysis. Finally, the hub genes differentially expressed in primary cardiomyocytes and chondrocytes were verified by RT-qPCR. The immune cell infiltration analysis, subtypes analysis, and transcription factors (TFs) prediction were carried out. Results: In this study, 23 common DEGs were obtained by WGCNA and DEGs analysis. In addition, 199 common genes were acquired from three public databases by PPI. Inflammation and immunity may be the common pathogenic mechanisms, and the MAPK signaling pathway may play a key role in both disorders. DUSP1, FOS, and THBS1 were identified as shared biomarkers, which is entirely consistent with the results of single-cell RNA sequencing analysis, and furher confirmed by RT-qPCR. Immune infiltration analysis illustrated that many types of immune cells were closely associated with MI and OA. Two potential subtypes were identified in both datasets. Furthermore, FOXC1 may be the crucial TF, and the relationship of TFs-hub genes-immune cells was visualized by the Sankey diagram, which could help discover the pathogenesis between MI and OA. Conclusion: In summary, this study first revealed 3 (DUSP1, FOS, and THBS1) novel shared biomarkers and signaling pathways underlying both MI and OA. Additionally, immune cells and key TFs related to 3 hub genes were examined to further clarify the regulation mechanism. Our study provides new insights into shared molecular mechanisms between MI and OA.


Assuntos
Biomarcadores , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Infarto do Miocárdio , Osteoartrite , Mapas de Interação de Proteínas , Biologia de Sistemas , Infarto do Miocárdio/genética , Infarto do Miocárdio/imunologia , Osteoartrite/genética , Osteoartrite/metabolismo , Humanos , Bases de Dados Genéticas , Transcriptoma , Condrócitos/metabolismo , Condrócitos/imunologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Animais , Biologia Computacional/métodos
3.
Biomed Pharmacother ; 178: 117239, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39098180

RESUMO

Ulcerative colitis (UC) is a chronic non-specific inflammatory disease involving the mucosa and submucosa of the rectum and colon. Lindera aggregate (Sims) Kosterm is a traditional Chinese herb used for thousands of years in the treatment of gastrointestinal diseases. Previously, we have demonstrated that the extracts of Lindera aggregate have good anti-UC effects, but their pharmacodynamic active components have not been fully clarified. Therefore, we explored the therapeutic effect of Linderanine C (LDC), a characteristic component of Lindera aggregata, on UC and its mechanism in this study. Firstly, we found that LDC could significantly reduce the disease activity index of UC and improve shortened colon and pathological changes in vivo. Colon tissue transcriptomics suggested that the anti-UC effect of LDC might be related to its anti-inflammatory activity. Cellular experiments revealed that LDC could inhibit the expression of the M1 cell marker CD86 in RAW264.7 cells, reduce the production of inflammatory mediators such as IL-6 and TNF-α, and have good anti-inflammatory activity in vitro. Cellular transcriptomics reveal the potential involvement of the MAPK signaling pathway in the anti-inflammatory effect of LDC. The co-culture assay confirmed that LDC could significantly reduce inflammation-mediated intestinal epithelial cell injury. In conclusion, LDC was able to inhibit macrophage M1 polarization and reduce inflammatory mediator production by inhibiting the MAPK signaling pathway, effectively improving UC.

4.
J Adv Res ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39089619

RESUMO

INTRODUCTION: Excessive osteoclastogenesis is a key driver of inflammatory bone loss. Suppressing osteoclastogenesis has always been considered essential for the treatment of inflammatory bone loss. N-acetyltransferase 10 (NAT10) is the sole enzyme responsible for N4-acetylcytidine (ac4C) modification of mRNA, and is involved in cell development. However, its role in osteoclastogenesis and inflammatory bone loss remained elusive. OBJECTIVES: We aimed to clarify the regulatory mechanism of NAT10 and ac4C modification in osteoclastogenesis and inflammatory bone loss. METHODS: NAT10 expression and ac4C modification during osteoclastogenesis were determined by quantitative real-time PCR (qPCR), western blotting, dot blot and immunofluorescent staining, and the effect of NAT10 inhibition on osteoclast differentiation in vitro was measured by the tartrate-resistant acid phosphatase staining, podosome belts staining assay and bone resorption pit assay. Then, acRIP-qPCR and NAT10RIP-qPCR, ac4C site prediction, mRNA decay assay and luciferase reporter assay were performed to further study the underlying mechanisms. At last, mice models of inflammatory bone loss were applied to verify the therapeutic effect of NAT10 inhibition in vivo. RESULTS: NAT10 expression was upregulated during osteoclast differentiation and highly expressed in alveolar bone osteoclasts from periodontitis mice. Inhibition of NAT10 notably reduced osteoclast differentiation in vitro, as indicated by great reduction of tartrated resistant acid phosphatse positive multinuclear cells, osteoclast-specific gene expression, F-actin ring formation and bone resorption capacity. Mechanistically, NAT10 catalyzed ac4C modification of Fos (encoding AP-1 component c-Fos) mRNA and maintained its stabilization. Besides, NAT10 promoted MAPK signaling pathway and thereby activated AP-1 (c-Fos/c-Jun) transcription for osteoclastogenesis. Therapeutically, administration of Remodelin, the specific inhibitor of NAT10, remarkably impeded the ligature-induced alveolar bone loss and lipopolysaccharide-induced inflammatory calvarial osteolysis. CONCLUSIONS: Our study demonstrated that NAT10-mediated ac4C modification is an important epigenetic regulation of osteoclast differentiation and proposed a promising therapeutic target for inflammatory bone loss.

