Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 203: 116444, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705002

RESUMO

An efficient and sensitivity approach, which combines solid-phase extraction or ultrasonic extraction for pretreatment, followed by ultra-performance liquid chromatography-tandem mass spectrometry, has been established to simultaneously determine eight lipophilic phycotoxins and one hydrophilic phycotoxin in seawater, sediment and biota samples. The recoveries and matrix effects of target analytes were in the range of 61.6-117.3 %, 55.7-121.3 %, 57.5-139.9 % and 82.6 %-95.0 %, 85.8-106.8 %, 80.7 %-103.3 % in seawater, sediment, and biota samples, respectively. This established method revealed that seven, six and six phycotoxins were respectively detected in the Beibu Gulf, with concentrations ranging from 0.14 ng/L (okadaic acid, OA) to 26.83 ng/L (domoic acid, DA) in seawater, 0.04 ng/g (gymnodimine-A, GYM-A) to 2.75 ng/g (DA) in sediment and 0.01 ng/g (GYM-A) to 2.64 ng/g (domoic acid) in biota samples. These results suggest that the presented method is applicable for the simultaneous determination of trace marine lipophilic and hydrophilic phycotoxins in real samples.


Assuntos
Biota , Monitoramento Ambiental , Toxinas Marinhas , Água do Mar , Extração em Fase Sólida , Toxinas Marinhas/análise , Monitoramento Ambiental/métodos , Água do Mar/química , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise , Espectrometria de Massas em Tandem , Interações Hidrofóbicas e Hidrofílicas , Ácido Caínico/análogos & derivados , Ácido Caínico/análise , Compostos Heterocíclicos com 3 Anéis , Hidrocarbonetos Cíclicos , Iminas
2.
Food Chem ; 438: 137995, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38029684

RESUMO

Marine toxins can lead to varying degrees of human poisoning, often resulting in fatal symptoms and causing significant economic losses in seafood-producing regions. To gain a deeper comprehension of the role of marine toxins in seafood and their impact on the environment, it is imperative to develop rapid, cost-effective, environmentally friendly, and efficient methods for sample pretreatment and determination to mitigate adverse impacts of marine toxins. This review presents a comprehensive overview of advancements made in sample pretreatment and determination techniques for marine toxins since 2017. The advantages and disadvantages of various technologies were critically examined. Additionally, the current challenges and future development strategies for the analysis of marine toxins are provided.


Assuntos
Toxinas Marinhas , Alimentos Marinhos , Humanos , Toxinas Marinhas/toxicidade , Toxinas Marinhas/análise , Alimentos Marinhos/análise
3.
Toxins (Basel) ; 15(6)2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37368696

RESUMO

Harmful algal blooms (HABs) in coastal British Columbia (BC), Canada, negatively impact the salmon aquaculture industry. One disease of interest to salmon aquaculture is Net Pen Liver Disease (NPLD), which induces severe liver damage and is believed to be caused by the exposure to microcystins (MCs). To address the lack of information about algal toxins in BC marine environments and the risk they pose, this study investigated the presence of MCs and other toxins at aquaculture sites. Sampling was carried out using discrete water samples and Solid Phase Adsorption Toxin Tracking (SPATT) samplers from 2017-2019. All 283 SPATT samples and all 81 water samples tested positive for MCs. Testing for okadaic acid (OA) and domoic acid (DA) occurred in 66 and 43 samples, respectively, and all samples were positive for the toxin tested. Testing for dinophysistoxin-1 (DTX-1) (20 samples), pectenotoxin-2 (PTX-2) (20 samples), and yessotoxin (YTX) (17 samples) revealed that all samples were positive for the tested toxins. This study revealed the presence of multiple co-occurring toxins in BC's coastal waters and the levels detected in this study were below the regulatory limits for health and recreational use. This study expands our limited knowledge of algal toxins in coastal BC and shows that further studies are needed to understand the risks they pose to marine fisheries and ecosystems.


Assuntos
Ecossistema , Toxinas Marinhas , Toxinas Marinhas/toxicidade , Colúmbia Britânica , Proliferação Nociva de Algas , Água
4.
Harmful Algae ; 124: 102388, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37164556

RESUMO

To date, the putative shellfish toxin azaspiracid 59 (AZA-59) produced by Azadinium poporum (Dinophyceae) has been the only AZA found in isolates from the Pacific Northwest coast of the USA (Northeast Pacific Ocean). Anecdotal reports of sporadic diarrhetic shellfish poisoning-like illness, with the absence of DSP toxin or Vibrio contamination, led to efforts to look for other potential toxins, such as AZAs, in water and shellfish from the region. A. poporum was found in Puget Sound and the outer coast of Washington State, USA, and a novel AZA (putative AZA-59) was detected in low quantities in SPATT resins and shellfish. Here, an A. poporum strain from Puget Sound was mass-cultured and AZA-59 was subsequently purified and structurally characterized. In vitro cytotoxicity of AZA-59 towards Jurkat T lymphocytes and acute intraperitoneal toxicity in mice in comparison to AZA-1 allowed the derivation of a provisional toxicity equivalency factor of 0.8 for AZA-59. Quantification of AZA-59 using ELISA and LC-MS/MS yielded reasonable quantitative results when AZA-1 was used as an external reference standard. This study assesses the toxic potency of AZA-59 and will inform guidelines for its potential monitoring in case of increasing toxin levels in edible shellfish.


Assuntos
Dinoflagellida , Intoxicação por Frutos do Mar , Animais , Camundongos , Cromatografia Líquida , Espectrometria de Massas em Tandem , Frutos do Mar/análise , Dinoflagellida/química , Washington
5.
Food Chem ; 390: 133094, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35545003

RESUMO

Current regulatory limit values for paralytic shellfish toxins (PSTs) in shellfish products are not considering the bioaccessibility of PSTs in seafood matrix during the gastrointestinal digestion for human beings. In this study, the bioaccessibility of PSTs in the shellfish cooked by different ways was assessed using a static in vitro human digestion model. Results showed that the dissolution of PSTs from shellfish tissues was not significantly affected by digestion time, ratios of solid weight to liquid volume (S/L) and cooking methods, but obviously facilitated by digestive enzymes. Different cooking ways reduced the contents of PSTs in shellfish by 45% to 88%, but did not significantly change the high bioaccessibility of PSTs that ranged from 80% to 95% in four different shellfish matrices. Transformation or degradation of PSTs occurred during the simulated digestion process. This work will help us to objectively assess the potential risks of PSTs to human health.


Assuntos
Intoxicação por Frutos do Mar , Culinária , Humanos , Toxinas Marinhas/análise , Alimentos Marinhos/análise , Frutos do Mar/análise , Espectrometria de Massas em Tandem/métodos
6.
Harmful Algae ; 111: 102152, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35016765

RESUMO

Marine phycotoxins associated with paralytic shellfish poisoning (PSP), diarrhetic shellfish poisoning (DSP), amnesic shellfish poisoning (ASP), neurotoxic shellfish poisoning (NSP), ciguatera fish poisoning (CFP), tetrodotoxin (TTX), palytoxin (PLTX) and neurotoxin ß-N-methylamino-L-alanine (BMAA) have been investigated and routinely monitored along the coast of China. The mouse bioassay for monitoring of marine toxins has been progressively replaced by the enzyme-linked immunosorbent assay (ELISA) and liquid chromatography tandem mass spectrometry (LC-MS/MS), which led to the discovery of many new hydrophilic and lipophilic marine toxins. PSP toxins have been detected in the whole of coastal waters of China, where they are the most serious marine toxins. PSP events in the Northern Yellow Sea, the Bohai Sea and the East China Sea are a cause of severe public health concern. Okadaic acid (OA) and dinophysistoxin-1 (DTX1), which are major toxin components associated with DSP, were mainly found in coastal waters of Zhejiang and Fujian provinces, and other lipophilic toxins, such as pectenotoxins, yessotoxins, azaspiracids, cyclic imines, and dinophysistoxin-2(DTX2) were detected in bivalves, seawater, sediment, as well as phytoplankton. CFP events mainly occurred in the South China Sea, while TTX events mainly occurred in Jiangsu, Zhejiang and Fujian provinces. Microalgae that produce PLTX and BMAA were found in the phytoplankton community along the coastal waters of China.


Assuntos
Intoxicação por Frutos do Mar , Frutos do Mar , Animais , Cromatografia Líquida/métodos , Camundongos , Piranos/análise , Frutos do Mar/análise , Espectrometria de Massas em Tandem/métodos
7.
Mar Drugs ; 17(11)2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31683576

RESUMO

Marine sediments can reserve many environmental pollutants. Lipophilic marine phycotoxins (LMPs) are natural toxic substances widespread in the marine environment; however, evidence of their existence in sediment is scarce. In the present study, in order to explore the occurrence and distribution characteristics of LMPs in sediment, surface sediment samples collected from a tropical area of Daya Bay (DYB) at different seasons, were analyzed using liquid chromatography with tandem mass spectrometry (LC-MS/MS). According to the results, up to six toxin compounds were detected in sediment samples from DYB, OA and DTX1 had the highest levels, followed by PTX2, homo-YTX, AZA2, and GYM. Although AZA2 and GYM were found in most of the sediment, OA, DTX1, homo-YTX, and PTX2 were the predominant toxin compounds, and PTX2 was the most ubiquitous toxin in sediment. The spatial distribution of LMP components in the sediment fluctuated with sampling times, partially according to the physical-chemical parameters of the sediment. There are likely several sources for LMPs existing in surface sediments, but it is difficult to determine contributions of a specific toxin-source in the sediment. Therefore, marine sediments may be a toxin reservoir for LMPs accumulation in benthic organisms via food chains.


Assuntos
Monitoramento Ambiental/métodos , Toxinas Marinhas/análise , Poluentes Químicos da Água/análise , Baías , China , Poluentes Ambientais/análise
8.
Mar Drugs ; 17(5)2019 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-31137661

RESUMO

Pinnatoxins (PnTXs) A-H constitute an emerging family belonging to the cyclic imine group of phycotoxins. Interest has been focused on these fast-acting and highly-potent toxins because they are widely found in contaminated shellfish. Despite their highly complex molecular structure, PnTXs have been chemically synthetized and demonstrated to act on various nicotinic acetylcholine receptor (nAChR) subtypes. In the present work, PnTX-A, PnTX-G and analogue, obtained by chemical synthesis with a high degree of purity (>98%), have been studied in vivo and in vitro on adult mouse and isolated nerve-muscle preparations expressing the mature muscle-type (α1)2ß1δε nAChR. The results show that PnTX-A and G acted on the neuromuscular system of anesthetized mice and blocked the compound muscle action potential (CMAP) in a dose- and time-dependent manner, using a minimally invasive electrophysiological method. The CMAP block produced by both toxins in vivo was reversible within 6-8 h. PnTX-A and G, applied to isolated extensor digitorum longus nerve-muscle preparations, blocked reversibly isometric twitches evoked by nerve stimulation. The action of PnTX-A was reversed by 3,4-diaminopyridine. Both toxins exerted no direct action on muscle fibers, as revealed by direct muscle stimulation. PnTX-A and G blocked synaptic transmission at mouse neuromuscular junctions and PnTX-A amino ketone analogue (containing an open form of the imine ring) had no effect on neuromuscular transmission. These results indicate the importance of the cyclic imine for interacting with the adult mammalian muscle-type nAChR. Modeling and docking studies revealed molecular determinants responsible for the interaction of PnTXs with the muscle-type nAChR.


Assuntos
Alcaloides/farmacologia , Músculo Esquelético/efeitos dos fármacos , Compostos de Espiro/farmacologia , Esteróis/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Alcaloides/síntese química , Animais , Feminino , Masculino , Camundongos , Bloqueadores Neuromusculares/síntese química , Bloqueadores Neuromusculares/farmacologia , Antagonistas Nicotínicos/síntese química , Antagonistas Nicotínicos/farmacologia , Ligação Proteica/efeitos dos fármacos , Receptores Nicotínicos/metabolismo , Compostos de Espiro/síntese química , Esteróis/síntese química
9.
J Neurochem ; 142 Suppl 2: 41-51, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28326551

RESUMO

We present an overview of the toxicological profile of the fast-acting, lipophilic macrocyclic imine toxins, an emerging family of organic compounds associated with algal blooms, shellfish contamination and neurotoxicity. Worldwide, shellfish contamination incidents are expanding; therefore, the significance of these toxins for the shellfish food industry deserves further study. Emphasis is directed to the dinoflagellate species involved in their production, their chemical structures, and their specific mode of interaction with their principal natural molecular targets, the nicotinic acetylcholine receptors, or with the soluble acetylcholine-binding protein, used as a surrogate receptor model. The dinoflagellates Karenia selliformis and Alexandrium ostenfeldii / A. peruvianum have been implicated in the biosynthesis of gymnodimines and spirolides, while Vulcanodinium rugosum is the producer of pinnatoxins and portimine. The cyclic imine toxins are characterized by a macrocyclic skeleton comprising 14-27 carbon atoms, flanked by two conserved moieties, the cyclic imine and the spiroketal ring system. These phycotoxins generally display high affinity and broad specificity for the muscle type and neuronal nicotinic acetylcholine receptors, a feature consistent with their binding site at the receptor subunit interfaces, composed of residues highly conserved among all nAChRs, and explaining the diverse toxicity among animal species. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms.


Assuntos
Acetilcolina/antagonistas & inibidores , Dinoflagellida/efeitos dos fármacos , Iminas/toxicidade , Antagonistas Nicotínicos/farmacologia , Receptores Nicotínicos/metabolismo , Toxinas Biológicas/farmacologia , Animais , Dinoflagellida/isolamento & purificação , Humanos , Receptores Nicotínicos/efeitos dos fármacos , Toxinas Biológicas/metabolismo
10.
Toxicol Sci ; 147(1): 156-67, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26063663

RESUMO

Spirolides are a large family of lipophilic marine toxins produced by dinoflagellates that have been detected in contaminated shellfish. Among them, 13,19-didesmethyl and 13-desmethyl spirolide C phycotoxins are widely distributed and their mode of action needs to be clearly defined. In order to further characterize the pharmacological profiles of these phycotoxins on various nicotinic acetylcholine receptor (nAChR) subtypes and to examine whether they act on muscarinic receptors (mAChRs), functional electrophysiological studies and competition binding experiments have been performed. While 13-desmethyl spirolide C interacted efficiently with sub-nanomolar affinities and low selectivity with muscular and neuronal nAChRs, 13,19-didesmethyl spirolide C was more selective of muscular and homopentameric α7 receptors and recognized only weakly neuronal heteropentameric receptors, especially the α4ß2 subtype. Thus, the presence of an additional methyl group on the tetrahydropyran ring significantly modified the pharmacological profile of 13-desmethyl spirolide C by notably increasing its affinity on certain neuronal nAChRs. Structural explanations of this selectivity difference are proposed, based on molecular docking experiments modeling different spirolide-receptor complexes. In addition, the 2 spirolides interacted only with low micromolar affinities with the 5 mAChRs, highlighting that the toxicity of the spirolide C analogs is mainly due to their high inhibition potency on various peripheral and central nAChRs and not to their low ability to interact with mAChR subtypes.


Assuntos
Toxinas Marinhas/toxicidade , Síndromes Neurotóxicas/metabolismo , Receptores Muscarínicos/efeitos dos fármacos , Receptores Nicotínicos/efeitos dos fármacos , Compostos de Espiro/toxicidade , Animais , Células CHO , Cricetinae , Cricetulus , Humanos , Contração Isométrica/efeitos dos fármacos , Camundongos , Simulação de Acoplamento Molecular , Células Musculares/efeitos dos fármacos , Junção Neuromuscular/efeitos dos fármacos , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Técnicas de Patch-Clamp , Compostos de Espiro/química , Relação Estrutura-Atividade , Xenopus , Receptor Nicotínico de Acetilcolina alfa7/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA