Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23.226
Filtrar
1.
Int J Biol Macromol ; 270(Pt 2): 132417, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38759857

RESUMO

The inflammatory response plays a critical role in standard tissue repair processes, wherein active modulation of macrophage polarization is necessary for wound healing. Dopamine, a mussel-inspired bioactive material, is widely involved in wound healing, neural/bone/myocardial regeneration, and more. Recent studies indicated that dopamine-modified biomaterials can potentially alter macrophages polarization towards a pro-healing phenotype, thereby enhancing tissue regeneration. Nevertheless the immunoregulatory activity of dopamine on macrophage polarization remains unclear. This study introduces a novel interpenetrating hydrogel to bridge this research gap. The hydrogel, combining varying concentrations of oxidized dopamine with hyaluronic acid hydrogel, allows precise regulation of mechanical properties, antioxidant bioactivity, and biocompatibility. Surprisingly, both in vivo and in vitro outcomes demonstrated that dopamine concentration modulates macrophage polarization, but not linearly. Lower concentration (2 mg/mL) potentially decrease inflammation and facilitate M2 type macrophage polarization. In contrast, higher concentration (10 mg/mL) exhibited a pro-inflammatory tendency in the late stages of implantation. RNA-seq analysis revealed that lower dopamine concentrations induced the M1/M2 transition of macrophages by modulating the NF-κB signaling pathway. Collectively, this research offers valuable insights into the immunoregulation effects of dopamine-integrated biomaterials in tissue repair and regeneration.

2.
Cell Rep ; 43(5): 114250, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38762882

RESUMO

Acute stroke triggers extensive changes to myeloid immune cell populations in the brain that may be targets for limiting brain damage and enhancing repair. Immunomodulatory approaches will be most effective with precise manipulation of discrete myeloid cell phenotypes in time and space. Here, we investigate how stroke alters mononuclear myeloid cell composition and phenotypes at single-cell resolution and key spatial patterns. Our results show that multiple reactive microglial states and monocyte-derived populations contribute to an extensive myeloid cell repertoire in post-stroke brains. We identify important overlaps and distinctions among different cell types/states that involve ontogeny- and spatial-related properties. Notably, brain connectivity with infarcted tissue underpins the pattern of local and remote altered cell accumulation and reactivity. Our discoveries suggest a global but anatomically governed brain myeloid cell response to stroke that comprises diverse phenotypes arising through intrinsic cell ontogeny factors interacting with exposure to spatially organized brain damage and neuro-axonal cues.

3.
Int Immunopharmacol ; 135: 112221, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762924

RESUMO

The development of acute lung injury (ALI), a common respiratory condition with multiple causes, is significantly influenced by the pro-inflammatory environment of signal transducer and activator of transcription 3 (STAT3) in macrophages. Our study aimed to evaluate the anti-inflammatory effects of B9 (N-(4-hydroxyphenyl)-9, 10-dioxo-9, 10-dihydroanthracene-2-sulfonamide), a novel inhibitor targeting the STAT3 SH2 domain, in macrophages and to assess its therapeutic potential for ALI using a mouse model of lipopolysaccharide (LPS)-induced ALI. We found that B9 (30 mg/kg) significantly reduced lung pathological damage and neutrophil infiltration caused by the intratracheal administration of LPS. Additionally, the high expression of pro-inflammatory cytokines (TNF-α, IL-1ß, and IL-6) in alveolar lavage fluid was also inhibited by B9 treatment. The decreased expression of CD86 and increased CD206 in lung tissue demonstrated the anti-inflammatory effect of B9, which was due to its inhibition of the STAT3 signaling pathway in macrophages of ALI mice. Furthermore, B9 suppressed the activation of RAW264.7 cells induced by LPS, characterized by its ability to inhibit the activation of iNOS and STAT3 in a dose-dependent manner, as well as reduce the secretion of IL-6 and IL-1ß. The in vivo preliminary safety evaluation indicated that B9 had a favorable safety profile at the administered doses. These results suggest that B9 exerts a therapeutic effect on LPS-induced ALI, potentially by preventing the phosphorylation of STAT3 Y705 and S727 without affecting the STAT3 protein level. Taken together, these findings provide a foundation for developing B9 as a novel anti-inflammatory agent for ameliorating LPS-induced ALI.

4.
Biomater Adv ; 161: 213883, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38762928

RESUMO

Maintaining the viability of damaged pulp is critical in clinical dentistry. Pulp capping, by placing dental material over the exposed pulp, is a main approach to promote pulp-dentin healing and mineralized tissue formation. The dental materials are desired to impact on intricate physiological mechanisms in the healing process, including early regulation of inflammation, immunity, and cellular events. In this study, we developed an injectable dental pulp-derived decellularized matrix (DPM) hydrogel to modulate macrophage responses and promote dentin repair. The DPM derived from porcine dental pulp has high collagen retention and low DNA content. The DPM was solubilized by pepsin digestion (named p-DPM) and subsequently injected through a 25G needle to form hydrogel facilely at 37 °C. In vitro results demonstrated that the p-DPM induced the M2-polarization of macrophages and the migration, proliferation, and dentin differentiation of human dental pulp stem cells from deciduous teeth (SHEDs). In a mouse subcutaneous injection test, the p-DPM hydrogel was found to facilitate cell recruitment and M2 polarization during the early phase of implantation. Additionally, the acute pulp restoration in rat models proved that injectable p-DPM hydrogel as a pulp-capping agent had excellent efficacy in dentin regeneration. This study demonstrates that the DPM promotes dentin repair by modulating macrophage responses, and has a potential for pulp-capping applications in dental practice.

5.
Eur J Cell Biol ; 103(2): 151419, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38763048

RESUMO

Nuclear receptor Nur77 plays a pivotal role in immune regulation across various tissues, influencing pro-inflammatory signaling pathways and cellular metabolism. While cellular mechanics have been implicated in inflammation, the contribution of Nur77 to these mechanical processes remains elusive. Macrophages exhibit remarkable plasticity in their morphology and mechanics, enabling them to adapt and execute essential inflammatory functions, such as navigating through inflamed tissue and pathogen engulfment. However, the precise regulatory mechanisms governing these dynamic changes in macrophage mechanics during inflammation remain poorly understood. To establish the potential correlation of Nur77 with cellular mechanics, we compared bone marrow-derived macrophages (BMDMs) from wild-type (WT) and Nur77-deficient (Nur77-KO) mice and employed cytoskeletal imaging, single-cell acoustic force spectroscopy (AFS), migration and phagocytosis assays, and RNA-sequencing. Our findings reveal that Nur77-KO BMDMs exhibit changes to their actin networks compared to WT BMDMs, which is associated with a stiffer and more rigid phenotype. Subsequent in vitro experiments validated our observations, showcasing that Nur77 deficiency leads to enhanced migration, reduced adhesion, and increased phagocytic activity. The transcriptomics data confirmed altered mechanics-related pathways in Nur77-deficient macrophage that are accompanied by a robust pro-inflammatory phenotype. Utilizing previously obtained ChIP-data, we revealed that Nur77 directly targets differentially expressed genes associated with cellular mechanics. In conclusion, while Nur77 is recognized for its role in reducing inflammation of macrophages by inhibiting the expression of pro-inflammatory genes, our study identifies a novel regulatory mechanism where Nur77 governs macrophage inflammation through the modulation of expression of genes involved in cellular mechanics. Our findings suggest that immune regulation by Nur77 may be partially mediated through alterations in cellular mechanics, highlighting a potential avenue for therapeutic targeting.

6.
J Biol Chem ; : 107388, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38763333

RESUMO

As part of the classical renin-angiotensin system, the peptidase angiotensin converting enzyme (ACE) makes angiotensin II which has myriad effects on systemic cardiovascular function, inflammation, and cellular proliferation. Less well known is that macrophages and neutrophils make ACE in response to immune activation which has marked effects on myeloid cell function independent of angiotensin II. Here, we discuss both classical (angiotensin) and non-classical functions of ACE and highlight mice called ACE 10/10 in which genetic manipulation increases ACE expression by macrophages and makes these mice much more resistant to models of tumors, infection, atherosclerosis, and Alzheimer's disease. In another model called NeuACE mice, neutrophils make increased ACE and these mice are much more resistant to infection. In contrast, ACE inhibitors reduce neutrophil killing of bacteria in mice and humans. Increased expression of ACE induces a marked increase in macrophage oxidative metabolism, particularly mitochondrial oxidation of lipids, secondary to increased PPARα expression, and results in increased myeloid cell ATP. ACE present in sperm has a similar metabolic effect and the lack of ACE activity in these cells reduces both sperm motility and fertilization capacity. These non-classical effects of ACE are not due to the actions of angiotensin II but to an unknown molecule, probably a peptide, that triggers a profound change in myeloid cell metabolism and function. Purifying and characterizing this peptide could offer a new treatment for several diseases and prove potentially lucrative.

7.
Toxicology ; : 153834, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38763425

RESUMO

INTRODUCTION: Growing concerns regarding the reproductive toxicity associated with daily life exposure to micro-/nano-plastics (abbreviated as MNPs) have become increasingly prevalent. In reality, MNPs exposure involves a heterogeneous mixture of MNPs of different sizes rather than a single size. METHODS: In this study, an oral exposure mouse model was used to evaluate the effects of MNPs of four size ranges: 25-30nm, 1-5µm, 20-27µm, and 125-150µm. Adult male C57BL/6J mice were administered environmentally relevant concentrations of 0.1mg MNPs/day for 21 days. After that, open field test and computer assisted sperm assessment (CASA) were conducted. Immunohistochemical analyses of organ and cell type localization of MNPs were evaluated. Testicular transcriptome analysis was carried out to understand the molecular mechanisms. RESULTS: Our result showed that MNPs of different size ranges all impaired sperm motility, with a decrease in progressive sperm motility, linearity and straight-line velocity of sperm movement. Alterations did not manifest in animal locomotion, body weight, or sperm count. Noteworthy effects were most pronounced in the smaller MNPs size ranges (25-30nm and 1-5µm). Linear regression analysis substantiated a negative correlation between the size of MNPs and sperm curvilinear activity. Immunohistochemical analysis unveiled the intrusions of 1-5µm MNPs, but not 20-27µm and 125-150µm MNPs, into Leydig cells and testicular macrophages. Further testicular transcriptomic analysis revealed perturbations in pathways related to spermatogenesis, oxidative stress, and inflammation. Particularly within the 1-5µm MNPs group, a heightened perturbation in pathways linked to spermatogenesis and oxidative stress was observed. CONCLUSIONS: Our data support the size-dependent impairment of MNPs on sperm functionality, underscoring the pressing need for apprehensions about and interventions against the escalation of environmental micro-/nano-plastics contamination. This urgency is especially pertinent to small-sized MNPs.

8.
Microbes Infect ; : 105353, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38763478

RESUMO

The obligate intracellular parasite Leishmania binds several receptors to trigger uptake by phagocytic cells, ultimately resulting in visceral or cutaneous leishmaniasis. A series of signaling pathways in host cells, which are critical for establishment and persistence of infection, are activated during Leishmania internalization. Thus, preventing Leishmania uptake by phagocytes could be a novel therapeutic strategy for leishmaniasis. However, the host cellular machinery mediating promastigote and amastigote uptake is not well understood. Here, using small molecule inhibitors of Mitogen-activated protein/Extracellular signal regulated kinases (MAPK/ERK), we demonstrate that ERK1/2 mediates Leishmania amazonensis uptake and (to a lesser extent) phagocytosis of beads by macrophages. We find that inhibiting host MEK1/2 or ERK1/2 leads to inefficient amastigote uptake. Moreover, using inhibitors and primary macrophages lacking spleen tyrosine kinase (SYK) or Abl family kinases, we show that SYK and Abl family kinases mediate Raf, MEK, and ERK1/2 activity and are necessary for uptake. Finally, we demonstrate that trametinib, a MEK1/2 inhibitor used to treat cancer, reduces disease severity and parasite burden in Leishmania-infected mice, even if it is started after lesions develop. Our results show that maximal Leishmania infection requires MAPK/ERK and highlight potential for MAPK/ERK-mediated signaling pathways to be novel therapeutic targets for leishmaniasis.

9.
Artigo em Inglês | MEDLINE | ID: mdl-38763781

RESUMO

Macrophages are present in almost all organs. Apart from being immune sentinels, tissue-resident macrophages (TRMs) have organ-specific functions that require a specialized cellular metabolism to maintain homeostasis. In addition, organ-dependent metabolic adaptations of TRMs appear to be fundamentally distinct in homeostasis and in response to a challenge, such as infection or injury. Moreover, TRM function becomes aberrant with advancing age, contributing to inflammaging and organ deterioration, and a metabolic imbalance may underlie TRM immunosenescence. Here, we outline current understanding of the particular metabolic states of TRMs across organs and the relevance for their function. Moreover, we discuss the concomitant aging-related decline in metabolic plasticity and functions of TRMs, highlighting potential novel therapeutic avenues to promote healthy aging.

10.
J Cell Physiol ; 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38764231

RESUMO

Osteoclasts are the cells primarily responsible for inflammation-induced bone loss, as is particularly seen in rheumatoid arthritis. Increasing evidence suggests that osteoclasts formed under homeostatic versus inflammatory conditions may differ in phenotype. While microRNA-29-3p family members (miR-29a-3p, miR-29b-3p, miR-29c-3p) promote the function of RANKL-induced osteoclasts, the role of miR-29-3p during inflammatory TNF-α-induced osteoclastogenesis is unknown. We used bulk RNA-seq, histology, qRT-PCR, reporter assays, and western blot analysis to examine bone marrow monocytic cell cultures and tissue from male mice in which the function of miR-29-3p family members was decreased by expression of a miR-29-3p tough decoy (TuD) competitive inhibitor in the myeloid lineage (LysM-cre). We found that RANKL-treated monocytic cells expressing the miR-29-3p TuD developed a hypercytokinemia/proinflammatory gene expression profile in vitro, which is associated with macrophages. These data support the concept that miR-29-3p suppresses macrophage lineage commitment and may have anti-inflammatory effects. In correlation, when miR-29-3p activity was decreased, TNF-α-induced osteoclast formation was accentuated in an in vivo model of localized osteolysis and in a cell-autonomous manner in vitro. Further, miR-29-3p targets mouse TNF receptor 1 (TNFR1/Tnfrsf1a), an evolutionarily conserved regulatory mechanism, which likely contributes to the increased TNF-α signaling sensitivity observed in the miR-29-3p decoy cells. Whereas our previous studies demonstrated that the miR-29-3p family promotes RANKL-induced bone resorption, the present work shows that miR-29-3p dampens TNF-α-induced osteoclastogenesis, indicating that miR-29-3p has pleiotropic effects in bone homeostasis and inflammatory osteolysis. Our data supports the concept that the knockdown of miR-29-3p activity could prime myeloid cells to respond to an inflammatory challenge and potentially shift lineage commitment toward macrophage, making the miR-29-3p family a potential therapeutic target for modulating inflammatory response.

11.
Mol Pharm ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767388

RESUMO

The progression of liver fibrosis is determined by the interaction of damaged hepatocytes, active hepatic stellate cells, and macrophages, contributing to the development of oxidative stress and inflammatory environments within the liver. Unfortunately, the current pharmacological treatment for liver fibrosis is limited by its inability to regulate inflammation and oxidative stress concurrently. In this study, we developed a cell membrane biomaterial for the treatment of liver fibrosis, which we designated as PM. PM is a biomimetic nanomaterial constructed by encapsulating polydopamine (PDA) with a macrophage membrane (MM). It is hypothesized that PM nanoparticles (NPs) can successfully target the site of inflammation, simultaneously inhibit inflammation, and scavenge reactive oxygen species (ROS). In vitro experiments demonstrated that PM NPs exhibited strong antioxidant properties and the ability to neutralize pro-inflammatory cytokines (TNF-α, IL-6, and IL-1ß). Moreover, the capacity of PM NPs to safeguard cells from oxidative stress and their anti-inflammatory efficacy in an inflammatory model were validated in subsequent cellular experiments. Additionally, PM NPs exhibited a high biocompatibility. In a mouse model of hepatic fibrosis, PM NPs were observed to aggregate efficiently in the fibrotic liver, displaying excellent antioxidant and anti-inflammatory properties. Notably, PM NPs exhibited superior targeting, anti-inflammatory, and ROS scavenging abilities in inflamed tissues compared to MM, PDA, or erythrocyte membrane-encapsulated PDA. Under the synergistic effect of anti-inflammation and antioxidant, PM NPs produced significant therapeutic effects on liver fibrosis in mice. In conclusion, the synergistic alleviation of inflammation and ROS scavenging by this specially designed nanomaterial, PM NPs, provides valuable insights for the treatment of liver fibrosis and other inflammatory- or oxidative stress-related diseases.

12.
Acta Physiol (Oxf) ; : e14159, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767438

RESUMO

AIM: Ferroptosis is a novel type of programmed cell death that performs a critical function in diabetic nephropathy (DN). Augmenter of liver regeneration (ALR) exists in the inner membrane of mitochondria, and inhibits inflammation, apoptosis, and oxidative stress in acute kidney injury; however, its role in DN remains unexplored. Here, we aimed to identify the role of ALR in ferroptosis induction and macrophage activation in DN. METHODS: The expression of ALR was examined in DN patients, db/db DN mice, and HK-2 cells treated with high glucose (HG). The effects of ALR on ferroptosis and macrophage activation were investigated with ALR conditional knockout, lentivirus transfection, transmission electron microscopy, qRT-PCR and western blotting assay. Mass spectrometry and rescue experiments were conducted to determine the mechanism of ALR. RESULTS: ALR expression was reduced in the kidney tissues of DN patients and mice, serum of DN patients, and HG-HK-2 cells. Moreover, the inhibition of ALR promoted ferroptosis, macrophage activation, and DN progression. Mechanistically, ALR can directly bind to carnitine palmitoyltransferase-1A (CPT1A), the key rate-limiting enzyme of fatty acid oxidation (FAO), and inhibit the expression of CPT1A to regulate lipid metabolism involving FAO and lipid droplet-mitochondrial coupling in DN. CONCLUSION: Taken together, our findings revealed a crucial protective role of ALR in ferroptosis induction and macrophage activation in DN and identified it as an alternative diagnostic marker and therapeutic target for DN.

13.
Artigo em Inglês | MEDLINE | ID: mdl-38767798

RESUMO

Clinical evidence suggests anti-Hsp60 antibodies could contribute to atherosclerosis (AS) development, with unclear mechanisms. This study aims to explore the role of anti-HSP60-mediated autoimmunity in AS progression. HSP60-MHC tetramers were used to characterize HSP60-specific CD4 + T cells and assess TCR responses in mice. These cells were transplanted into AS mice to examine immune cell differentiation and infiltration in plaques and blood. Mice were injected with recombinant HSP60 or anti-HSP60 sera to evaluate effects on plaque progression and macrophage activity. Experiments with muMT-/-Apoe-/- mice examined humoral immunity's role in this autoimmunity. HSP60-reactive CD4 + T cells in AS mice differentiated into follicular helper cells, not Th1/Th17. Anti-HSP60 treatments increased macrophage infiltration and M1 polarization, indicating an anti-HSP60-driven inflammatory progression, dependent on humoral immunity. Anti-HSP60 influences macrophage infiltration, polarization, and plaque formation via humoral immunity, shedding light on its potential role in AS progression.

14.
Exp Cell Res ; 439(1): 114096, 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38768700

RESUMO

Early vascularization plays an essential role during the whole process in bone regeneration because of the function of secreting cytokines, transporting nutrients and metabolic wastes. As the preliminary basis of bone repair, angiogenesis is regulated by immune cells represented by macrophages to a great extent. However, with the discovery of the endolymphatic circulation system inside bone tissue, the role of vascularization became complicated and confusing. Herein, we developed a macrophage/lymphatic endothelial cells (LECs)/human umbilical vein endothelial cells (HUVECs) co-culture system to evaluate the effect of macrophage treated lymphatic endothelial cells on angiogenesis in vitro and in vivo. In this study, we collected the medium from macrophage (CM) for LECs culture. We found that CM2 could promote the expression of LECs markers and migration ability, which indicated the enhanced lymphogenesis. In addition, the medium from LECs was collected for culturing HUVECs. The CM2-treated LECs showed superior angiogenesis property including the migration capacity and expression of angiogenetic markers, which suggested the superior vascularization. Rat femoral condyle defect model was applied to confirm the hypothesis in vivo. Generally, M2-macrophage treated LECs showed prominent angiogenetic potential coupling with osteogenesis.

15.
Theranostics ; 14(7): 2719-2735, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38773969

RESUMO

Aim: To elucidate dynamics and functions in colonic macrophage subsets, and their regulation by Bifidobacterium breve (B. breve) and its associated metabolites in the initiation of colitis-associated colorectal cancer (CAC). Methods: Azoxymethane (AOM) and dextran sodium sulfate (DSS) were used to create a CAC model. The tumor-suppressive effect of B. breve and variations of macrophage subsets were evaluated. Intestinal macrophages were ablated to determine their role in the protective effects of B. breve. Efficacious molecules produced by B. breve were identified by non-targeted and targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. The molecular mechanism was further verified in murine bone marrow-derived macrophages (BMDMs), macrophages derived from human peripheral blood mononuclear cells (hPBMCs), and demonstrated in CAC mice. Results: B. breve alleviated colitis symptoms, delayed colonic tumorigenesis, and promoted phenotypic differentiation of immature inflammatory macrophages into mature homeostatic macrophages. On the contrary, the ablation of intestinal macrophages largely annulled the protective effects of B. breve. Microbial analysis of colonic contents revealed the enrichment of probiotics and the depletion of potential pathogens following B. breve supplementation. Moreover, indole-3-lactic acid (ILA) was positively correlated with B. breve in CAC mice and highly enriched in the culture supernatant of B. breve. Also, the addition of ILA directly promoted AKT phosphorylation and restricted the pro-inflammatory response of murine BMDMs and macrophages derived from hPBMCs in vitro. The effects of ILA in murine BMDMs and macrophages derived from hPBMCs were abolished by the aryl hydrocarbon receptor (AhR) antagonist CH-223191 or the AKT inhibitor MK-2206. Furthermore, ILA could protect against tumorigenesis by regulating macrophage differentiation in CAC mice; the AhR antagonist largely abrogated the effects of B. breve and ILA in relieving colitis and tumorigenesis. Conclusion: B. breve-mediated tryptophan metabolism ameliorates the precancerous inflammatory intestinal milieu to inhibit tumorigenesis by directing the differentiation of immature colonic macrophages.


Assuntos
Bifidobacterium breve , Diferenciação Celular , Colite , Indóis , Macrófagos , Probióticos , Animais , Camundongos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Bifidobacterium breve/metabolismo , Indóis/farmacologia , Indóis/metabolismo , Humanos , Colite/induzido quimicamente , Colite/microbiologia , Colite/complicações , Diferenciação Celular/efeitos dos fármacos , Probióticos/farmacologia , Probióticos/administração & dosagem , Modelos Animais de Doenças , Carcinogênese/efeitos dos fármacos , Neoplasias Associadas a Colite/patologia , Neoplasias Associadas a Colite/microbiologia , Neoplasias Associadas a Colite/metabolismo , Camundongos Endogâmicos C57BL , Colo/microbiologia , Colo/patologia , Colo/metabolismo , Sulfato de Dextrana , Masculino , Microbioma Gastrointestinal , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/microbiologia , Azoximetano
16.
Theranostics ; 14(7): 2757-2776, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38773982

RESUMO

Background: Cancer cells are capable of evading clearance by macrophages through overexpression of anti-phagocytic surface proteins known as "don't eat me" signals. Monoclonal antibodies that antagonize the "don't-eat-me" signaling in macrophages and tumor cells by targeting phagocytic checkpoints have shown therapeutic promises in several cancer types. However, studies on the responses to these drugs have revealed the existence of other unknown "don't eat me" signals. Moreover, identification of key molecules and interactions regulating macrophage phagocytosis is required for tumor therapy. Methods: CRISPR screen was used to identify genes that impede macrophage phagocytosis. To explore the function of Vtn and C1qbp in phagocytosis, knockdown and subsequent functional experiments were conducted. Flow cytometry were performed to explore the phagocytosis rate, polarization of macrophage, and immune microenvironment of mouse tumor. To explore the underlying molecular mechanisms, RNA sequencing, immunoprecipitation, mass spectrometry, and immunofluorescence were conducted. Then, in vivo experiments in mouse models were conducted to explore the probability of Vtn knockdown combined with anti-CD47 therapy in breast cancer. Single-cell sequencing data from the Gene Expression Omnibus from The Cancer Genome Atlas database were analyzed. Results: We performed a genome-wide CRISPR screen to identify genes that impede macrophage phagocytosis, followed by analysis of cell-to-cell interaction databases. We identified a ligand-receptor pair of Vitronectin (Vtn) and complement C1Q binding protein (C1qbp) in tumor cells or macrophages, respectively. We demonstrated tumor cell-secreted Vtn interacts with C1qbp localized on the cell surface of tumor-associated macrophages, inhibiting phagocytosis of tumor cells and shifting macrophages towards the M2-like subtype in the tumor microenvironment. Mechanistically, the Vtn-C1qbp axis facilitated FcγRIIIA/CD16-induced Shp1 recruitment, which reduced the phosphorylation of Syk. Furthermore, the combination of Vtn knockdown and anti-CD47 antibody effectively enhanced phagocytosis and infiltration of macrophages, resulting in a reduction of tumor growth in vivo. Conclusions: This work has revealed that the Vtn-C1qbp axis is a new anti-phagocytic signal in tumors, and targeting Vtn and its interaction with C1qbp may sensitize cancer to immunotherapy, providing a new molecular target for the treatment of triple-negative breast cancer.


Assuntos
Antígeno CD47 , Macrófagos , Fagocitose , Animais , Camundongos , Humanos , Macrófagos/metabolismo , Macrófagos/imunologia , Antígeno CD47/metabolismo , Antígeno CD47/genética , Feminino , Linhagem Celular Tumoral , Microambiente Tumoral/imunologia , Microambiente Tumoral/efeitos dos fármacos , Comunicação Celular , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/imunologia , Neoplasias da Mama/genética , Transdução de Sinais/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Proteínas de Transporte , Proteínas Mitocondriais
17.
Theranostics ; 14(7): 2794-2815, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38773984

RESUMO

Rationale: Idiopathic pulmonary fibrosis (IPF) is an irreversible, fatal interstitial lung disease lacking specific therapeutics. Nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme of the nicotinamide adenine dinucleotide (NAD) salvage biosynthesis pathway and a cytokine, has been previously reported as a biomarker for lung diseases; however, the role of NAMPT in pulmonary fibrosis has not been elucidated. Methods: We identified the NAMPT level changes in pulmonary fibrosis by analyzing public RNA-Seq databases, verified in collected clinical samples and mice pulmonary fibrosis model by Western blotting, qRT-PCR, ELISA and Immunohistochemical staining. We investigated the role and mechanism of NAMPT in lung fibrosis by using pharmacological inhibition on NAMPT and Nampt transgenic mice. In vivo macrophage depletion by clodronate liposomes and reinfusion of IL-4-induced M2 bone marrow-derived macrophages (BMDMs) from wild-type mice, combined with in vitro cell experiments, were performed to further validate the mechanism underlying NAMPT involving lung fibrosis. Results: We found that NAMPT increased in the lungs of patients with IPF and mice with bleomycin (BLM)-induced pulmonary fibrosis. NAMPT inhibitor FK866 alleviated BLM-induced pulmonary fibrosis in mice and significantly reduced NAMPT levels in bronchoalveolar lavage fluid (BALF). The lung single-cell RNA sequencing showed that NAMPT expression in monocytes/macrophages of IPF patients was much higher than in other lung cells. Knocking out NAMPT in mouse monocytes/macrophages (Namptfl/fl;Cx3cr1CreER) significantly alleviated BLM-induced pulmonary fibrosis in mice, decreased NAMPT levels in BALF, reduced the infiltration of M2 macrophages in the lungs and improved mice survival. Depleting monocytes/macrophages in Namptfl/fl;Cx3cr1CreER mice by clodronate liposomes and subsequent pulmonary reinfusion of IL-4-induced M2 BMDMs from wild-type mice, reversed the protective effect of monocyte/macrophage NAMPT-deletion on lung fibrosis. In vitro experiments confirmed that the mechanism of NAMPT engaged in pulmonary fibrosis is related to the released NAMPT by macrophages promoting M2 polarization in a non-enzyme-dependent manner by activating the STAT6 signal pathway. Conclusions: NAMPT prompts bleomycin-induced pulmonary fibrosis by driving macrophage M2 polarization in mice. Targeting the NAMPT of monocytes/macrophages is a promising strategy for treating pulmonary fibrosis.


Assuntos
Bleomicina , Citocinas , Fibrose Pulmonar Idiopática , Macrófagos , Camundongos Endogâmicos C57BL , Nicotinamida Fosforribosiltransferase , Animais , Nicotinamida Fosforribosiltransferase/metabolismo , Camundongos , Macrófagos/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/induzido quimicamente , Citocinas/metabolismo , Humanos , Modelos Animais de Doenças , Pulmão/patologia , Pulmão/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Camundongos Transgênicos , Masculino , Piperidinas/farmacologia , Feminino , Acrilamidas
18.
Heliyon ; 10(9): e30335, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38774079

RESUMO

Background: OA imposes a heavy burden on patients and society in that its mechanism is still unclear, and there is a lack of effective targeted therapy other than surgery. Methods: The osteoarthritis dataset GSE55235 was downloaded from the GEO database and analyzed for differential genes by limma package, followed by analysis of immune-related modules by xcell immune infiltration combined with the WGCNA method, and macrophage polarization-related genes were downloaded according to the Genecard database, and VennDiagram was used to determine their intersection. These genes were also subjected to gene ontology (GO), disease ontology (DO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses. Using machine learning, the key osteoarthritis genes were finally screened. Using single gene GSEA and GSVA, we examined the significance of these key gene functions in immune cell and macrophage pathways. Next, we confirmed the correctness of the hub gene expression profile using the GSE55457 dataset and the ROC curve. Finally, we projected TF, miRNA, and possible therapeutic drugs using the miRNet, TargetScanHuman, ENCOR, and NetworkAnalyst databases, as well as Enrichr. Results: VennDiagram obtained 71 crossover genes for DEGs, WGCNA-immune modules, and Genecards; functional enrichment demonstrated NF-κB, IL-17 signaling pathway play an important role in osteoarthritis-macrophage polarization genes; machine learning finally identified CSF1R, CX3CR1, CEBPB, and TLR7 as hub genes; GSVA analysis showed that CSF1R, CEBPB play essential roles in immune infiltration and macrophage pathway; validation dataset GSE55457 analyzed hub genes were statistically different between osteoarthritis and healthy controls, and the AUC values of ROC for CSF1R, CX3CR1, CEBPB and TLR7 were more outstanding than 0.65. Conclusions: CSF1R, CEBPB, CX3CR1, and TLR7 are potential diagnostic biomarkers for osteoarthritis, and CSF1R and CEBPB play an important role in regulating macrophage polarization in osteoarthritis progression and are expected to be new drug targets.

19.
Front Pharmacol ; 15: 1351538, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774206

RESUMO

Macrophage polarization is closely associated with the pathogenesis of ulcerative colitis (UC). Quercetin, a flavonoid, has shown promise as a treatment for inflammatory diseases, but its specific mechanism of action remains unclear. This study investigates whether quercetin can regulate intestinal macrophage polarization and promote intestinal tissue repair via the cGAS-STING pathway for the treatment of UC. In vivo, mice with 3% DSS-induced UC were intraperitoneally injected with quercetin and RU.521 for 7 days, following which their general conditions and corresponding therapeutic effects were assessed. The impact of interferon-stimulated DNA (ISD) and quercetin on macrophage polarization and the cGAS-STING pathway was investigated using RAW264.7 cells and bone marrow-derived macrophages (BMDMs) in vitro. The results demonstrated that ISD induced M1 macrophage polarization and activated the cGAS-STING pathway in vitro, while quercetin reversed ISD's inflammatory effects. In vivo, quercetin suppressed the cGAS-STING pathway in the intestinal macrophages of DSS-induced UC mice, which reduced M1 macrophage polarization, increased M2 polarization, and facilitated intestinal barrier repair in UC. Taken together, these findings provide new insights into the mechanisms via which quercetin could be used to treat UC.

20.
J Inflamm Res ; 17: 3101-3113, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774443

RESUMO

Purpose: This study aimed to assess liver involvement and investigate its correlation with rapidly progressive interstitial lung disease (RP-ILD) and mortality in anti-melanoma differentiation-associated gene 5 antibody-positive (anti-MDA5 positive) DM patients. Patients and Methods: This retrospective study included 159 patients diagnosed with anti-MDA5 positive DM or anti-synthetase syndrome (ASyS). Clinical features and laboratory findings were compared between patients with anti-MDA5 positive DM and patients with ASyS. In the anti-MDA5 positive DM cohort, clinical features and laboratory findings between patients with liver involvement and without liver involvement were further compared. The effects of liver involvement on the overall survival (OS) and development of RP-ILD were also analyzed using Kaplan-Meier method and Cox regression analysis. Results: Levels of serum aspartate aminotransferase (AST), alanine transaminase (ALT), γ-glutamyl transferase (γGT) and alkaline phosphatase (ALP) were all significantly higher in patients with anti-MDA5 positive DM than those in patients with ASyS. In our cohort of anti-MDA5 positive DM patents, 31 patients (34.4%) were complicated with liver involvement. Survival analysis revealed that serum ferritin >1030.0 ng/mL (p<0.001), ALT >103.0 U/l (p<0.001), AST >49.0 U/l (p<0.001), γGT >82.0 U/l (p<0.001), ALP >133.0 U/l (p<0.001), lactate dehydrogenase (LDH)>474.0 U/l (p<0.001), plasma albumin (ALB) <35.7 g/l (p<0.001) and direct bilirubin (DBIL) >2.80 µmol/l (p=0.002) predicted poor prognosis. The incidence of RP-ILD increased remarkably in patients with liver involvement compared to patients without liver involvement (58.1% vs 22.0%, p=0.001). Multivariate analysis revealed that elevated serum ALT level was an independent risk factor for mortality (HR 6.0, 95% CI 2.3, 16.2, p<0.001) and RP-ILD (HR 5.9, 95% CI 2.2, 15.9, p<0.001) in anti-MDA5 positive DM patents. Conclusion: Liver involvement is common in patients with anti-MDA5 positive DM. Elevated serum ALT level was an independent risk factor for RP-ILD and mortality in patients with anti-MDA5 positive DM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...