5.
J Inflamm Res ; 17: 5139-5160, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39104907

RESUMO

Objective: To explore the mechanism and active components of the anti-colitis effects of myrrh essential oil (MEO). Methods: In this study, we investigated the anti-inflammatory effects and molecular mechanisms of MEO on dextran sulfate sodium (DSS)-induced colitis with in vitro cell experiments, RNA-seq (RNA Sequencing), Weighted gene co-expression network analysis (WGCNA), combined with "weighting coefficient" network pharmacology, as and in vivo pharmacodynamic experiments. A 3% DSS solution was used to induce colitis in BALB/c mice and MEO was administered orally. We performed gas chromatography-mass spectrometry (GC-MS) analysis of the MEO components. The disease activity index (DAI) was evaluated by observing body weight, fecal characteristics, and blood in the stool of mice. The levels of inflammatory cytokines (TNF-α and IL-1ß) in mouse serum were measured using ELISA (Enzyme-linked immunosorbent assay) kits. Additionally, the expression of MAPK-related proteins (JNK, p-JNK, ERK, and p-ERK) in mouse colonic tissues was detected by Western blotting and immunohistochemistry. Results: MEO (0.0625-0.125µg/g, p.o). significantly inhibited the expression of the inflammatory mediator Nitric oxide (NO) in lipopolysaccharide (LPS)-induced RAW264.7 macrophages. After treatment, there was a significant increase in body weight and alleviation of diarrhea and bloody stools in colitis mice. It also reduced inflammatory cell infiltration. Furthermore, it decreased the serum levels of TNF-α and IL-1ß, and reduced the activity of p-JNK and p-ERK in the MAPK pathway. Conclusion: MEO relieved DSS-induced colitis by modulating the MAPK pathway. The experimental results indicate that the MAPK pathway might be inhibited by the synergistic effect of gamma-Muurolene, Curzerene, beta-Elemene, and Furanoeudesma 1.3-diene in MEO, which provides a novel idea for subsequent research and development of new anti-colitis drugs.

6.
Fitoterapia ; : 106179, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39128555

RESUMO

The dried rhizomes of Paris yunnanensis Franch. have been extensively utilized in traditional Chinese medicine as hemostatic, antitumor, and antimicrobial agents. An examination of classical texts and renowned Chinese medical formulations showcased its efficacy in acne treatment. Presently, there is a significant scarcity of Paris resources. Consider directing attention towards the non-medicinal parts of Paris to mitigate the strain on medicinal resources within this realm. To address these resource limitations, this study investigated the bioactivity and pharmacodynamics of the above-ground parts of Paris (AGPP). A synergistic approach integrating network pharmacology, molecular docking (in silico validation), and animal experimentation (in vivo validation) was employed to elucidate the potential mechanisms underlying the efficacy of AGPP against acne vulgaris in this study. The active constituents in AGPP extracts were identified via UHPLC-Q-Orbitrap HRMS analysis, with their targets extracted for network pharmacological analysis. KEGG pathway analysis unveiled potential therapeutic mechanisms, validated through molecular docking and rat auricular acne model experiments. Comprehensive chemical characterization revealed fifty constituents, including steroidal saponins, flavonoids, amino acids, organic acids, phytohormones, phenolic acids, and alkaloids. Diosgenin, Quercetin, Kaempferol, Ecdysone, and α-linolenic acid were identified as main constituents with acne-treating potential. Core targets included SRC, MAPK3, and MAPK1, with key signaling pathways implicated. Histologically, AGPP mitigated acne-induced follicular dilatation and inflammation, inhibiting inflammatory cytokine production (IL-6, IL-1ß, TNF-α). This study offers insight into AGPP's mechanism for acne treatment, laying groundwork for Paris development and drug discovery.

7.
Poult Sci ; 103(10): 104052, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39067128

RESUMO

Four experiments were performed to investigate the role of the mitogen-activated protein kinase (MAPK) signaling pathway in intestinal absorption of phosphorus (P) and calcium (Ca) in broiler chickens. Experiment 1 assessed how dietary levels of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) influence the gene expression of intestinal P and Ca transporters in broilers. Experiment 2 evaluated the effects of 1,25(OH)2D3 administered via intraperitoneal injection on the extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (p38MAPK) signaling pathways. Experiments 3 and 4 investigated the effect of ERK and p38MAPK inhibitors on the expression of intestinal P and Ca transporters. The findings demonstrated that broilers (1-21 days old) fed a 1,25(OH)2D3-deficient diet (0.625 µg/kg) exhibited reduced body weight, tibia P and Ca levels, and mRNA levels of P transporters (NaPi-IIb, PiT-1, and PiT-2), Ca transporters (NCX1, PMCA1b, and CaBP-D28k), vitamin D receptors (VDR), ERK, and p38MAPK in the duodenum (Experiment 1) (P < 0.05). By comparison, the growth, bone quality, and mRNA levels of genes (except for duodenal NaPi-IIb) in broilers were similar to those in broilers fed the control diet when dietary 1,25(OH)2D3 was adequate (5 µg/kg) (Experiment 1) (P > 0.05). After intraperitoneal injection of 1,25(OH)2D3, the mRNA level of jejunal NaPi-IIb and the protein level of p-p38MAPK/t-p38MAPK in broilers (9-14 days old) decreased (P < 0.05), whereas the mRNA level of CaBP-D28k and the protein level of p-ERK/t-ERK increased (Experiment 2) (P < 0.05). The mRNA and protein expression of jejunal NaPi-IIb and the protein expression of CaBP-D28k in broilers (9-17 days old) treated with the ERK inhibitor PD98059 were greater than those in the control group (Experiment 3) (P < 0.05). Similarly, compared with control broilers, broilers (9-17 days old) treated with the p38MAPK inhibitor SB203580 showed elevated mRNA expression of jejunal NaPi-IIb and CaBP-D28k (Experiment 4) (P < 0.05). These results suggest that adequate supplementation with 1,25(OH)2D3 (5 µg/kg) can restore broiler growth and bone quality by upregulating the transcription of genes involved in intestinal P and Ca absorption. Additionally, the ERK and p38MAPK signaling pathways are implicated in the modulatory effect of 1,25(OH)2D3 on the absorption of P and Ca in broilers.

8.
J Inflamm Res ; 17: 4129-4149, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952564

RESUMO

Purpose: Capillary leak syndrome (CLS) is an intermediary phase between severe acute pancreatitis (SAP) and multiple organ failure. As a result, CLS is of clinical importance for enhancing the prognosis of SAP. Plakophilin2 (PKP2), an essential constituent of desmosomes, plays a critical role in promoting connections between epithelial cells. However, the function and mechanism of PKP2 in CLS in SAP are not clear at present. Methods: We detected the expression of PKP2 in mice pancreatic tissue by transcriptome sequencing and bioinformatics analysis. PKP2 was overexpressed and knocked down to assess its influence on cell permeability, the cytoskeleton, tight junction molecules, cell adhesion junction molecules, and associated pathways. Results: PKP2 expression was increased in the pancreatic tissues of SAP mice and human umbilical vein endothelial cells (HUVECs) after lipopolysaccharide (LPS) stimulation. PKP2 overexpression not only reduced endothelial cell permeability but also improved cytoskeleton relaxation in response to acute inflammatory stimulation. PKP2 overexpression increased levels of ZO-1, occludin, claudin1, ß-catenin, and connexin43. The overexpression of PKP2 in LPS-induced HUVECs counteracted the inhibitory effect of SB203580 (a p38/MAPK signaling pathway inhibitor) on the p38/MAPK signaling pathway, thereby restoring the levels of ZO-1, ß-catenin, and claudin1. Additionally, PKP2 suppression eliminated the enhanced levels of ZO-1, ß-catenin, occludin, and claudin1 induced by dehydrocorydaline. We predicted that the upstream transcription factor PPARγregulates PKP2 expression, and our findings demonstrate that the PPARγactivator rosiglitazone significantly upregulates PKP2, whereas its antagonist GW9662 down-regulates PKP2. Administration of rosiglitazone significantly reduced the increase in HUVECs permeability stimulated by LPS. Conversely, PKP2 overexpression counteracted the GW9662-induced reduction in ZO-1, phosphorylated p38/p38, and claudin1. Conclusion: The activation of the p38/MAPK signaling pathway by PKP2 mitigates CLS in SAP. PPARγactivator rosiglitazone can up-regulate PKP2. Overall, directing efforts toward PKP2 could prove to be a feasible treatment approach for effectively managing CLS in SAP.

9.
Zhongguo Zhong Yao Za Zhi ; 49(11): 3050-3060, 2024 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-39041165

RESUMO

To investigate the impact and potential mechanisms of extracts from different parts of Liparis nervosa on neuroinflammation by lipopolysaccharide(LPS)-induced BV-2 microglial cells. The materials of L. nervosa were subjected to crushing, ethanol extraction, and concentration to obtain an alcohol extract. Subsequently, the extract was further extracted to obtain petroleum ether extract, ethyl acetate extract, N-butanol extract, and aqueous phase extract. The ethyl acetate extract was separated into distillate(1)-(6)using D101 macroporous resin column chromatography. The experiment was divided into control group, LPS model group, L. nervosa extract group, and LPS + L. nervosa group. LPS was utilized to induce a neuroinflammatory cell model in BV-2 microglial cells. The Griess test was utilized for detecting the production of nitric oxide(NO) in the cell supernatant. Cell viability was detected by MTT assay. The release of interleukin-6(IL-6) and tumor necrosis factor alpha(TNF-α) in the cell supernatant was quantified using ELISA.RT-qPCR was utilized to assess the m RNA levels of pro-inflammatory cytokines inducible nitric oxide synthase(iNOS), cyclooxygenase-2(COX-2), interleukin( IL)-6, IL-1ß, and TNF-α. The protein expression of i NOS, COX-2, nuclear factor kappa-B p65(p65), p-p65, extracellular signal-regulated kinase(ERK), p-ERK, c-jun N-terminal kinase(JNK), p-JNK, p38 mitogen-activated protein kinase(p38), and p-p38 MAPK(p-p38) were also evaluated by Western blot. The chemical composition of active substances in L. nervosa was analyzed using the UHPLC-Q-Exactive Orbitrap technology and literature comparison. Our findings indicate that extracts from different parts of L. nervosa exhibit a significant reduction in the release of NO from LPS-induced BV-2 microglial cells.Specifically, the ethyl acetate extract demonstrates the most notable inhibitory effect without causing cell toxicity. Additionally, the distillate(6) extracted from the ethyl acetate exhibits a reduction in the m RNA and protein levels of i NOS, COX-2, IL-6, IL-1ß, and TNF-α in a dose-dependent manner, and it inhibits the protein expression of p-p65, p-ERK, p-p38, and p-JNK in LPS-induced BV-2 microglial cells. A total of 79 compounds in the distillate(6) were identified by mass spectrometry, including 12 confirmed compounds with anti-inflammatory effects. This study confirmed the remarkable efficacy of L. nervosa extract in the treatment of neuroinflammation, which may be achieved through the inhibition of NF-κB and MAPK signaling pathways.


Assuntos
Lipopolissacarídeos , Microglia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Animais , Camundongos , Óxido Nítrico/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Sobrevivência Celular/efeitos dos fármacos , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Linhagem Celular , Interleucina-6/genética , Interleucina-6/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/química
10.
J Microbiol Biotechnol ; 34(7): 1491-1500, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-38960876

RESUMO

Inflammation is a biodefense mechanism that provides protection against painful conditions such as inflammatory bowel disease, other gastrointestinal problems, and irritable bowel syndrome. Paraprobiotics have probiotic characteristics of intestinal modulation along with merits of safety and stability. In this study, heat-killed Lactiplantibacillus plantarum KU15122 (KU15122) was investigated for its anti-inflammatory properties. KU15122 was subjected to heat-killed treatment for enhancement of its safety, and its concentration was set at 8 log CFU/mL for conducting different experiments. Nitric oxide production was most remarkably reduced in the KU15122 group, whereas it was increased in the LPS-treated group. In RAW 264.7 cells, KU15122 inhibited the expression of inducible nitric oxide synthase, cyclooxygenase-2, interleukin (IL)-1ß, IL-6, and tumor necrosis factor-α. ELISA revealed that among the tested strains, KU15122 exhibited the most significant reduction in PGE2, IL-1ß, and IL-6. Moreover, KU15122 inhibited various factors involved in the nuclear factor-kappa B, activator protein-1, and mitogen-activated protein kinase pathways. In addition, KU15122 reduced the generation of reactive oxygen species. The anti-inflammatory effect of KU15122 was likely attributable to the bacterial exopolysaccharides. Conclusively, KU15122 exhibits anti-inflammatory potential against inflammatory diseases.


Assuntos
Anti-Inflamatórios , Lipopolissacarídeos , Óxido Nítrico , Camundongos , Animais , Células RAW 264.7 , Anti-Inflamatórios/farmacologia , Óxido Nítrico/metabolismo , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 2/genética , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Probióticos/farmacologia , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Citocinas/metabolismo , Inflamação/metabolismo , Interleucina-6/metabolismo , Interleucina-6/genética , Interleucina-1beta/metabolismo , Interleucina-1beta/genética , Fator de Necrose Tumoral alfa/metabolismo , Lactobacillus plantarum/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sobrevivência Celular/efeitos dos fármacos
11.
J Biochem ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39038078

RESUMO

Prostate cancer (PCa) has become a worldwide health burden among men. Previous studies have suggested that Cellular Retinoic Acid Binding Protein 2 (CRABP2) significantly affects the regulation of cell proliferation, motility, and apoptosis in multiple cancers, yet the effect of CRABP2 on PCa is poorly reported. The CRABP2 expression in different PCa cell lines and its effect on different cellular functions were various. While CRABP2 promotes cell migration and invasion, it appears to inhibit cell proliferation specifically in PC-3 cells. However, the proliferation of DU145 and 22RV1 cells did not appear to be significantly affected by CRABP2. Besides, CRABP2 had no influence on the cell cycle distribution of PCa cells. RNA-seq assay showed that overexpressing CRABP2 up-regulated Laminin subunit beta-3 (LAMB3) mRNA expression, and the enrichment analyses revealed that the differentially expressed genes were enriched in PI3K/AKT and MAPK signaling pathway. The following WB experiments also confirmed the up-regulated LAMB3 protein level and the activation of PI3K/AKT and MAPK signaling pathways. Moreover, overexpressing CRABP2 inhibited tumor growth significantly in vivo. In conclusion, CRABP2 facilitates cell migration and invasion by activating PI3K/AKT and MAPK signaling pathways through upregulating LAMB3 in PCa.

12.
Biomed Pharmacother ; 177: 117037, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38959602

RESUMO

The inhibition of autophagy is a potential therapeutic strategy to improve the chemosensitivity of triple-negative breast cancer (TNBC). In this study, we demonstrated that a natural terpenoid tanshinone I (TAN) enhanced the effectiveness of paclitaxel (PTX), at least in part, through an autophagy-dependent mechanism against TNBC. In vitro validation demonstrated that the combined therapy resulted in a synergistic decrease in the growth of TNBC cells. The chemosensitizing impact of TAN might be attributed to its inhibition of PTX-induced autophagy in the late phase by obstructing the fusion of autophagosomes and lysosomes, rather than by inhibiting lysosomal function. The findings from KEGG pathway analysis and molecular docking suggested that TAN might impact breast cancer chemoresistance primarily through the PI3K-Akt and MAPK signaling pathways. The non-canonical AKT/p38 MAPK signaling was further validated as the primary mechanism responsible for the inhibition of autophagy by TAN. In vivo study showed that the combined administration of TAN and PTX demonstrated a more significant suppression of tumor growth and autophagic activity compared to PTX monotherapy in the MDA-MB-231 xenograft nude mouse model. The safety evaluation of TAN in a zebrafish model, along with in vitro and in vivo validation, provided experimental and pre-clinical data supporting its potential as a natural adjunctive therapy in TNBC. Overall, this study suggests that the combination of TAN with PTX could provide an effective treatment option for advanced breast cancer, and targeting the AKT/p38 MAPK/late-autophagy signaling axis may be a promising approach for developing therapeutic interventions against TNBC.


Assuntos
Abietanos , Autofagia , Camundongos Nus , Paclitaxel , Proteínas Proto-Oncogênicas c-akt , Neoplasias de Mama Triplo Negativas , Peixe-Zebra , Proteínas Quinases p38 Ativadas por Mitógeno , Autofagia/efeitos dos fármacos , Animais , Abietanos/farmacologia , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Linhagem Celular Tumoral , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Feminino , Paclitaxel/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico
13.
Heliyon ; 10(12): e32887, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38988586

RESUMO

Dry age-related macular degeneration (AMD) is one of the main diseases that causes blindness in humans, and the number of cases is increasing yearly. However, effective treatments are unavailable, and arbutin (ARB) has been reported to have antioxidant, anti-inflammatory, and anti-aging effects in other age-related diseases. However, whether ARB can be used to treat dry AMD remains unknown. To explore the therapeutic potential and molecular mechanism of arbutin in the treatment of dry AMD. MTT assays, reactive oxygen species (ROS) production assays, flow cytometry assays, qPCR and western blotting were used to assess the impact of ARB on human RPECs induced by H2O2. A transcriptome sequencing assay was used to further explore how ARB acts on human RPECs treated with H2O2. Hematoxylin and eosin (H&E) staining and total antioxidant capacity (T-AOC) assays were used to observe the impact of ARB on mouse retina induced by sodium iodate. ARB counteracted the H2O2-induced reduction in human RPECs viability, ARB reversed H2O2-induced cellular ROS production by increasing the expression of antioxidant-related genes and proteins, ARB also reversed H2O2-induced cell apoptosis by altering the expression of apoptosis-related genes and proteins. Transcriptome sequencing and western blotting showed that ARB reduced ERK1/2 and P-38 phosphorylation to prevent H2O2-induced oxidation damage. The in vivo experiments demonstrated that ARB protected against retinal morphology injury in mice, increased serum T-AOC levels and increased antioxidant oxidase gene expression levels in the mouse retina induced by sodium iodate. We concluded that ARB reversed the H2O2-induced decrease in human RPECs viability through the inhibition of ROS production and apoptosis. The ERK1/2 and P38 MAPK signaling pathways may mediate this process. ARB maintained retinal morphology, increased serum T-AOC level and improved the expression of antioxidant oxidase genes in mice.

14.
Biomed Pharmacother ; 178: 117214, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39079264

RESUMO

Apoptosis signal-regulated kinase 1 (ASK1) is a member of the mitogen-activated protein kinase kinase (MAP3K) family, whose activation and regulation are intricately associated with apoptosis. ASK1 is activated in response to oxidative stress, among other stimuli, subsequently triggering downstream JNK, p38 MAPK, and mitochondria-dependent apoptotic signaling, which participate in the initiation of tumor cell apoptosis induced by various stimuli. Research has shown that ASK1 plays a crucial role in the apoptosis of lung cancer, breast cancer, and liver cancer cells. Currently, the investigation of effective ASK1 activators is a hot topic in research on tumor cell apoptosis. Synthetic compounds such as human ß-defensin, triazolothiazide derivatives and heat shock protein 27 inhibitors; natural compounds such as quercetin, Laminarina japonica polysaccharide-1 peptide and theabrownin; and nanomedicines such as cerium oxide nanoparticles, magnetite FeO nanoparticles and silver nanoparticles can activate ASK1 and induce apoptosis in various tumor cells. This review extensively investigates the roles and activation mechanisms of ASK1, explores its impact on a variety of apoptotic signaling pathways, and discusses the potential therapeutic applications of various ASK1 activators in cancer treatment. In addition, this paper provides an in-depth discussion of the future development of this field and proposes a promising method for further research and clinical progress.

15.
Nutrients ; 16(14)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39064757

RESUMO

Acetaminophen (APAP)-induced liver injury (AILI), even liver failure, is a significant challenge due to the limited availability of therapeutic medicine. Christensenella minuta (C. minuta), as a probiotic therapy, has shown promising prospects in metabolism and inflammatory diseases. Our research aimed to examine the influence of C. minuta on AILI and explore the molecular pathways underlying it. We found that administration of C. minuta remarkably alleviated AILI in a mouse model, as evidenced by decreased levels of alanine transaminase (ALT) and aspartate aminotransferase (AST) and improvements in the histopathological features of liver sections. Additionally, there was a notable decrease in malondialdehyde (MDA), accompanied by restoration of the reduced glutathione/oxidized glutathione (GSH/GSSG) balance, and superoxide dismutase (SOD) activity. Furthermore, there was a significant reduction in inflammatory markers (IL6, IL1ß, TNF-α). C. minuta regulated phenylalanine metabolism. No significant difference in intestinal permeability was observed in either the model group or the treatment group. High levels of phenylalanine aggravated liver damage, which may be linked to phenylalanine-induced dysbiosis and dysregulation in cytochrome P450 metabolism, sphingolipid metabolism, the PI3K-AKT pathway, and the Integrin pathway. Furthermore, C. minuta restored the diversity of the microbiota, modulated metabolic pathways and MAPK pathway. Overall, this research demonstrates that supplementing with C. minuta offers both preventive and remedial benefits against AILI by modulating the gut microbiota, phenylalanine metabolism, oxidative stress, and the MAPK pathway, with high phenylalanine supplementation being identified as a risk factor exacerbating liver injury.


Assuntos
Acetaminofen , Doença Hepática Induzida por Substâncias e Drogas , Fenilalanina , Animais , Acetaminofen/efeitos adversos , Acetaminofen/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Camundongos , Fenilalanina/farmacologia , Masculino , Fígado/efeitos dos fármacos , Fígado/metabolismo , Probióticos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Modelos Animais de Doenças , Disbiose , Glutationa/metabolismo , Alanina Transaminase/sangue , Malondialdeído/metabolismo
16.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167336, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38972433

RESUMO

Epiregulin (EREG) is a member of the epidermal growth factor (EGF) family. An increasing body of evidence has demonstrated the pivotal role of EREG in the pathogenesis and progression of various malignancies. However, the clinical significance and biological role of EREG in pancreatic ductal adenocarcinoma (PDAC) have yet to be fully elucidated. We found that EREG is highly expressed in PDAC tissues compared with paracancerous tissues through public databases and clinical samples. High EREG expression predicted worse overall survival (OS) and recurrence-free survival (RFS) in patients with PDAC. Multivariate analysis revealed that EREG can serve as an independent prognostic indicator. In addition, EREG silencing inhibited PDAC cell proliferation, migration, progression, altered cell cycle, facilitated apoptosis in vitro and suppressed tumor growth in vivo. Conversely, EREG overexpression facilitated the proliferation, migration, and invasion in PaTu-8988 t cell. Through transcriptome sequencing and experimental verification, we found EREG mediates PDAC tumorigenesis through ERK/p38 MAPK signaling pathway. Moreover, we found EREG expression is closely related to PD-L1 expression in PDAC tissues and cells. Therefore, EREG is expected to be a prospective prognostic and therapeutic marker for PDAC.


Assuntos
Carcinoma Ductal Pancreático , Proliferação de Células , Epirregulina , Sistema de Sinalização das MAP Quinases , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Masculino , Feminino , Animais , Camundongos , Proliferação de Células/genética , Epirregulina/metabolismo , Epirregulina/genética , Linhagem Celular Tumoral , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Pessoa de Meia-Idade , Carcinogênese/genética , Carcinogênese/metabolismo , Regulação Neoplásica da Expressão Gênica , Prognóstico , Movimento Celular/genética , Apoptose/genética , Inativação Gênica , Camundongos Nus
17.
Sci China Life Sci ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38951428

RESUMO

Cancer stem cells (CSCs) play an important role in metastasis development, tumor recurrence, and treatment resistance, and are essential for the eradication of cancer. Currently, therapies fail to eradicate CSCs due to their therapeutic stress-induced cellular escape, which leads to enhanced aggressive behaviors compared with CSCs that have never been treated. However, the underlying mechanisms regulating the therapeutic escape remain unknown. To this end, we established a model to isolate the therapeutic escaped CSCs (TSCSCs) from breast CSCs and performed the transcription profile to reveal the mechanism. Mechanistically, we demonstrated that the behavior of therapeutic escape was regulated through the p38/MAPK signaling pathway, resulting in TSCSCs exhibiting enhanced motility and metastasis. Notably, blocking the p38/MAPK signaling pathway effectively reduced motility and metastasis ability both in vitro and in vivo, which were further supported by downregulated motility-related genes and epithelial-mesenchymal transition (EMT)-related proteins vimentin and N-cadherin. The obtained findings reveal the p38/MAPK pathway as a potential therapeutic target for TSCSCs and would provide profound implications for cancer therapy.

18.
Am J Transl Res ; 16(6): 2683-2698, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39006277

RESUMO

OBJECTIVE: To investigate the effects of Lycium barbarum miRNA166a (Lb-miR166a) on human gene expression regulation during the therapy for triple-negative breast cancer (TNBC). METHODS: Transcriptome sequencing was used to analyze the distribution and composition of miRNA in Lycium barbarum fruit. Lb-miR166a was introduced into TNBC MB-231 cells by lentiviral transfection to study its effects on cell proliferation, apoptosis, invasion, and metastasis both in vivo and in vitro. Bioinformatic and dual-luciferase assays identified the target gene of Lb-miR166a. The role of STK39 in TNBC progression was elucidated through clinical data analysis combined with cellular studies. The influence of Lb-miR166a on the STK39/MAPK14 pathway was confirmed using a target-specific knockout MB-231 cell line. RESULTS: Lb-miR166a was found to be highly expressed in Lycium barbarum. It inhibited MB-231 cell proliferation, invasion, and metastasis, and promoted apoptosis. STK39 was overexpressed in TNBC and was associated with increased invasiveness and poorer patient prognosis. Gene enrichment analysis and dual-luciferase assays demonstrated that Lb-miR166a regulates STK39 expression cross-border and inhibits MAPK14 phosphorylation, impacting the phosphorylation of downstream target genes. CONCLUSION: The downregulation of STK39 and subsequent inhibition of MAPK14 phosphorylation by Lb-miR166a leads to reduced proliferation, migration, and invasion of TNBC cells. These findings suggest a novel therapeutic strategy for TNBC treatment, highlighting possible clinical applications of Lb-miR166a in managing this aggressive cancer type.

19.
Food Sci Anim Resour ; 44(4): 885-898, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38974730

RESUMO

Ovomucin (OM), which has insoluble fractions is a viscous glycoprotein, found in egg albumin. Enzymatic hydrolysates of OM have water solubility and bioactive properties. This study investigated that the immunostimulatory effects of OM hydrolysates (OMHs) obtained by using various proteolytic enzymes (Alcalase®, bromelain, α-chymotrypsin, Neutrase®, pancreatin, papain, Protamax®, and trypsin) in RAW 264.7 cells. The results showed that OMH prepared with pancreatin (OMPA) produced the highest levels of nitrite oxide in RAW 264.7 cells, through upregulation of inducible nitric oxide synthase mRNA expression. The production of pro-inflammatory cytokines such as tumor necrosis factor-α and interleukin-6 were increased with the cytokines mRNA expression. The effect of OMPA on mitogen-activated protein kinase signaling pathway was increased the phosphorylation of p38, c-Jun NH2-terminal kinase, and extracellular signal-regulated kinase in a concentration-dependent manner. Therefore, OMPA could be used as a potential immune-stimulating agent in the functional food industry.

20.
Artigo em Inglês | MEDLINE | ID: mdl-38988166

RESUMO

BACKGROUND: With conventional cancer treatments facing limitations, interest in plant-derived natural products as potential alternatives is increasing. Although resveratrol has demonstrated antitumor effects in various cancers, its impact and mechanism on nasopharyngeal carcinoma remain unclear. OBJECTIVE: This study aimed to systematically investigate the anti-cancer effects of resveratrol on nasopharyngeal carcinoma using a combination of experimental pharmacology, network pharmacology, and molecular docking approaches. METHODS: CCK-8, scratch wound, and transwell assays were employed to confirm the inhibitory effect of resveratrol on the proliferation, migration, and invasion of nasopharyngeal carcinoma cells. H&E and TUNEL stainings were used to observe the morphological changes and apoptosis status of resveratrol-treated cells. The underlying mechanisms were elucidated using a network pharmacology approach. Immunohistochemistry and Western blotting were utilized to validate key signaling pathways. RESULTS: Resveratrol inhibited the proliferation, invasion, and migration of nasopharyngeal carcinoma cells, ultimately inducing apoptosis in a time- and dose-dependent manner. Network pharmacology analysis revealed that resveratrol may exert its anti-nasopharyngeal carcinoma effect mainly through the MAPK pathway. Immunohistochemistry results from clinical cases showed MAPK signaling activation in nasopharyngeal carcinoma tissues compared to adjacent tissues. Western blotting validated the targeting effect of resveratrol, demonstrating significant inhibition of the MAPK signaling pathway. Furthermore, molecular docking supported its multi-target role with MAPK, TP53, PIK3CA, SRC, etc. Conclusion: Resveratrol has shown promising potential in inhibiting human nasopharyngeal carcinoma cells by primarily targeting the MAPK pathway. These findings position resveratrol as a potential therapeutic agent for nasopharyngeal carcinoma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA