Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 478
Filtrar
1.
Cell Rep ; 43(8): 114556, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39096491

RESUMO

Early caregiving adversity (ECA) is associated with social behavior deficits and later development of psychopathology. However, the infant neural substrates of ECA are poorly understood. The lateral habenula (LHb), a highly conserved brain region with consistent links to adult psychopathology, is understudied in development, when the brain is most vulnerable to environmental impacts. Here, we describe the structural and functional ontogeny of the LHb and its behavioral role in infant and juvenile rat pups. We show that the LHb promotes a developmental transition in social approach behavior under threat as typically reared infants mature. By contrast, we show that ECA disrupts habenular ontogeny, including volume, protein expression, firing properties, and corticohabenular connectivity. Furthermore, inhibiting a specific corticohabenular projection rescues infant social approach deficits following ECA. Together, these results identify immediate biomarkers of ECA in the LHb and highlight this region as a site of early social processing and behavior control.

2.
bioRxiv ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39131322

RESUMO

Major depressive disorder (MDD) is associated with disruptions in glutamatergic and GABAergic activity in the medial prefrontal cortex (mPFC), leading to altered synaptic formation and function. Low doses of ketamine rapidly rescue these deficits, inducing fast and sustained antidepressant effects. While it is suggested that ketamine produces a rapid glutamatergic enhancement in the mPFC, the temporal dynamics and the involvement of GABA interneurons in its sustained effects remain unclear. Using simultaneous photometry recordings of calcium activity in mPFC pyramidal and GABA neurons, as well as chemogenetic approaches in Gad1-Cre mice, we explored the hypothesis that initial effects of ketamine on glutamate signaling trigger subsequent enhancement of GABAergic responses, contributing to its sustained antidepressant responses. Calcium recordings revealed a biphasic effect of ketamine on activity of mPFC GABA neurons, characterized by an initial transient decrease (phase 1, <30 min) followed by an increase (phase 2, >60 min), in parallel with a transient increase in excitation/inhibition levels (10 min) and lasting enhancement of glutamatergic activity (30-120 min). Previous administration of ketamine enhanced GABA neuron activity during the sucrose splash test (SUST) and novelty suppressed feeding test (NSFT), 24 h and 72 h post-treatment, respectively. Chemogenetic inhibition of GABA interneurons during the surge of GABAergic activity (phase 2), or immediately before the SUST or NSFT, occluded ketamine's behavioral actions. These results indicate that time-dependent modulation of GABAergic activity is required for the sustained antidepressant-like responses induced by ketamine, suggesting that approaches to enhance GABAergic plasticity and function are promising therapeutic targets for antidepressant development.

3.
Artigo em Inglês | MEDLINE | ID: mdl-39155560

RESUMO

BACKGROUND: Impulsive action and risk-related decision-making (RDM) are associated with various psychiatric disorders including drug abuse. Both behavioral traits have also been linked to reduced frontocortical activity and alterations in dopamine function in the ventral tegmental area (VTA). However, despite direct projections from the medial prefrontal cortex (mPFC) to the VTA, the specific role of the mPFC-to-VTA pathway in controlling impulsive action and RDM remains unexplored. METHODS: We used Positron Emission Tomography with [18F]-Fluorodeoxyglucose to evaluate brain metabolic activity in Roman High- (RHA) and Low-avoidance (RLA) rats, which exhibit innate differences in impulsive action and RDM. Notably, we used a viral-based double dissociation chemogenetic strategy to isolate, for the first time, the role of the mPFC-to-VTA pathway in controlling these behaviors. We selectively activated the mPFC-to-VTA pathway in RHA rats and inhibited it in RLA rats, assessing the effects on impulsive action and RDM in the rat gambling task. RESULTS: Our results showed that RHA rats displayed higher impulsive action, less optimal decision-making, and lower cortical activity than RLA rats at baseline. Chemogenetic activation of the mPFC-to-VTA pathway reduced impulsive action in RHA rats, whereas chemogenetic inhibition had the opposite effect in RLA rats. However, these manipulations did not affect RDM. Thus, by specifically targeting the mPFC-to-VTA pathway in a phenotype-dependent way, we were reverted innate patterns of impulsive action, but not RDM. CONCLUSION: Our findings suggest a dissociable role of the mPFC-to-VTA pathway in impulsive action and RDM, highlighting its potential as a target for investigating impulsivity-related disorders.

4.
bioRxiv ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39149275

RESUMO

Social memory impairments in Mecp2 knockout (KO) mice result from altered neuronal activity in the monosynaptic projection from the ventral hippocampus (vHIP) to the medial prefrontal cortex (mPFC). The hippocampal network is hyperactive in this model for Rett syndrome, and such atypically heightened neuronal activity propagates to the mPFC through this monosynaptic projection, resulting in altered mPFC network activity and social memory deficits. However, the underlying mechanism of cellular dysfunction within this projection between vHIP pyramidal neurons (PYR) and mPFC PYRs and parvalbumin interneurons (PV-IN) resulting in social memory impairments in Mecp2 KO mice has yet to be elucidated. We confirmed social memory (but not sociability) deficits in Mecp2 KO mice using a new 4-chamber social memory arena, designed to minimize the impact of the tethering to optical fibers required for simultaneous in vivo fiber photometry of Ca2+-sensor signals during social interactions. mPFC PYRs of wildtype (WT) mice showed increases in Ca2+ signal amplitude during explorations of a novel toy mouse and interactions with both familiar and novel mice, while PYRs of Mecp2 KO mice showed smaller Ca2+ signals during interactions only with live mice. On the other hand, mPFC PV-INs of Mecp2 KO mice showed larger Ca2+ signals during interactions with a familiar cage-mate compared to those signals in PYRs, a difference absent in the WT mice. These observations suggest atypically heightened inhibition and impaired excitation in the mPFC network of Mecp2 KO mice during social interactions, potentially driving their deficit in social memory.

5.
Neurobiol Stress ; 31: 100657, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38983690

RESUMO

Chronic ethanol dependence and withdrawal activate corticotropin releasing factor (CRF)-containing GABAergic neurons in the medial prefrontal cortex (mPFC), which tightly regulate glutamatergic pyramidal neurons. Using male CRF1:GFP reporter mice, we recently reported that CRF1-expressing (mPFCCRF1+) neurons predominantly comprise mPFC prelimbic layer 2/3 pyramidal neurons, undergo profound adaptations following chronic ethanol exposure, and regulate anxiety and conditioned rewarding effects of ethanol. To explore the effects of acute and chronic ethanol exposure on glutamate transmission, the impact of chronic alcohol on spine density and morphology, as well as persistent changes in dendritic-related gene expression, we employed whole-cell patch-clamp electrophysiology, diOlistic labeling for dendritic spine analysis, and dendritic gene expression analysis to further characterize mPFCCRF1+ and mPFCCRF1- prelimbic layer 2/3 pyramidal neurons. We found increased glutamate release in mPFCCRF1+ neurons with ethanol dependence, which recovered following withdrawal. In contrast, we did not observe significant changes in glutamate transmission in neighboring mPFCCRF1- neurons. Acute application of 44 mM ethanol significantly reduced glutamate release onto mPFCCRF1+ neurons, which was observed across all treatment groups. However, this sensitivity to acute ethanol was only evident in mPFCCRF1- neurons during withdrawal. In line with alterations in glutamate transmission, we observed a decrease in total spine density in mPFCCRF1+ neurons during dependence, which recovered following withdrawal, while again no changes were observed in mPFCCRF- neurons. Given the observed decreases in mPFCCRF1+ stubby spines during withdrawal, we then identified persistent changes at the dendritic gene expression level in mPFCCRF1+ neurons following withdrawal that may underlie these structural adaptations. Together, these findings highlight the varying responses of mPFCCRF1+ and mPFCCRF1- cell-types to acute and chronic ethanol exposure, as well as withdrawal, revealing specific functional, morphological, and molecular adaptations that may underlie vulnerability to ethanol and the lasting effects of ethanol dependence.

6.
Cell Commun Signal ; 22(1): 375, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39054537

RESUMO

BACKGROUND: Olanzapine (OLZ) reverses chronic stress-induced anxiety. Chronic stress promotes cancer development via abnormal neuro-endocrine activation. However, how intervention of brain-body interaction reverses chronic stress-induced tumorigenesis remains elusive. METHODS: KrasLSL-G12D/WT lung cancer model and LLC1 syngeneic tumor model were used to study the effect of OLZ on cancer stemness and anxiety-like behaviors. Cancer stemness was evaluated by qPCR, western-blotting, immunohistology staining and flow-cytometry analysis of stemness markers, and cancer stem-like function was assessed by serial dilution tumorigenesis in mice and extreme limiting dilution analysis in primary tumor cells. Anxiety-like behaviors in mice were detected by elevated plus maze and open field test. Depression-like behaviors in mice were detected by tail suspension test. Anxiety and depression states in human were assessed by Hospital Anxiety and Depression Scale (HADS). Chemo-sensitivity of lung cancer was assessed by in vivo syngeneic tumor model and in vitro CCK-8 assay in lung cancer cell lines. RESULTS: In this study, we found that OLZ reversed chronic stress-enhanced lung tumorigenesis in both KrasLSL-G12D/WT lung cancer model and LLC1 syngeneic tumor model. OLZ relieved anxiety and depression-like behaviors by suppressing neuro-activity in the mPFC and reducing norepinephrine (NE) releasing under chronic stress. NE activated ADRB2-cAMP-PKA-CREB pathway to promote CLOCK transcription, leading to cancer stem-like traits. As such, CLOCK-deficiency or OLZ reverses NE/chronic stress-induced gemcitabine (GEM) resistance in lung cancer. Of note, tumoral CLOCK expression is positively associated with stress status, serum NE level and poor prognosis in lung cancer patients. CONCLUSION: We identify a new mechanism by which OLZ ameliorates chronic stress-enhanced tumorigenesis and chemoresistance. OLZ suppresses mPFC-NE-CLOCK axis to reverse chronic stress-induced anxiety-like behaviors and lung cancer stemness. Decreased NE-releasing prevents activation of ADRB2-cAMP-PKA-CREB pathway to inhibit CLOCK transcription, thus reversing lung cancer stem-like traits and chemoresistance under chronic stress.


Assuntos
Células-Tronco Neoplásicas , Norepinefrina , Olanzapina , Animais , Olanzapina/farmacologia , Camundongos , Humanos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Norepinefrina/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Masculino , Linhagem Celular Tumoral , Proteínas CLOCK/metabolismo , Proteínas CLOCK/genética , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/complicações , Camundongos Endogâmicos C57BL , Ansiedade/tratamento farmacológico , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Carcinogênese/efeitos dos fármacos , Depressão/tratamento farmacológico
7.
Aging Clin Exp Res ; 36(1): 154, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39078432

RESUMO

Mild cognitive impairment (MCI) is recognized as the prodromal phase of dementia, a condition that can be either maintained or reversed through timely medical interventions to prevent cognitive decline. Considerable studies using functional magnetic resonance imaging (fMRI) have indicated that altered activity in the medial prefrontal cortex (mPFC) serves as an indicator of various cognitive stages of aging. However, the impacts of intrinsic functional connectivity in the mPFC as a mediator on cognitive performance in individuals with and without MCI have not been fully understood. In this study, we recruited 42 MCI patients and 57 healthy controls, assessing their cognitive abilities and functional brain connectivity patterns through neuropsychological evaluations and resting-state fMRI, respectively. The MCI patients exhibited poorer performance on multiple neuropsychological tests compared to the healthy controls. At the neural level, functional connectivity between the mPFC and the anterior cingulate cortex (ACC) was significantly weaker in the MCI group and correlated with multiple neuropsychological test scores. The result of the mediation analysis further demonstrated that functional connectivity between the mPFC and ACC notably mediated the relationship between the MCI and semantic fluency performance. These findings suggest that altered mPFC-ACC connectivity may have a plausible causal influence on cognitive decline and provide implications for early identifications of neurodegenerative diseases and precise monitoring of disease progression.


Assuntos
Disfunção Cognitiva , Giro do Cíngulo , Imageamento por Ressonância Magnética , Córtex Pré-Frontal , Humanos , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/diagnóstico por imagem , Córtex Pré-Frontal/fisiopatologia , Córtex Pré-Frontal/diagnóstico por imagem , Giro do Cíngulo/fisiopatologia , Giro do Cíngulo/diagnóstico por imagem , Masculino , Feminino , Idoso , Imageamento por Ressonância Magnética/métodos , Pessoa de Meia-Idade , Testes Neuropsicológicos , Estudos de Casos e Controles
8.
Neuroscience ; 555: 83-91, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39019391

RESUMO

Potentiation of metabotropic glutamate receptor subtype 5 (mGluR5) function produces antipsychotic-like and pro-cognitive effects in animal models of schizophrenia and can reverse cognitive deficits induced by N-methyl-D-aspartate type glutamate receptor (NMDAR) antagonists. However, it is currently unknown if mGluR5 positive allosteric modulators (PAMs) can modulate NMDAR antagonist-induced alterations in extracellular glutamate levels in regions underlying these cognitive and behavioral effects, such as the medial prefrontal cortex (mPFC). We therefore assessed the ability of the mGluR5 PAM, 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl) benzamide (CDPPB), to reduce elevated extracellular glutamate levels induced by the NMDAR antagonist, dizocilpine (MK-801), in the mPFC. Male Sprague-Dawley rats were implanted with a guide cannula aimed at the mPFC and treated for ten consecutive days with MK-801 and CDPPB or their corresponding vehicles. CDPPB or vehicle was administered thirty minutes before MK-801 or vehicle each day. On the final day of treatment, in vivo microdialysis was performed, and samples were collected every thirty minutes to analyze extracellular glutamate levels. Compared to animals receiving only vehicle, administration of MK-801 alone significantly increased extracellular levels of glutamate in the mPFC. This effect was not observed in animals administered CDPPB before MK-801, nor in those administered CDPPB alone, indicating that CDPPB decreased extracellular glutamate release stimulated by MK-801. Results indicate that CDPPB attenuates MK-801 induced elevations in extracellular glutamate in the mPFC. This effect of CDPPB may underlie neurochemical adaptations associated with the pro-cognitive effects of mGluR5 PAMs in rodent models of schizophrenia.


Assuntos
Benzamidas , Maleato de Dizocilpina , Antagonistas de Aminoácidos Excitatórios , Ácido Glutâmico , Córtex Pré-Frontal , Pirazóis , Ratos Sprague-Dawley , Receptor de Glutamato Metabotrópico 5 , Animais , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Masculino , Maleato de Dizocilpina/farmacologia , Receptor de Glutamato Metabotrópico 5/metabolismo , Receptor de Glutamato Metabotrópico 5/antagonistas & inibidores , Ácido Glutâmico/metabolismo , Antagonistas de Aminoácidos Excitatórios/farmacologia , Regulação Alostérica/efeitos dos fármacos , Benzamidas/farmacologia , Pirazóis/farmacologia , Ratos , Microdiálise
9.
Soc Neurosci ; 19(2): 106-123, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-39038485

RESUMO

The neurobiology of typical moral cognition involves the interaction of frontal, limbic, and temporoparietal networks. There is still much to be understood mechanistically about how moral processing is disrupted; such understanding is key to combating antisociality. Neuroscientific models suggest a key role for attention mechanisms in atypical moral processing. We hypothesized that attention-bias toward alcohol cues in alcohol use disorder (AUD) leads to a failure to properly engage with morally relevant stimuli, reducing moral processing. We recruited patients with AUD (n = 30) and controls (n = 30). During functional magnetic resonance imaging, participants viewed pairs of images consisting of a moral or neutral cue and an alcohol or neutral distractor. When viewing moral cues paired with alcohol distractors, individuals with AUD had lower medial prefrontal cortex engagement; this pattern was also seen for left amygdala in younger iAUDs. Across groups, individuals had less engagement of middle/superior temporal gyri. These findings provide initial support for AUD-related attention bias interference in sociomoral processing. If supported in future longitudinal and causal study designs, this finding carries potential societal and clinical benefits by suggesting a novel, leverageable mechanism and in providing a cognitive explanation that may help combat persistent stigma.


Assuntos
Alcoolismo , Viés de Atenção , Encéfalo , Imageamento por Ressonância Magnética , Princípios Morais , Humanos , Masculino , Feminino , Adulto , Viés de Atenção/fisiologia , Pessoa de Meia-Idade , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Alcoolismo/psicologia , Alcoolismo/fisiopatologia , Alcoolismo/diagnóstico por imagem , Mapeamento Encefálico , Adulto Jovem , Sinais (Psicologia) , Atenção/fisiologia
10.
Behav Brain Res ; 472: 115152, 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39032868

RESUMO

The high rate of relapse to compulsive methamphetamine (MA)-taking and seeking behaviors after abstinence constitutes a major obstacle to the treatment of MA addiction. Perineuronal nets (PNNs), essential components of the extracellular matrix, play a critical role in synaptic function, learning, and memory. Abnormalities in PNNs have been closely linked to a series of neurological diseases, such as addiction. However, the exact role of PNNs in MA-induced related behaviors remains elusive. Here, we established a MA-induced conditioned place preference (CPP) paradigm in female mice and found that the number and average optical density of PNNs increased significantly in the medial prefrontal cortex (mPFC) of mice during the acquisition, extinction, and reinstatement stages of CPP. Notably, the removal of PNNs in the mPFC via chondroitinase ABC (ChABC) before extinction training not only facilitated the extinction of MA-induced CPP and attenuated the relapse of extinguished MA preference but also significantly reduced the activation of c-Fos in the mPFC. Similarly, the ablation of PNNs in the mPFC before reinstatement markedly lessened the reinstatement of MA-induced CPP, which was accompanied by the decreased expression of c-Fos in the mPFC. Collectively, our results provide more evidence for the implication of degradation of PNNs in facilitating extinction and preventing relapse of MA-induced CPP, which indicate that targeting PNNs may be an effective therapeutic option for MA-induced CPP memories.


Assuntos
Extinção Psicológica , Metanfetamina , Camundongos Endogâmicos C57BL , Córtex Pré-Frontal , Animais , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Metanfetamina/farmacologia , Feminino , Extinção Psicológica/efeitos dos fármacos , Extinção Psicológica/fisiologia , Camundongos , Matriz Extracelular/metabolismo , Matriz Extracelular/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/farmacologia , Condicionamento Clássico/efeitos dos fármacos , Condicionamento Clássico/fisiologia , Comportamento de Procura de Droga/efeitos dos fármacos , Comportamento de Procura de Droga/fisiologia , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/metabolismo , Condroitina ABC Liase/farmacologia
11.
J Pers Med ; 14(6)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38929883

RESUMO

Fibromyalgia and osteoarthritis are among the most prevalent rheumatic conditions worldwide. Nonpharmacological interventions have gained scientific endorsements as the preferred initial treatments before resorting to pharmacological modalities. Repetitive transcranial magnetic stimulation (rTMS) is among the most widely researched neuromodulation techniques, though it has not yet been officially recommended for fibromyalgia. This review aims to summarize the current evidence supporting rTMS for treating various fibromyalgia symptoms. Recent findings: High-frequency rTMS directed at the primary motor cortex (M1) has the strongest support in the literature for reducing pain intensity, with new research examining its long-term effectiveness. Nonetheless, some individuals may not respond to M1-targeted rTMS, and symptoms beyond pain can be prominent. Ongoing research aims to improve the efficacy of rTMS by exploring new brain targets, using innovative stimulation parameters, incorporating neuronavigation, and better identifying patients likely to benefit from this treatment. Summary: Noninvasive brain stimulation with rTMS over M1 is a well-tolerated treatment that can improve chronic pain and overall quality of life in fibromyalgia patients. However, the data are highly heterogeneous, with a limited level of evidence, posing a significant challenge to the inclusion of rTMS in official treatment guidelines. Research is ongoing to enhance its effectiveness, with future perspectives exploring its impact by targeting additional areas of the brain such as the medial prefrontal cortex, anterior cingulate cortex, and inferior parietal lobe, as well as selecting the right patients who could benefit from this treatment.

12.
eNeuro ; 11(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38871455

RESUMO

In human adults, multiple cortical regions respond robustly to faces, including the occipital face area (OFA) and fusiform face area (FFA), implicated in face perception, and the superior temporal sulcus (STS) and medial prefrontal cortex (MPFC), implicated in higher-level social functions. When in development, does face selectivity arise in each of these regions? Here, we combined two awake infant functional magnetic resonance imaging (fMRI) datasets to create a sample size twice the size of previous reports (n = 65 infants; 2.6-9.6 months). Infants watched movies of faces, bodies, objects, and scenes, while fMRI data were collected. Despite variable amounts of data from each infant, individual subject whole-brain activation maps revealed responses to faces compared to nonface visual categories in the approximate location of OFA, FFA, STS, and MPFC. To determine the strength and nature of face selectivity in these regions, we used cross-validated functional region of interest analyses. Across this larger sample size, face responses in OFA, FFA, STS, and MPFC were significantly greater than responses to bodies, objects, and scenes. Even the youngest infants (2-5 months) showed significantly face-selective responses in FFA, STS, and MPFC, but not OFA. These results demonstrate that face selectivity is present in multiple cortical regions within months of birth, providing powerful constraints on theories of cortical development.


Assuntos
Mapeamento Encefálico , Reconhecimento Facial , Imageamento por Ressonância Magnética , Humanos , Feminino , Lactente , Masculino , Reconhecimento Facial/fisiologia , Estimulação Luminosa/métodos , Córtex Cerebral/fisiologia , Córtex Cerebral/diagnóstico por imagem , Desenvolvimento Infantil/fisiologia
13.
Eur J Pharmacol ; 978: 176790, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38942263

RESUMO

Nicotine has been shown to enhance object recognition memory in the novel object recognition (NOR) test by activating excitatory neurons in the medial prefrontal cortex (mPFC). However, the exact neuronal mechanisms underlying the nicotine-induced activation of mPFC neurons and the resultant memory enhancement remain poorly understood. To address this issue, we performed brain-slice electrophysiology and the NOR test in male C57BL/6J mice. Whole-cell patch-clamp recordings from layer V pyramidal neurons in the mPFC revealed that nicotine augments the summation of evoked excitatory postsynaptic potentials (eEPSPs) and that this effect was suppressed by N-[3,5-Bis(trifluoromethyl)phenyl]-N'-[2,4-dibromo-6-(2H-tetrazol-5-yl)phenyl]urea (NS5806), a voltage-dependent potassium (Kv) 4.3 channel activator. In line with these findings, intra-mPFC infusion of NS5806 suppressed systemically administered nicotine-induced memory enhancement in the NOR test. Additionally, miRNA-mediated knockdown of Kv4.3 channels in mPFC pyramidal neurons enhanced object recognition memory. Furthermore, inhibition of A-type Kv channels by intra-mPFC infusion of 4-aminopyridine was found to enhance object recognition memory, while this effect was abrogated by prior intra-mPFC NS5806 infusion. These results suggest that nicotine augments the summation of eEPSPs via the inhibition of Kv4.3 channels in mPFC layer V pyramidal neurons, resulting in the enhancement of object recognition memory.


Assuntos
Camundongos Endogâmicos C57BL , Nicotina , Córtex Pré-Frontal , Reconhecimento Psicológico , Animais , Masculino , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/fisiologia , Córtex Pré-Frontal/metabolismo , Nicotina/farmacologia , Camundongos , Reconhecimento Psicológico/efeitos dos fármacos , Canais de Potássio Shal/metabolismo , Células Piramidais/efeitos dos fármacos , Células Piramidais/fisiologia , Memória/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos
14.
Biochem Biophys Res Commun ; 725: 150272, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-38901224

RESUMO

Ketamine, an N-methyl-d-aspartate (NMDA) receptor antagonist, induces deficits in cognition and information processing following chronic abuse. Adolescent ketamine misuse represents a significant global public health issue; however, the neurodevelopmental mechanisms underlying this phenomenon remain largely elusive. This study investigated the long-term effects of sub-chronic ketamine (Ket) administration on the medial prefrontal cortex (mPFC) and associated behaviors. In this study, Ket administration during early adolescence displayed a reduced density of excitatory synapses on parvalbumin (PV) neurons persisting into adulthood. However, the synaptic development of excitatory pyramidal neurons was not affected by ketamine administration. Furthermore, the adult Ket group exhibited hyperexcitability and impaired socialization and working memory compared to the saline (Sal) administration group. These results strongly suggest that sub-chronic ketamine administration during adolescence results in functional deficits that persist into adulthood. Bioinformatic analysis indicated that the gene co-expression module1 (M1) decreased expression after ketamine exposure, which is crucial for synapse development in inhibitory neurons during adolescence. Collectively, these findings demonstrate that sub-chronic ketamine administration irreversibly impairs synaptic development, offering insights into potential new therapeutic strategies.


Assuntos
Neurônios GABAérgicos , Interneurônios , Ketamina , Parvalbuminas , Córtex Pré-Frontal , Sinapses , Animais , Ketamina/farmacologia , Ketamina/administração & dosagem , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Parvalbuminas/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Masculino , Interneurônios/efeitos dos fármacos , Interneurônios/metabolismo , Camundongos , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/metabolismo , Camundongos Endogâmicos C57BL , Antagonistas de Aminoácidos Excitatórios/farmacologia
15.
Cereb Cortex ; 34(6)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38850218

RESUMO

Closed head injury is a prevalent form of traumatic brain injury with poorly understood effects on cortical neural circuits. Given the emotional and behavioral impairments linked to closed head injury, it is vital to uncover brain functional deficits and their driving mechanisms. In this study, we employed a robust viral tracing technique to identify the alteration of the neural pathway connecting the medial prefrontal cortex to the basolateral amygdala, and we observed the disruptions in neuronal projections between the medial prefrontal cortex and the basolateral amygdala following closed head injury. Remarkably, our results highlight that ZL006, an inhibitor targeting PSD-95/nNOS interaction, stands out for its ability to selectively reverse these aberrations. Specifically, ZL006 effectively mitigates the disruptions in neuronal projections from the medial prefrontal cortex to basolateral amygdala induced by closed head injury. Furthermore, using chemogenetic approaches, we elucidate that activating the medial prefrontal cortex projections to the basolateral amygdala circuit produces anxiolytic effects, aligning with the therapeutic potential of ZL006. Additionally, ZL006 administration effectively mitigates astrocyte activation, leading to the restoration of medial prefrontal cortex glutamatergic neuron activity. Moreover, in the context of attenuating anxiety-like behaviors through ZL006 treatment, we observe a reduction in closed head injury-induced astrocyte engulfment, which may correlate with the observed decrease in dendritic spine density of medial prefrontal cortex glutamatergic neurons.


Assuntos
Tonsila do Cerebelo , Ansiedade , Traumatismos Cranianos Fechados , Córtex Pré-Frontal , Animais , Córtex Pré-Frontal/efeitos dos fármacos , Masculino , Traumatismos Cranianos Fechados/complicações , Ansiedade/tratamento farmacológico , Tonsila do Cerebelo/efeitos dos fármacos , Camundongos , Vias Neurais/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Proteína 4 Homóloga a Disks-Large/metabolismo
16.
Biomed Pharmacother ; 176: 116850, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38834006

RESUMO

Depression is a prevalent psychiatric disorder with accumulating evidence implicating dysregulation of extracellular adenosine triphosphate (ATP) levels in the medial prefrontal cortex (mPFC). It remains unclear whether facilitating endogenous ATP production and subsequently increasing extracellular ATP level in the mPFC can exert a prophylactic effect against chronic social defeat stress (CSDS)-induced depressive-like behaviors and enhance stress resilience. Here, we found that nicotinamide mononucleotide (NMN) treatment effectively elevated nicotinamide adenine dinucleotide (NAD+) biosynthesis and extracellular ATP levels in the mPFC. Moreover, both the 2-week intraperitoneal (i.p.) injection and 3-week oral gavage of NMN prior to exposure to CSDS effectively prevented the development of depressive-like behavior in mice. These protective effects were accompanied with the preservation of both NAD+ biosynthesis and extracellular ATP level in the mPFC. Furthermore, catalyzing ATP hydrolysis by mPFC injection of the ATPase apyrase negated the prophylactic effects of NMN on CSDS-induced depressive-like behaviors. Prophylactic NMN treatment also prevented the reduction in GABAergic inhibition and the increase in excitability in mPFC neurons projecting to the lateral habenula (LHb). Collectively, these findings demonstrate that the prophylactic effects of NMN on depressive-like behaviors are mediated by preventing extracellular ATP loss in the mPFC, which highlights the potential of NMN supplementation as a novel approach for protecting and preventing stress-induced depression in susceptible individuals.


Assuntos
Trifosfato de Adenosina , Comportamento Animal , Depressão , Camundongos Endogâmicos C57BL , Mononucleotídeo de Nicotinamida , Córtex Pré-Frontal , Estresse Psicológico , Animais , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Masculino , Trifosfato de Adenosina/metabolismo , Mononucleotídeo de Nicotinamida/farmacologia , Depressão/tratamento farmacológico , Depressão/prevenção & controle , Depressão/metabolismo , Estresse Psicológico/complicações , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/metabolismo , Camundongos , Comportamento Animal/efeitos dos fármacos , Derrota Social , NAD/metabolismo , Modelos Animais de Doenças
17.
Aging (Albany NY) ; 16(10): 8402-8416, 2024 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-38761177

RESUMO

Aging is associated with a decrease in N-methyl-D-aspartate (NMDA) receptor function, which is critical for maintaining synaptic plasticity, learning, and memory. Activation of the NMDA receptor requires binding of the neurotransmitter glutamate and also the presence of co-agonist D-serine at the glycine site. The enzymatic conversion of L-serine to D-serine is facilitated by the enzyme serine racemase (SR). Subsequently, SR plays a pivotal role in regulating NMDA receptor activity, thereby impacting synaptic plasticity and memory processes in the central nervous system. As such, age-related changes in the expression of SR could contribute to decreased NMDA receptor function. However, age-associated changes in SR expression levels in the medial and lateral prefrontal cortex (mPFC, lPFC), and in the dorsal hippocampal subfields, CA1, CA3, and dentate gyrus (DG), have not been thoroughly elucidated. Therefore, the current studies were designed to determine the SR expression profile, including protein levels and mRNA, for these regions in aged and young male and female Fischer-344 rats. Our results demonstrate a significant reduction in SR expression levels in the mPFC and all hippocampal subfields of aged rats compared to young rats. No sex differences were observed in the expression of SR. These findings suggest that the decrease in SR levels may play a role in the age-associated reduction of NMDA receptor function in brain regions crucial for cognitive function and synaptic plasticity.


Assuntos
Envelhecimento , Hipocampo , Córtex Pré-Frontal , Racemases e Epimerases , Animais , Córtex Pré-Frontal/metabolismo , Masculino , Envelhecimento/metabolismo , Feminino , Racemases e Epimerases/metabolismo , Racemases e Epimerases/genética , Hipocampo/metabolismo , Ratos , Ratos Endogâmicos F344 , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/genética , RNA Mensageiro/metabolismo , Plasticidade Neuronal
18.
Neuroimage ; 294: 120645, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38734156

RESUMO

Aggressive adolescents tend to exhibit abnormal fear acquisition and extinction, and reactive aggressive adolescents are often more anxious. However, the relationship between fear generalization and reactive aggression (RA) remains unknown. According to Reactive-Proactive Aggression Questionnaire (RPQ) scores, 61 adolescents were divided into two groups, namely, a high RA group (N = 30) and a low aggression (LA) group (N = 31). All participants underwent three consecutive phases of the Pavlovian conditioning paradigm (i.e., habituation, acquisition, and generalization), and neural activation of the medial prefrontal cortex (mPFC) was assessed by functional near-infrared spectroscopy (fNIRS). The stimuli were ten circles with varying sizes, including two conditioned stimuli (CSs) and eight generalization stimuli (GSs). A scream at 85 dB served as the auditory unconditioned stimulus (US). The US expectancy ratings of both CSs and GSs were higher in the RA group than in the LA group. The fNIRS results showed that CSs and GSs evoked lower mPFC activation in the RA group compared to the LA group during fear generalization. These findings suggest that abnormalities in fear acquisition and generalization are prototypical dysregulations in adolescents with RA. They provide neurocognitive evidence for dysregulated fear learning in the mechanisms underlying adolescents with RA, highlighting the need to develop emotional regulation interventions for these individuals.


Assuntos
Agressão , Condicionamento Clássico , Medo , Generalização Psicológica , Córtex Pré-Frontal , Espectroscopia de Luz Próxima ao Infravermelho , Humanos , Adolescente , Córtex Pré-Frontal/fisiologia , Córtex Pré-Frontal/diagnóstico por imagem , Medo/fisiologia , Masculino , Feminino , Condicionamento Clássico/fisiologia , Generalização Psicológica/fisiologia , Agressão/fisiologia
19.
Brain Sci ; 14(5)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38790481

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental disorder affecting individuals worldwide and characterized by deficits in social interaction along with the presence of restricted interest and repetitive behaviors. Despite decades of behavioral research, little is known about the brain mechanisms that influence social behaviors among children with ASD. This, in part, is due to limitations of traditional imaging techniques specifically targeting pediatric populations. As a portable and scalable optical brain monitoring technology, functional near infrared spectroscopy (fNIRS) provides a measure of cerebral hemodynamics related to sensory, motor, or cognitive function. Here, we utilized fNIRS to investigate the prefrontal cortex (PFC) activity of young children with ASD and with typical development while they watched social and nonsocial video clips. The PFC activity of ASD children was significantly higher for social stimuli at medial PFC, which is implicated in social cognition/processing. Moreover, this activity was also consistently correlated with clinical measures, and higher activation of the same brain area only during social video viewing was associated with more ASD symptoms. This is the first study to implement a neuroergonomics approach to investigate cognitive load in response to realistic, complex, and dynamic audiovisual social stimuli for young children with and without autism. Our results further confirm that new generation of portable fNIRS neuroimaging can be used for ecologically valid measurements of the brain function of toddlers and preschool children with ASD.

20.
Kaohsiung J Med Sci ; 40(6): 553-560, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38623867

RESUMO

Working memory (WM) is a cognitive function important for guiding the on-going or upcoming behavior. A memory-related protein Arc (activity-regulated cytoskeleton-associated protein) is implicated in long-term memory consolidation. Recent evidence further suggests the involvement of hippocampal Arc in spatial WM. The medial prefrontal cortex (mPFC) is a key brain region mediating WM. However, the role of mPFC Arc in WM is still uncertain. To investigate whether mPFC Arc protein is involved in WM performance, delayed non-match to sample (DNMS) T-maze task was performed in rats with or without blocking new synthesis of mPFC Arc. In DNMS task, a 10-s or 30-s delay between the sample run and the choice run was given to evaluate WM performance. To block new Arc protein synthesis during the DNMS task, Arc antisense oligodeoxynucleotides (ODNs) were injected to the bilateral mPFC. The results show that, in rats without surgery for cannula implantation and subsequent intracerebral injection of ODNs, WM was functioning well during the DNMS task with a delay of 10 s but not 30 s, which was accompanied with a significantly increased level of mPFC Arc protein, indicating a possible link between enhanced Arc protein expression and the performance of WM. After preventing the enhancement of mPFC Arc protein expression with Arc antisense ODNs, rat's WM performance was impaired. These findings support enhanced mPFC Arc protein expression playing a role during WM performance.


Assuntos
Proteínas do Citoesqueleto , Memória de Curto Prazo , Proteínas do Tecido Nervoso , Córtex Pré-Frontal , Animais , Córtex Pré-Frontal/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas do Citoesqueleto/genética , Masculino , Memória de Curto Prazo/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Ratos , Aprendizagem em Labirinto/fisiologia , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA