Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
R I Med J (2013) ; 107(5): 14-17, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38687262

RESUMO

BACKGROUND: Children with Hunter syndrome have a high prevalence of nerve compression syndromes given the buildup of glycosaminoglycans in the tendon sheaths and soft tissue structures. These are often comorbid with orthopedic conditions given joint and tendon contractures due to the same pathology. While carpal tunnel syndrome and surgical treatment has been well-reported in this population, the literature on lower extremity nerve compression syndromes and their treatment in Hunter syndrome is sparse. OBSERVATIONS: We report the case of a 13-year-old male with a history of Hunter syndrome who presented with toe-walking and tenderness over the peroneal and tarsal tunnel areas. He underwent bilateral common peroneal nerve and tarsal tunnel releases, with findings of severe nerve compression and hypertrophied soft tissue structures demonstrating fibromuscular scarring on pathology. Post-operatively, the patient's family reported subjective improvement in lower extremity mobility and plantar flexion. LESSONS: In this case, peroneal and tarsal nerve compression were diagnosed clinically and treated effectively with surgical release and postoperative ankle casting. Given the wide differential of common comorbid orthopedic conditions in Hunter syndrome and the lack of validated electrodiagnostic normative values in this population, the history and physical examination and consideration of nerve compression syndromes are tantamount for successful workup and treatment of gait abnormalities in the child with Hunter syndrome.


Assuntos
Mucopolissacaridose II , Síndrome do Túnel do Tarso , Humanos , Masculino , Adolescente , Mucopolissacaridose II/cirurgia , Mucopolissacaridose II/complicações , Síndrome do Túnel do Tarso/cirurgia , Síndrome do Túnel do Tarso/etiologia , Neuropatias Fibulares/etiologia , Neuropatias Fibulares/cirurgia , Nervo Fibular/cirurgia , Síndromes de Compressão Nervosa/cirurgia , Síndromes de Compressão Nervosa/etiologia
2.
Mol Cell Biochem ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38498105

RESUMO

Mucopolysaccharidosis type II (MPS II; Hunter syndrome) is a lysosomal storage disease caused by mutations in the gene encoding the enzyme iduronate 2-sulfatase (IDS) and biochemically characterized by the accumulation of glycosaminoglycans (GAGs) in different tissues. It is a multisystemic disorder that presents liver abnormalities, the pathophysiology of which is not yet established. In the present study, we evaluated bioenergetics, redox homeostasis, and mitochondrial dynamics in the liver of 6-month-old MPS II mice (IDS-). Our findings show a decrease in the activity of α-ketoglutarate dehydrogenase and an increase in the activities of succinate dehydrogenase and malate dehydrogenase. The activity of mitochondrial complex I was also increased whereas the other complex activities were not affected. In contrast, mitochondrial respiration, membrane potential, ATP production, and calcium retention capacity were not altered. Furthermore, malondialdehyde levels and 2',7'-dichlorofluorescein oxidation were increased in the liver of MPS II mice, indicating lipid peroxidation and increased ROS levels, respectively. Sulfhydryl and reduced glutathione levels, as well as glutathione S-transferase, glutathione peroxidase (GPx), superoxide dismutase, and catalase activities were also increased. Finally, the levels of proteins involved in mitochondrial mass and dynamics were decreased in knockout mice liver. Taken together, these data suggest that alterations in energy metabolism, redox homeostasis, and mitochondrial dynamics can be involved in the pathophysiology of liver abnormalities observed in MPS II.

3.
Mol Ther Methods Clin Dev ; 32(1): 101201, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38374962

RESUMO

Mucopolysaccharidosis type II (MPS II) is an X-linked recessive lysosomal disease caused by iduronate-2-sulfatase (IDS) deficiency, leading to accumulation of glycosaminoglycans (GAGs) and the emergence of progressive disease. Enzyme replacement therapy is the only currently approved treatment, but it leaves neurological disease unaddressed. Cerebrospinal fluid (CSF)-directed administration of AAV9.CB7.hIDS (RGX-121) is an alternative treatment strategy, but it is unknown if this approach will affect both neurologic and systemic manifestations. We compared the effectiveness of intrathecal (i.t.) and intravenous (i.v.) routes of administration (ROAs) at a range of vector doses in a mouse model of MPS II. While lower doses were completely ineffective, a total dose of 1 × 109 gc resulted in appreciable IDS activity levels in plasma but not tissues. Total doses of 1 × 1010 and 1 × 1011 gc by either ROA resulted in supraphysiological plasma IDS activity, substantial IDS activity levels and GAG reduction in nearly all tissues, and normalized zygomatic arch diameter. In the brain, a dose of 1 × 1011 gc i.t. achieved the highest IDS activity levels and the greatest reduction in GAG content, and it prevented neurocognitive deficiency. We conclude that a dose of 1 × 1010 gc normalized metabolic and skeletal outcomes, while neurologic improvement required a dose of 1 × 1011 gc, thereby suggesting the prospect of a similar direct benefit in humans.

4.
Hum Gene Ther ; 35(7-8): 232-242, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37212263

RESUMO

Mucopolysaccharidosis type II (MPS II) is a lysosomal storage disease caused by a mutation in the IDS gene, resulting in deficiency of the enzyme iduronate-2-sulfatase (IDS) causing heparan sulfate (HS) and dermatan sulfate (DS) accumulation in all cells. This leads to skeletal and cardiorespiratory disease with severe neurodegeneration in two thirds of sufferers. Enzyme replacement therapy is ineffective at treating neurological disease, as intravenously delivered IDS is unable to cross the blood-brain barrier (BBB). Hematopoietic stem cell transplant is also unsuccessful, presumably due to insufficient IDS enzyme production from transplanted cells engrafting in the brain. We used two different peptide sequences (rabies virus glycoprotein [RVG] and gh625), both previously published as BBB-crossing peptides, fused to IDS and delivered via hematopoietic stem cell gene therapy (HSCGT). HSCGT with LV.IDS.RVG and LV.IDS.gh625 was compared with LV.IDS.ApoEII and LV.IDS in MPS II mice at 6 months post-transplant. Levels of IDS enzyme activity in the brain and peripheral tissues were lower in LV.IDS.RVG- and LV.IDS.gh625-treated mice than in LV.IDS.ApoEII- and LV.IDS-treated mice, despite comparable vector copy numbers. Microgliosis, astrocytosis, and lysosomal swelling were partially normalized in MPS II mice treated with LV.IDS.RVG and LV.IDS.gh625. Skeletal thickening was normalized by both treatments to wild-type levels. Although reductions in skeletal abnormalities and neuropathology are encouraging, given the low levels of enzyme activity compared with control tissue from LV.IDS- and LV.IDS.ApoEII-transplanted mice, the RVG and gh625 peptides are unlikely to be ideal candidates for HSCGT in MPS II and are inferior to the ApoEII peptide that we have previously demonstrated to be more effective at correcting MPS II disease than IDS alone.


Assuntos
Iduronato Sulfatase , Mucopolissacaridose II , Doenças do Sistema Nervoso , Vírus da Raiva , Camundongos , Animais , Mucopolissacaridose II/genética , Mucopolissacaridose II/terapia , Ácido Idurônico , Iduronato Sulfatase/genética , Glicoproteínas/genética , Peptídeos
5.
Mol Genet Metab ; 140(3): 107652, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37506513

RESUMO

BACKGROUND: Mucopolysaccharidosis II (MPS II) is a rare, X-linked lysosomal storage disease caused by pathogenic variants of the iduronate-2-sulfatase gene (IDS) and is characterized by a highly variable disease spectrum. MPS II severity is difficult to predict based on IDS variants alone; while some genotypes are associated with specific phenotypes, the disease course of most genotypes remains unknown. This study aims to refine the genotype-phenotype categorization by combining information from the scientific literature with data from two clinical studies in MPS II. METHODS: Genotype, cognitive, and behavioral data from 88 patients in two clinical studies (NCT01822184, NCT02055118) in MPS II were analyzed post hoc in combination with published information on IDS variants from the biomedical literature through a semi-automated multi-stage review process. The Differential Ability Scales, second edition (DAS-II) and the Vineland Adaptive Behavior Scales™, second edition (VABS-II) were used to measure cognitive function and adaptive behavior. RESULTS: The most common category of IDS variant was missense (47/88, 53.4% of total variants). The mean (standard deviation [SD]) baseline DAS-II General Conceptual Ability (GCA) and VABS-II Adaptive Behavior Composite (ABC) scores were 74.0 (16.4) and 82.6 (14.7), respectively. All identified IDS complete deletions/large rearrangements (n = 7) and large deletions (n = 1) were associated with a published 'severe' or 'predicted severe' progressive neuronopathic phenotype, characterized by central nervous system involvement. In categories comprising more than one participant, mean baseline DAS-II GCA scores (SD) were lowest among individuals with complete deletions/large rearrangements 64.0 (9.1, n = 4) and highest among those with splice site variants 83.8 (14.2, n = 4). Mean baseline VABS-II ABC scores (SD) were lowest among patients with unclassifiable variants 79.3 (4.9, n = 3) and highest among those with a splice site variant 87.2 (16.1, n = 5), in variant categories with more than one participant. CONCLUSIONS: Most patients in the studies had an MPS II phenotype categorized as 'severe' or 'predicted severe' according to classifications, as reported in the literature. Patients with IDS complete deletion/large rearrangement variants had lower mean DAS-II GCA scores than those with other variants, as well as low VABS-II ABC, confirming an association with the early progressive 'severe' (neuronopathic) disease. These data provide a starting point to improve the classification of MPS II phenotypes and the characterization of the genotype-phenotype relationship.


Assuntos
Iduronato Sulfatase , Mucopolissacaridose II , Humanos , Mucopolissacaridose II/genética , Mutação , Iduronato Sulfatase/genética , Genótipo , Gravidade do Paciente , Adaptação Psicológica
6.
Int J Neonatal Screen ; 9(2)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37367213

RESUMO

Mucopolysaccharidosis type II (MPS-II, Hunter syndrome, OMIM:30990) is a lysosomal storage disorder (LSD) that results in iduronate 2-sulphatase (I2S) enzyme deficiency. MPS-II was added to the Recommended Uniform Screening Panel (RUSP) in August 2022; thus, there is an increased demand for multiplexing I2S into existing LSD screening assays. After incubation with LSD synthetic substrates, extracts are cleaned using liquid-liquid extraction with ethyl acetate or protein precipitation using acetonitrile (ACN). We investigated cold-induced water ACN phase separation (CIPS) to improve the combination of 6-plex and I2S extracts to create a 7-plex assay, and compared it to room temperature ACN and ethyl acetate liquid-liquid extraction. The extracts were dried and resuspended in the mobile phase, and then analyzed using an optimized 1.9 min injection-to-injection liquid chromatography method coupled with tandem mass spectrometry (LC-MS/MS). The combination of ACN and CIPS improved the detection for I2S products without significant detriment to other analytes, which is attributable to a more complete coagulation and separation of heme, proteins, and extracted residual salts. Using CIPS for sample cleanup in dried blood spots (DBS) appears to represent a promising and straightforward way of achieving cleaner sample extracts in a new 7-plex LSD screening panel.

7.
Mol Ther Methods Clin Dev ; 29: 286-302, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37359415

RESUMO

Mucopolysaccharidosis II (MPS II) is a rare lysosomal storage disease characterized by deficient activity of iduronate-2-sulfatase (I2S), leading to pathological accumulation of glycosaminoglycans (GAGs) in tissues. We used iduronate-2-sulfatase knockout (Ids KO) mice to investigate if liver-directed recombinant adeno-associated virus vectors (rAAV8-LSP-hIDSco) encoding human I2S (hI2S) could cross-correct I2S deficiency in Ids KO mouse tissues, and we then assessed the translation of mouse data to non-human primates (NHPs). Treated mice showed sustained hepatic hI2S production, accompanied by normalized GAG levels in somatic tissues (including critical tissues such as heart and lung), indicating systemic cross-correction from liver-secreted hI2S. Brain GAG levels in Ids KO mice were lowered but not normalized; higher doses were required to see improvements in brain histology and neurobehavioral testing. rAAV8-LSP-hIDSco administration in NHPs resulted in sustained hepatic hI2S production and therapeutic hI2S levels in cross-corrected somatic tissues but no hI2S exposure in the central nervous system, perhaps owing to lower levels of liver transduction in NHPs than in mice. Overall, we demonstrate the ability of rAAV8-LSP-hIDSco to cross-correct I2S deficiency in mouse somatic tissues and highlight the importance of showing translatability of gene therapy data from rodents to NHPs, which is critical for supporting translation to clinical development.

8.
Mol Genet Metab Rep ; 34: 100956, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36704405

RESUMO

Hunter syndrome is a rare x-linked recessive genetic disorder that affects lysosomal metabolism due to deficiency of iduronate-2-sulfatase (IDS), with subsequent accumulation of glycosaminoglycans heparan and dermatan sulfates (GAG). Enzyme replacement therapy is the only FDA-approved remedy and is an expensive life-time treatment that alleviates some symptoms of the disease without neurocognitive benefit. We previously reported successful treatment in a mouse model of mucopolysaccharidosis type II (MPS II) using adeno-associated viral vector serotype 9 encoding human IDS (AAV9.hIDS) via intracerebroventricular injection. As a less invasive and more straightforward procedure, here we report intravenously administered AAV9.hIDS in a mouse model of MPS II. In animals administered 1.5 × 1012 vg of AAV9.hIDS at 2 months of age, we observed supraphysiological levels of IDS enzyme activity in the circulation (up to 9100-fold higher than wild-type), in the tested peripheral organs (up to 560-fold higher than wild-type), but only 4% to 50% of wild type levels in the CNS. GAG levels were normalized on both sides of the blood-brain-barrier (BBB) in most of tissues tested. Despite low levels of the IDS observed in the CNS, this treatment prevented neurocognitive decline as shown by testing in the Barnes maze and by fear conditioning. This study demonstrates that a single dose of IV-administered AAV9.hIDS may be an effective and non-invasive procedure to treat MPS II that benefits both sides of the BBB, with implications for potential use of IV-administered AAV9 for other neuronopathic lysosomal diseases.

9.
Hum Gene Ther ; 34(1-2): 8-18, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36541357

RESUMO

The mucopolysaccharidoses (MPS) are a group of recessively inherited conditions caused by deficiency of lysosomal enzymes essential to the catabolism of glycosaminoglycans (GAG). MPS I is caused by deficiency of the lysosomal enzyme alpha-L-iduronidase (IDUA), while MPS II is caused by a lack of iduronate-2-sulfatase (IDS). Lack of these enzymes leads to early mortality and morbidity, often including neurological deficits. Enzyme replacement therapy has markedly improved the quality of life for MPS I and MPS II affected individuals but is not effective in addressing neurologic manifestations. For MPS I, hematopoietic stem cell transplant has shown effectiveness in mitigating the progression of neurologic disease when carried out in early in life, but neurologic function is not restored in patients transplanted later in life. For both MPS I and II, gene therapy has been shown to prevent neurologic deficits in affected mice when administered early, but the effectiveness of treatment after the onset of neurologic disease manifestations has not been characterized. To test if neurocognitive function can be recovered in older animals, human IDUA or IDS-encoding AAV9 vector was administered by intracerebroventricular injection into MPS I and MPS II mice, respectively, after the development of neurologic deficit. Vector sequences were distributed throughout the brains of treated animals, associated with high levels of enzyme activity and normalized GAG storage. Two months after vector infusion, treated mice exhibited spatial navigation and learning skills that were normalized, that is, indistinguishable from those of normal unaffected mice, and significantly improved compared to untreated, affected animals. We conclude that cognitive function was restored by AAV9-mediated, central nervous system (CNS)-directed gene transfer in the murine models of MPS I and MPS II, suggesting that gene transfer may result in neurodevelopment improvements in severe MPS I and MPS II when carried out after the onset of cognitive decline.


Assuntos
Disfunção Cognitiva , Iduronato Sulfatase , Mucopolissacaridose II , Mucopolissacaridose I , Doenças do Sistema Nervoso , Humanos , Animais , Camundongos , Idoso , Qualidade de Vida , Mucopolissacaridose II/genética , Mucopolissacaridose II/terapia , Mucopolissacaridose I/genética , Mucopolissacaridose I/terapia , Sistema Nervoso Central/metabolismo , Iduronidase/genética , Iduronidase/metabolismo , Iduronato Sulfatase/genética , Disfunção Cognitiva/metabolismo , Glicosaminoglicanos/metabolismo , Modelos Animais de Doenças
10.
Mol Ther ; 30(12): 3587-3600, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36299240

RESUMO

Zinc-finger nuclease (ZFN)-based in vivo genome editing is a novel treatment that can potentially provide lifelong protein replacement with single intravenous administration. Three first-in-human open-label ascending single-dose phase 1/2 studies were performed in parallel (starting November 2017) primarily to assess safety and tolerability of ZFN in vivo editing therapy in mucopolysaccharidosis I (MPS I) (n = 3), MPS II (n = 9), and hemophilia B (n = 1). Treatment was well tolerated with no serious treatment-related adverse events. At the 1e13 vg/kg dose, evidence of genome editing was detected through albumin-transgene fusion transcripts in liver for MPS II (n = 2) and MPS I (n = 1) subjects. The MPS I subject also had a transient increase in leukocyte iduronidase activity to the lower normal range. At the 5e13 vg/kg dose, one MPS II subject had a transient increase in plasma iduronate-2-sulfatase approaching normal levels and one MPS I subject approached mid-normal levels of leukocyte iduronidase activity with no evidence of genome editing. The hemophilia B subject was not able to decrease use of factor IX concentrate; genome editing could not be assessed. Overall, ZFN in vivo editing therapy had a favorable safety profile with evidence of targeted genome editing in liver, but no long-term enzyme expression in blood.


Assuntos
Nucleases de Dedos de Zinco , Humanos
11.
J Health Econ Outcomes Res ; 9(2): 67-76, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36168594

RESUMO

Background: Mucopolysaccharidosis II (MPS II; Hunter syndrome; OMIM 309900) is a rare, X-linked, lysosomal storage disease caused by deficient iduronate-2-sulfatase activity. Accumulation of glycosaminoglycans results in multisystemic disease manifestations, which may include central nervous system involvement and cognitive impairment (CI). Patients with MPS II experience a high disease burden, leading to extensive healthcare resource utilization (HRU) and reduced quality of life. Objectives: This study aimed to assess the impact of timing of enzyme replacement therapy (ERT) initiation and CI status on the clinical characteristics and HRU of patients with MPS II. Methods: A retrospective medical chart review of 140 male patients who received a diagnosis of MPS II between 1997 and 2017 was performed at 19 US sites; data on disease manifestations and HRU stratified by age at ERT initiation or CI status were analyzed for the full study population and a subgroup of patients who received a diagnosis of MPS II before the age of 6 years. Results: In patients initiating ERT before 3 years of age, there was a trend toward lower symptom burden and HRU compared with patients who initiated ERT at an older age. Evaluation of developmental and behavioral signs and symptoms in the full study population showed that communication delay (70.0% of patients), cognitive delay (62.1%), behavioral problems (52.9%), and toileting delay (50.0%) were particularly common; earliest documented signs and symptoms were motor delay (median [range] age at first documentation: 4.2 [0.9-18.7] years) and behavioral problems (4.4 [0.6-13.7] years). Patients with CI generally experienced greater symptom burden and higher HRU than those without CI, with the most notable differences documented for communication and toileting delays. Formal cognitive testing was documented in <30% of cognitively impaired patients diagnosed with MPS II before the age of 6 years. Conclusions: Our findings reinforce previous recommendations for ERT to be initiated early to maximally benefit patients with MPS II, especially those younger than 3 years old. Cognitively impaired patients experience a particularly high disease burden and HRU. Patient care could be improved with early cognitive assessments and the development of treatments that address cognitive decline.

12.
Mol Genet Metab ; 137(1-2): 127-139, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36027721

RESUMO

Two-thirds of patients with mucopolysaccharidosis II (MPS II; Hunter syndrome) have cognitive impairment. This phase 2/3, randomized, controlled, open-label, multicenter study (NCT02055118) investigated the effects of intrathecally administered idursulfase-IT on cognitive function in patients with MPS II. Children older than 3 years with MPS II and mild-to-moderate cognitive impairment (assessed by Differential Ability Scales-II [DAS-II], General Conceptual Ability [GCA] score) who had tolerated intravenous idursulfase for at least 4 months were randomly assigned (2:1) to monthly idursulfase-IT 10 mg (n = 34) via an intrathecal drug delivery device (IDDD; or by lumbar puncture) or no idursulfase-IT treatment (n = 15) for 52 weeks. All patients continued to receive weekly intravenous idursulfase 0.5 mg/kg as standard of care. Of 49 randomized patients, 47 completed the study (two patients receiving idursulfase-IT discontinued). The primary endpoint (change from baseline in DAS-II GCA score at week 52 in a linear mixed-effects model for repeated measures analysis) was not met: although there was a smaller decrease in DAS-II GCA scores with idursulfase-IT than with no idursulfase-IT at week 52, this was not significant (least-squares mean treatment difference [95% confidence interval], 3.0 [-7.3, 13.3]; p = 0.5669). Changes from baseline in Vineland Adaptive Behavioral Scales-II Adaptive Behavior Composite scores at week 52 (key secondary endpoint) were similar in the idursulfase-IT (n = 31) and no idursulfase-IT (n = 14) groups. There were trends towards a potential positive effect of idursulfase-IT across DAS-II composite, cluster, and subtest scores, notably in patients younger than 6 years at baseline. In a post hoc analysis, there was a significant (p = 0.0174), clinically meaningful difference in change from baseline in DAS-II GCA scores at week 52 with idursulfase-IT (n = 13) versus no idursulfase-IT (n = 6) among those younger than 6 years with missense iduronate-2-sulfatase gene variants. Overall, idursulfase-IT reduced cerebrospinal glycosaminoglycan levels from baseline by 72.0% at week 52. Idursulfase-IT was generally well tolerated. These data suggest potential benefits of idursulfase-IT in the treatment of cognitive impairment in some patients with neuronopathic MPS II. After many years of extensive review and regulatory discussions, the data were found to be insufficient to meet the evidentiary standard to support regulatory filings.


Assuntos
Iduronato Sulfatase , Mucopolissacaridose II , Mieloma Múltiplo , Criança , Pré-Escolar , Humanos , Terapia de Reposição de Enzimas/métodos , Glicosaminoglicanos , Iduronato Sulfatase/genética , Ácido Idurônico , Mucopolissacaridose II/tratamento farmacológico , Mucopolissacaridose II/genética
13.
Mol Genet Metab ; 137(1-2): 92-103, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35961250

RESUMO

Enzyme replacement therapy with weekly infused intravenous (IV) idursulfase is effective in treating somatic symptoms of mucopolysaccharidosis II (MPS II; Hunter syndrome). A formulation of idursulfase for intrathecal administration (idursulfase-IT) is under investigation for the treatment of neuronopathic MPS II. Here, we report 36-month data from the open-label extension (NCT02412787) of a phase 2/3, randomized, controlled study (HGT-HIT-094; NCT02055118) that assessed the safety and efficacy of monthly idursulfase-IT 10 mg in addition to weekly IV idursulfase on cognitive function in children older than 3 years with MPS II and mild-to-moderate cognitive impairment. Participants were also enrolled in this extension from a linked non-randomized sub-study of children younger than 3 years at the start of idursulfase-IT therapy. The extension safety population comprised 56 patients who received idursulfase-IT 10 mg once a month (or age-adjusted dose for sub-study patients) plus IV idursulfase (0.5 mg/kg) once a week. Idursulfase-IT was generally well tolerated over the cumulative treatment period of up to 36 months. Overall, 25.0% of patients had at least one adverse event (AE) related to idursulfase-IT; most treatment-emergent AEs were mild in severity. Of serious AEs (reported by 76.8% patients), none were considered related to idursulfase-IT treatment. There were no deaths or discontinuations owing to AEs. Secondary efficacy analyses (in patients younger than 6 years at phase 2/3 study baseline; n = 40) indicated a trend for improved Differential Ability Scale-II (DAS-II) General Conceptual Ability (GCA) scores in the early idursulfase-IT versus delayed idursulfase-IT group (treatment difference over 36 months from phase 2/3 study baseline: least-squares mean, 6.8 [90% confidence interval: -2.1, 15.8; p = 0.2064]). Post hoc analyses of DAS-II GCA scores by genotype revealed a clinically meaningful treatment effect in patients younger than 6 years with missense variants of the iduronate-2-sulfatase gene (IDS) (least-squares mean [standard error] treatment difference over 36 months, 12.3 [7.24]). These long-term data further suggest the benefits of idursulfase-IT in the treatment of neurocognitive dysfunction in some patients with MPS II. After many years of extensive review and regulatory discussions, the data were found to be insufficient to meet the evidentiary standard to support regulatory filings.


Assuntos
Iduronato Sulfatase , Mucopolissacaridose II , Criança , Pré-Escolar , Humanos , Recém-Nascido , Terapia de Reposição de Enzimas/efeitos adversos , Iduronato Sulfatase/efeitos adversos , Iduronato Sulfatase/genética , Ácido Idurônico , Mucopolissacaridose II/tratamento farmacológico , Mucopolissacaridose II/genética
14.
Mol Genet Metab Rep ; 31: 100878, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35782619

RESUMO

Mucopolysaccharidosis type II (MPS II) is a multisystemic lysosomal storage disorder caused by deficiency of the iduronate 2-sulfatase enzyme. Currently, enzyme replacement therapy (ERT) with recombinant idursulfase is the main treatment available to decrease morbidity and improve quality of life. However, infusion-associated reactions (IARs) are reported and may limit access to treatment. When premedication or infusion rate reductions are ineffective for preventing IARs, desensitization can be applied. To date, only two MPS II patients are reported to have undergone desensitization. We report a pediatric patient with recurrent IARs during infusion successfully managed with gradual desensitization. Our protocol started at 50% of the standard dosage infused at concentrations from 0.0006 to 0.06 mg/ml on weeks 1 and 2, followed by 75% of the standard dosage infused at concentrations from 0.0009 to 0.09 mg/ml on weeks 3 and 4, and full standard dosage thereafter, infused at progressively increasing concentrations until the standard infusion conditions were reached at 3 months. Our experience can be used in the management of MPS II patients presenting IARs to idursulfase infusion, even when general preventive measures are already administered.

15.
J Pers Med ; 12(7)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35887520

RESUMO

BACKGROUND: Mucopolysaccharidosis II (MPS II) is an X-linked disorder resulting from a deficiency in lysosomal enzyme iduronate-2-sulfatase (IDS), which causes the accumulation of glycosaminoglycans (GAGs) in the lysosomes of many tissues and organs, leading to progressive cellular dysfunction. An MPS II newborn screening program has been available in Taiwan since 2015. The aim of the current study was to collect and analyze the long-term follow-up data of the screen-positive subjects in this program. METHODS: From August 2015 to April 2022, 548,624 newborns were screened for MPS II by dried blood spots using tandem mass spectrometry, of which 202 suspected infants were referred to our hospital for confirmation. The diagnosis of MPS II was confirmed by IDS enzyme activity assay in leukocytes, quantitative determination of urinary GAGs by mass spectrometry, and identification of the IDS gene variant. RESULTS: Among the 202 referred infants, 10 (5%) with seven IDS gene variants were diagnosed with confirmed MPS II (Group 1), 151 (75%) with nine IDS gene variants were classified as having suspected MPS II or pseudodeficiency (Group 2), and 41 (20%) with five IDS gene variants were classified as not having MPS II (Group 3). Long-term follow-up every 6 months was arranged for the infants in Group 1 and Group 2. Intravenous enzyme replacement therapy (ERT) was started in four patients at 1, 0.5, 0.4, and 0.5 years of age, respectively. Three patients also received hematopoietic stem cell transplantation (HSCT) at 1.5, 0.9, and 0.6 years of age, respectively. After ERT and/or HSCT, IDS enzyme activity and the quantity of urinary GAGs significantly improved in all of these patients compared with the baseline data. CONCLUSIONS: Because of the progressive nature of MPS II, early diagnosis via a newborn screening program and timely initiation of ERT and/or HSCT before the occurrence of irreversible organ damage may lead to better clinical outcomes. The findings of the current study could serve as baseline data for the analysis of the long-term effects of ERT and HSCT in these patients.

16.
J Health Econ Outcomes Res ; 9(1): 117-127, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35620452

RESUMO

Background: Mucopolysaccharidosis II (MPS II; Hunter syndrome) is a rare, X-linked, life-limiting lysosomal storage disease characterized by a deficiency in the activity of the enzyme iduronate-2-sulfatase. Accumulation of glycosaminoglycans in tissues and organs throughout the body causes cellular damage, leading to multisystemic disease manifestations. Patients generally require multidisciplinary care across a wide range of specialties. Objectives: The aims of this study were to assess the healthcare needs of patients with MPS II and to explore the impact of treatment on disease burden and healthcare resource utilization. Methods: A retrospective review of medical charts from 19 US sites was performed. Data were analyzed from 140 male patients diagnosed with MPS II (defined as a documented deficiency in iduronate-2-sulfatase) between 1997 and 2017. The prevalence and age at onset of clinical manifestations and extent and frequency of healthcare resource use were evaluated. Results: Of the patients in this study, 77.1% had received enzyme replacement therapy with intravenous idursulfase and 62.1% had cognitive impairment. The clinical burden among patients was substantial: almost all patients had ear, nose, and throat abnormalities (95.7%); musculoskeletal abnormalities (95.0%); and joint stiffness or abnormalities (90.7%). Of the most prevalent disease manifestations, facial dysmorphism and hepatosplenomegaly were documented the earliest (median age at first documentation of 3.8 years in both cases). Hospitalizations, emergency department visits, and outpatient visits were reported for 51.2%, 58.5%, and 93.5% of patients, respectively, with a frequency of 0.1, 0.2, and 3.0 per patient per year, respectively. Surgery was also common, with 91.1% of patients having undergone at least 1 surgical procedure. The clinical burden and prevalence and frequency of resource use were generally similar in patients who had received enzyme replacement therapy and in those who had not. Conclusions: These results add to our understanding of the natural history of MPS II and indicate that the disease burden and healthcare needs of patients with this progressive disease are extensive. Increased understanding of disease burden and resource use may enable the development of models of healthcare resource utilization in patients with MPS II and contribute to improvements in disease management and patient care.

17.
J Pediatr ; 248: 100-107.e3, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35568060

RESUMO

OBJECTIVE: To assess the relationship between anti-Iduronate 2-sulfatase (IDS) antibodies, IDS genotypes, phenotypes and their impact in patients with enzyme replacement therapy (ERT)-treated Mucopolysaccharidosis type II. STUDY DESIGN: Dutch patients treated with ERT were analyzed in this observational cohort study. Antibody titers were determined by enzyme-linked immunosorbent assay. Neutralizing effects were measured in fibroblasts. Pharmacokinetic analysis of ERT was combined with immunoprecipitation. Urinary glycosaminoglycans were measured using mass spectrometry and dimethylmethylene blue. RESULTS: Eight of 17 patients (47%) developed anti-IDS antibodies. Three patients with the severe, neuronopathic phenotype, two of whom did not express IDS protein, showed sustained antibodies for up to 10 years of ERT. Titers of 1:5120 or greater inhibited cellular IDS uptake and/or intracellular activity in vitro. In 1 patient who was neuronopathic with a titer of 1:20 480, pharmacokinetic analysis showed that all plasma recombinant IDS was antibody bound. This finding was not the case in 2 patients who were not neuronopathic with a titer of 1:1280 or less. Patients with sustained antibody titers showed increased urinary glycosaminoglycan levels compared with patients with nonsustained or no-low titers. CONCLUSIONS: Patients with the neuronopathic form and lack of IDS protein expression were most at risk to develop sustained anti-IDS antibody titers, which inhibited IDS uptake and/or activity in vitro, and the efficacy of ERT in patients by lowering urinary glycosaminoglycan levels.


Assuntos
Iduronato Sulfatase , Mucopolissacaridose II , Anticorpos , Terapia de Reposição de Enzimas/métodos , Glicosaminoglicanos/urina , Humanos , Iduronato Sulfatase/genética , Iduronato Sulfatase/uso terapêutico , Mucopolissacaridose II/tratamento farmacológico , Mucopolissacaridose II/genética , Fenótipo
18.
Mol Genet Metab Rep ; 30: 100845, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35242576

RESUMO

Hunter syndrome, or mucopolysaccharidosis (MPS) II, is a rare lysosomal disorder characterized by progressive, multi-system disease. As most symptoms cannot be reversed once established, early detection and treatment prior to the onset of clinical symptoms are critical. However, it is difficult to identify affected individuals early in disease, and therefore the long-term outcomes of initiating treatment during this optimal time period are incompletely described. We report long-term clinical outcomes of treatment when initiated prior to obvious clinical signs by comparing the courses of two siblings with neuronopathic Hunter syndrome (c.1504 T > G[p.W502G]), one who was diagnosed due to clinical disease (Sibling-O, age 3.7 years) and the other who was diagnosed before disease was evident (Sibling-Y, age 12 months), due to his older sibling's findings. The brothers began enzyme replacement therapy within a month of diagnosis. Around the age of 5 years, Sibling-O had a cognitive measurement score in the impaired range of <55 (average range 85-115), whereas Sibling-Y at this age received a score of 91. Sibling-O has never achieved toilet training and needs direct assistance with toileting, dressing, and washing, while Sibling-Y is fully toilet-trained and requires less assistance with daily activities. Both siblings have demonstrated sensory-seeking behaviors, hyperactivity, impulsivity, and sleep difficulties; however, Sibling-O demonstrates physical behaviors that his brother does not, namely biting, pushing, and frequent elopement. Since the time of diagnosis, Sibling-O has had significant joint contractures and a steady deterioration in mobility leading to the need for an adaptive stroller at age 11, while Sibling-Y at age 10.5 could hike more than 6 miles without assistance. After nearly a decade of therapy, there were more severe and life-limiting disease manifestations for Sibling-O; data from caregiver interview indicated substantial differences in Quality of Life for the child and the family, dependent on timing of ERT. The findings from this sibling pair provide evidence of superior somatic and neurocognitive outcomes associated with presymptomatic treatment of Hunter syndrome, aligned with current considerations for newborn screening.

19.
Eur J Med Genet ; 65(3): 104447, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35144014

RESUMO

MPS II is an X linked recessive lysosomal storage disorder with multi-system involvement and marked molecular heterogeneity. In this study, we explored the clinical and molecular spectrum of 144 Indian patients with MPS II from 130 unrelated families. Clinical information was collected on a predesigned clinical proforma. Sanger method was employed to sequence all the exons and exon/intron boundaries of the IDS gene. In cases where causative variation was not detected by Sanger sequencing, MLPA and RFLP were performed to identify large deletions/duplications and complex rearrangements. Cytogenetic microarray was done in one patient to see the breakpoints and extent of deletion. In one patient with no detectable likely pathogenic or pathogenic variation, whole-genome sequencing was also performed. Novel variants were systematically assessed by in silico prediction software and protein modelling. The pathogenicity of variants was established based on ACMG criteria. An attempt was also made to establish a genotype-phenotype correlation. Positive family history was present in 31% (41/130) of patients. Developmental delay and intellectual disability were the main reasons for referral. Macrocephaly, coarse facies and dysostosis were present in almost all patients. Hepatosplenomegaly, joint contractures and short stature were the characteristic features, seen in 87% (101/116), 67.8% (74/109) and 41.4% (41/99) patients respectively. Attenuated phenotype was seen in 32.6% (47/144) patients, while severe phenotype was seen in 63% (91/144) patients. The detection rate for likely pathogenic or pathogenic variants in our cohort is 95.5% (107/112) by Sanger sequencing, MLPA and RFLP. We also found two variants of unknown significance, one each by Sanger sequencing and WGS. Total of 71 variants were identified by Sanger sequencing and 29 of these variants were found to be novel. Amongst the novel variants, there was a considerable proportion (51%) of frameshift variants (15/29). Almost half of the causative variants were located in exon 3,8 and 9. A significant genotype-phenotype correlation was also noted for both known and novel variants. This information about the genotype spectrum and phenotype will be helpful for diagnostic and prognostic purposes.


Assuntos
Iduronato Sulfatase , Mucopolissacaridose II , Povo Asiático , Genótipo , Humanos , Iduronato Sulfatase/genética , Mucopolissacaridose II/diagnóstico , Mucopolissacaridose II/genética , Mutação , Fenótipo
20.
Exp Cell Res ; 412(1): 113007, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34990619

RESUMO

Mucopolysaccharidosis type II (MPS II), also known as Hunter syndrome, is a rare, lysosomal disorder caused by mutations in a gene encoding iduronate-2-sulfatase (IDS). IDS deficiency results in an accumulation of glycosaminoglycans (GAGs) and secondary accumulations of other lipids in lysosomes. Symptoms of MPS II include a variety of soft and hard tissue problems, developmental delay, and deterioration of multiple organs. Enzyme replacement therapy is an approved treatment for MPS II, but fails to improve neuronal symptoms. Cell-based neuronal models of MPS II disease are needed for compound screening and drug development for the treatment of the neuronal symptoms in MPS II. In this study, three induced pluripotent stem cell (iPSC) lines were generated from three MPS II patient-derived dermal fibroblast cell lines that were differentiated into neural stem cells and neurons. The disease phenotypes were measured using immunofluorescence staining and Nile red dye staining. In addition, the therapeutic effects of recombinant human IDS enzyme, delta-tocopherol (DT), and hydroxypropyl-beta-cyclodextrin (HPBCD) were determined in the MPS II disease cells. Finally, the neural stem cells from two of the MPS II iPSC lines exhibited typical disease features including a deficiency of IDS activity, abnormal glycosaminoglycan storage, and secondary lipid accumulation. Enzyme replacement therapy partially rescued the disease phenotypes in these cells. DT showed a significant effect in reducing the secondary accumulation of lipids in the MPS II neural stem cells. In contrast, HPBCD displayed limited or no effect in these cells. Our data indicate that these MPS II cells can be used as a cell-based disease model to study disease pathogenesis, evaluate drug efficacy, and screen compounds for drug development.


Assuntos
Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mucopolissacaridose II/tratamento farmacológico , Mucopolissacaridose II/metabolismo , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , 2-Hidroxipropil-beta-Ciclodextrina/uso terapêutico , Linhagem Celular , Terapia de Reposição de Enzimas , Glicosaminoglicanos/metabolismo , Humanos , Iduronato Sulfatase/uso terapêutico , Células-Tronco Pluripotentes Induzidas/patologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Modelos Neurológicos , Mucopolissacaridose II/patologia , Células-Tronco Neurais/patologia , Fenótipo , Proteínas Recombinantes/uso terapêutico , Tocoferóis/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA