Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 340
Filtrar
1.
Aquat Toxicol ; 273: 107025, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39032424

RESUMO

Marine pollution research in the last 15 years focused on an emerging anthropogenic contaminant: plastic debris and more specifically, microplastics. Since, not only its physical impacts on marine invertebrates were studied, but also its additives. Phthalate, a plasticizer commonly found in the ocean and known endocrine disruptor was already observed in different aquatic invertebrates, but few is known about its presence and possible effects in Porifera physiology. Our study aimed to analyze potential shifts in Hymeniacidon heliophila (Desmosponge) microbiome after exposure to Di(2-ethylhexyl) phthalate (DEHP), the most common phthalate found in the ocean, in three different doses for 4 and 24 h. Results indicate that alpha diversity had significantly changed between control and exposed organisms but not in all multicomparisons. Microbial community structure changed after exposure as well although most abundant phyla did not vary along the experiment. The core microbiome between control and each exposed organisms contained the vast majority of total ASVs and a few ASVs were exclusive to each experimental group. After DEHP exposure, microbial classes had significant changes and species with phthalate degradation enzymes were identified in a specifically dose dependent manner pointing to a possible bacterial consortium responsible for the phthalate degradation. The bacterial detoxification activity may lead to H. heliophila resistance during DEHP exposure in polluted environmental conditions.

2.
Mar Drugs ; 22(6)2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38921577

RESUMO

Sortase A (SrtA) is a cysteine transpeptidase that binds to the periplasmic membrane and plays a crucial role in attaching surface proteins, including staphylococcal protein A (SpA), to the peptidoglycan cell wall. Six pentacyclic polyketides (1-6) were isolated from the marine sponge Xestospongia sp., and their structures were elucidated using spectroscopic techniques and by comparing them to previously reported data. Among them, halenaquinol (2) was found to be the most potent SrtA inhibitor, with an IC50 of 13.94 µM (4.66 µg/mL). Semi-quantitative reverse transcription PCR data suggest that halenaquinol does not inhibit the transcription of srtA and spA, while Western blot analysis and immunofluorescence microscopy images suggest that it blocks the cell wall surface anchoring of SpA by inhibiting the activity of SrtA. The onset and magnitude of the inhibition of SpA anchoring on the cell wall surface in S. aureus that has been treated with halenaquinol at a value 8× that of the IC50 of SrtA are comparable to those for an srtA-deletion mutant. These findings contribute to the understanding of the mechanism by which marine-derived pentacyclic polyketides inhibit SrtA, highlighting their potential as anti-infective agents targeting S. aureus virulence.


Assuntos
Aminoaciltransferases , Antibacterianos , Proteínas de Bactérias , Parede Celular , Cisteína Endopeptidases , Poríferos , Staphylococcus aureus , Aminoaciltransferases/antagonistas & inibidores , Aminoaciltransferases/metabolismo , Cisteína Endopeptidases/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/antagonistas & inibidores , Animais , Poríferos/microbiologia , Antibacterianos/farmacologia , Antibacterianos/química , Policetídeos/farmacologia , Policetídeos/química
3.
Sci Total Environ ; 945: 174070, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38901596

RESUMO

Coral reefs consist of various alive elements with specific biological functions. Tubular sponges, as the main coral reefs' constituents, have a marvelous mechanism. They receive nutrients by suctioning from the perforated body (Ostia) and pumping the un-digested materials through the water column from the top mouth (Osculum). This mechanism can be an inspiration for making a device to control or improve sediment/pollutant transport. In the current study, an attempt has been made to evaluate an inspired concept's effects on flow hydrodynamics. In this regard, OpenFOAM® V. 1812 (interFOAM solver) and image processing technique were deployed. The perforated finite-height cylinders (height to diameter ratio of 2.5) with various suction/pump discharges (i.e., J = 150, 300, 350, 400, 450, and 600 lit/h) were considered. The results indicated that increasing the outflow discharge (J ≥ 600 lit/h) could widen the wake by flapping the shear layer. In the vertical plane, the results showed that dipole vortices turned into quadrupole vortex. On the free surface, tip-vortices and counter-rotating vortex pairs (CRVP) generated saw-toothed vortices on two sides of the cylinder. Generating these unique vortices is proof of enhancing the momentum exchange through the water column.

4.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38931391

RESUMO

Hymedesmiidae is one of the largest families of marine sponges and stands out as an exceptional source of variable metabolites with diverse biological activities. In this study, the ethyl acetate fraction (HE) of a Hymedesmia sp. marine sponge from the Red Sea, Egypt, was analyzed for the first time using Ultra-performance liquid chromatography electrospray ionization tandem mass spectrometry (UPLC-ESI-MS/MS) analysis. The analysis tentatively identified 29 compounds in this fraction, including the isolation and identification of six compounds (two pyrimidine nucleosides, one purine, and two pyrimidine bases in addition to one cerebroside) for the first time. The structures of the isolated compounds were established by 1D and 2D NMR (nuclear magnetic resonance), MS (mass spectrometry), and IR (infrared) spectroscopy. Furthermore, the cytotoxic, antioxidant, and antimicrobial activities of the ethyl acetate fraction were evaluated in vitro. The fraction exhibited strong DPPH scavenging activity with an IC50 of 78.7 µg/mL, compared to ascorbic acid as a positive control with an IC50 of 10.6 µg/mL. It also demonstrated significant cytotoxic activity with IC50 values of 13.5 µg/mL and 25.3 µg/mL against HCT-116 and HEP-2 cell lines, respectively, compared to vinblastine as a positive control with IC50 values of 2.34 µg/mL and 6.61 µg/mL against HCT-116 and HEP-2, respectively. Additionally, the ethyl acetate fraction displayed promising antibacterial activity against S. aureus with a MIC value of 62.5 µg/mL, compared to ciprofloxacin as a positive control with MIC values of 1.56 µg/mL for Gram-positive bacteria and 3.125 µg/mL for Gram-negative bacteria. It also exhibited activity against E. coli and P. aeruginosa with MIC values of 250 µg/mL and 500 µg/mL, respectively. Briefly, this is the first report on the biological activities and secondary metabolite content of the ethyl acetate fraction of Hymedesmia sp. marine sponge, emphasizing the potential for further research against resistant bacterial and fungal strains, as well as different cancer cell lines. The ethyl acetate fraction of Hymedesmia sp. is a promising source of safe and unique natural drugs with potential therapeutic and pharmaceutical benefits.

5.
J Asian Nat Prod Res ; : 1-7, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38945154

RESUMO

A new steroid, 2a-oxa-2-oxo-5ß-hydroxy-3,4-dinor-24-methylcholesta-22E-ene (1), together with 10 known ones (2-11), was isolated from the marine sponge Cliona sp. The structures of these compounds were determined by the spectroscopic methods (UV, IR, MS, and NMR) and X-ray diffraction analysis. Compound 1 was the third example of 3,4-dinorsteroid with a hemiketal at C-5 that was isolated from the natural source. In addition, the antibacterial activities of these compounds were also evaluated. However, none of them exhibited significant inhibition effects.

6.
Chem Biodivers ; 21(7): e202400832, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38712949

RESUMO

Two new cytochalasans, marcytoglobosins A (1) and B (2) were isolated from the marine sponge associated fungus Chaetomium globosum 162105, along with six known compounds (3-8). The complete structures of two new compounds were determined based on 1D/2D NMR and HR-MS spectroscopic analyses coupled with ECD calculations. All eight isolates were evaluated for their antibacterial activity. Among them, compounds 3-8 displayed antibacterial effects against Staphylococcus epidermidis, Bacillus thuringiensis, Pseudomonas syringae pv. Actinidiae, Vibrio alginolyticus, and Edwardsiella piscicida with minimum inhibitory concentration (MIC) values ranging from 10 to 25 µg/mL.


Assuntos
Antibacterianos , Chaetomium , Testes de Sensibilidade Microbiana , Poríferos , Chaetomium/química , Animais , Poríferos/microbiologia , Poríferos/química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Citocalasinas/farmacologia , Citocalasinas/química , Citocalasinas/isolamento & purificação , Conformação Molecular
7.
Chem Biodivers ; : e202400962, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720173

RESUMO

Four new psammaplysin derivatives (1-4) with fatty acyl substituents, designated irciniaplysins A-D, and three known psammaplysins (5-7) were isolated from a marine sponge Ircinia sp. Their structures were elucidated using extensive spectroscopic analyses. The positions of the double bonds and the branch points of the fatty acyl side chains were determined by GC-MS analysis of their fatty acid methyl ester (FAME) derivatives. Irciniaplysins A (1) and B (2) contained an unusual long-chain fatty acyl substituent with a 5,9-diene unit. The isolated compounds were evaluated for their cytotoxic activity against the human colorectal carcinoma (HCT 116) cells, however, none of these compounds showed significant activity.

8.
3 Biotech ; 14(5): 146, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38706926

RESUMO

This study aims to isolate endosymbiontic fungi from the marine sponge Lamellodysidea herbacea and to explore their antioxidant potential. Marine-derived fungi, with their vast biodiversity, are considered a promising source of novel antioxidants which can replace synthetic ones. Marine sponges have previously reported bioactive properties that could ameliorate oxidative stress, particularly their associated fungi, producing high-frequency bioactive molecules (adaptogenic molecules) in response to stressors. 19 endosymbiont fungi associated with marine sponges were isolated, and their extracts were evaluated for their antioxidant capacities. Extract of an endosymbiont fungus, isolate SPG6, identified as Alternaria destruens, through surface electron microscopy (SEM) and ITS gene sequencing, showed broad range antioxidant activities (EC50 values) (free radical scavenging 32.54 mg L-1, Hydroxyl radical scavenging activity < 0.078 g L-1, total reducing power 0.114 g L-1, Chelating power 0.262 g L-1, H2O2 scavenging activity < 0.078 g L-1, and Superoxide radical scavenging activity > 5.0 g L-1). The extract of isolate SPG6 was fractioned and analyzed through GC-MS. Marine sponge-associated endosymbiont fungi are a rich source of antioxidant molecules. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-024-03972-1.

9.
Asian Pac J Cancer Prev ; 25(5): 1737-1743, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38809646

RESUMO

OBJECTIVE: This study aimed to investigate the cytotoxicity effect of the ethyl acetate extract of Aaptos suberitoides on colorectal cancer cells (DLD-1) and murine fibroblast cells (NIH-3T3). METHODS: A. suberitoides was collected from Putus Island, Bunaken National Park, North Sulawesi, Indonesia, and was processed with maceration and ethyl acetate extraction. The sponge extract was characterized based on Thin Layer Chromatography (TLC) and then identified by using LCMS/MS analysis. DLD-1 and NIH-3T3 cells were treated with the ethyl acetate extract and then followed by 3- [4, 5-dimethylthiazol-2-yl] -2.5 diphenyl tetrazolium bromide (MTT) assay to assess their cytotoxicity effect. RESULTS: LCMS/MS analysis showed that the most abundant compounds in this extract were identified as aaptamine (1). Furthermore, this study revealed that the active ethyl acetate fraction of A. suberitoides has cytotoxic effects in colorectal cancer DLD-1 cells with an IC50 value of 9.597 µg/mL, higher than NIH-3T3 cells with an IC50 value of 12.23 µg/mL Thus, the active ethyl acetate fraction of A. suberitoides is considered more toxic to cancer cells than normal cells. CONCLUSION: This study provides the first evidence to support the role of the ethyl acetate extract of A. suberitoides sponge extracts to be developed as a colorectal anticancer agent.


Assuntos
Proliferação de Células , Neoplasias Colorretais , Poríferos , Animais , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Poríferos/química , Camundongos , Humanos , Indonésia , Proliferação de Células/efeitos dos fármacos , Células NIH 3T3 , Antineoplásicos/farmacologia , Células Tumorais Cultivadas , Apoptose/efeitos dos fármacos , Naftiridinas
10.
Antonie Van Leeuwenhoek ; 117(1): 78, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740670

RESUMO

Staphylococcus aureus is the etiologic agent of many nosocomial infections, and its biofilm is frequently isolated from medical devices. Moreover, the dissemination of multidrug-resistant (MDR) strains from this pathogen, such as methicillin-resistant S. aureus (MRSA) strains, is a worldwide public health issue. The inhibition of biofilm formation can be used as a strategy to weaken bacterial resistance. Taking that into account, we analysed the ability of marine sponge-associated bacteria to produce antibiofilm molecules, and we found that marine Priestia sp., isolated from marine sponge Scopalina sp. collected on the Brazilian coast, secretes proteins that impair biofilm development from S. aureus. Partially purified proteins (PPP) secreted after 24 hours of bacterial growth promoted a 92% biofilm mass reduction and 4.0 µg/dL was the minimum concentration to significantly inhibit biofilm formation. This reduction was visually confirmed by light microscopy and Scanning Electron Microscopy (SEM). Furthermore, biochemical assays showed that the antibiofilm activity of PPP was reduced by ethylenediaminetetraacetic acid (EDTA) and 1,10 phenanthroline (PHEN), while it was stimulated by zinc ions, suggesting an active metallopeptidase in PPP. This result agrees with mass spectrometry (MS) identification, which indicated the presence of a metallopeptidase from the M28 family. Additionally, whole-genome sequencing analysis of Priestia sp. shows that gene ywad, a metallopeptidase-encoding gene, was present. Therefore, the results presented herein indicate that PPP secreted by the marine Priestia sp. can be explored as a potential antibiofilm agent and help to treat chronic infections.


Assuntos
Antibacterianos , Proteínas de Bactérias , Biofilmes , Staphylococcus aureus , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Antibacterianos/farmacologia , Animais , Testes de Sensibilidade Microbiana , Brasil , Poríferos/microbiologia
11.
Mar Drugs ; 22(4)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38667788

RESUMO

A new tetramic acid glycoside, aurantoside L (1), was isolated from the sponge Siliquariaspongia japonica collected at Tsushima Is., Nagasaki Prefecture, Japan. The structure of aurantoside L (1) composed of a tetramic acid bearing a chlorinated polyene system and a trisaccharide part was elucidated using spectral analysis. Aurantoside L (1) showed anti-parasitic activity against L. amazonensis with an IC50 value of 0.74 µM.


Assuntos
Glicosídeos , Leishmania , Poríferos , Poríferos/química , Animais , Glicosídeos/farmacologia , Glicosídeos/química , Glicosídeos/isolamento & purificação , Leishmania/efeitos dos fármacos , Antiprotozoários/farmacologia , Antiprotozoários/química , Antiprotozoários/isolamento & purificação , Pirrolidinonas/farmacologia , Pirrolidinonas/química , Pirrolidinonas/isolamento & purificação , Japão , Concentração Inibidora 50
12.
Mar Drugs ; 22(4)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38667800

RESUMO

Two new meroterpenoids, hyrtamide A (1) and hyrfarnediol A (2), along with two known ones, 3-farnesyl-4-hydroxybenzoic acid methyl ester (3) and dictyoceratin C (4), were isolated from a South China Sea sponge Hyrtios sp. Their structures were elucidated by NMR and MS data. Compounds 2-4 exhibited weak cytotoxicity against human colorectal cancer cells (HCT-116), showing IC50 values of 41.6, 45.0, and 37.3 µM, respectively. Furthermore, compounds 3 and 4 significantly suppressed the invasion of HCT-116 cells while also downregulating the expression of vascular endothelial growth factor receptor 1 (VEGFR-1) and vimentin proteins, which are key markers associated with angiogenesis and epithelial-mesenchymal transition (EMT). Our findings suggest that compounds 3 and 4 may exert their anti-invasive effects on tumor cells by inhibiting the expression of VEGFR-1 and impeding the process of EMT.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Transição Epitelial-Mesenquimal , Poríferos , Terpenos , Humanos , Animais , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Poríferos/química , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Terpenos/farmacologia , Terpenos/isolamento & purificação , Terpenos/química , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Células HCT116 , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Vimentina/metabolismo , Linhagem Celular Tumoral , China
13.
Mar Drugs ; 22(3)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38535438

RESUMO

An unreported prenylated indole derivative hydroxytakakiamide (4) was isolated, together with the previously described ergosterol (1), ergosterol acetate (2), and (3R)-3-(1H-indol-3-ylmethyl)-3, 4-dihydro-1H-1,4-benzodiazepine-2,5-dione (3), from the column fractions of the crude ethyl acetate extract of the culture of a marine sponge-associated fungus, Aspergillus fischeri MMERU 23. The structure of 4 was elucidated by the interpretation of 1D and 2D NMR spectral data and high-resolution mass spectrum. The absolute configuration of the stereogenic carbon in 3 was proposed to be the same as those of the co-occurring congeners on the basis of their biogenetic consideration and was supported by the comparison of its sign of optical rotation with those of its steroisomers. The crude ethyl acetate extract and 2 were evaluated, together with acetylaszonalenin (5) and helvolic acid (6), which were previously isolated from the same extract, for the in vivo antinociceptive activity in the mice model. The crude ethyl acetate extract exhibited antinociceptive activity in the acetic acid-induced writhing and formalin tests, while 2, 5, and 6 displayed the effects in the late phase of the formalin test. On the other hand, neither the crude ethyl acetate extract nor 2, 5, and 6 affected the motor performance of mice in both open-field and rotarod tests. Additionally, docking studies of 2, 5, and 6 were performed with 5-lipoxygenase (5-LOX) and phosphodiesterase (PDE) enzymes, PDE4 and PDE7, which are directly related to pain and inflammatory processes. Molecular docking showed that 6 has low affinity energy to PDE4 and PDE7 targets while retaining high affinity to 5-LOX. On the other hand, while 2 did not display any hydrogen bond interactions in any of its complexes, it achieved overall better energy values than 6 on the three antinociceptive targets. On the other hand, 5 has the best energy profile of all the docked compounds and was able to reproduce the crystallographic interactions of the 5-LOX complex.


Assuntos
Acetatos , Aspergillus , Fungos , Ácido Fusídico/análogos & derivados , Poríferos , Animais , Camundongos , Simulação de Acoplamento Molecular , Ácido Acético , Ergosterol , Analgésicos
14.
Mar Drugs ; 22(3)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38535442

RESUMO

Non-small-cell lung cancer (NSCLC), the most commonly diagnosed cancer and the leading cause of cancer-related death worldwide, has been extensively investigated in the last decade in terms of developing new therapeutic options that increase patient survival. In this context, marine animals are a source of new, interesting bioactive molecules that have been applied to the treatment of different types of cancer. Many efforts have been made to search for new therapeutic strategies to improve the prognosis of lung cancer patients, including new bioactive compounds and cytotoxic drugs from marine sponges. Their antitumoral effect can be explained by several cellular and molecular mechanisms, such as modulation of the cell cycle or induction of apoptosis. Thus, this systematic review aims to summarize the bioactive compounds derived from marine sponges and the mechanisms by which they show antitumor effects against lung cancer, exploring their limitations and the challenges associated with their discovery. The search process was performed in three databases (PubMed, SCOPUS, and Web of Science), yielding a total of 105 articles identified in the last 10 years, and after a screening process, 33 articles were included in this systematic review. The results showed that these natural sponge-derived compounds are a valuable source of inspiration for the development of new drugs. However, more research in this field is needed for the translation of these novel compounds to the clinic.

15.
Phytochemistry ; 220: 114017, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342290

RESUMO

Marine sponges are well known as prolific producers of structurally diverse molecules with valuable pharmacological potential. As part of our ongoing program to discover bioactive compounds from marine sponges collected from the Xisha Islands in the South China Sea, a chemical study on the specimens of Hippospongia lachne was conducted. As a result, eight undescribed compounds, including four zwitterionic alkylpyridinium salts, hippospondines A-D (1-4), and four 3-alkylpyridine alkaloids, hippospondines E (5), F (6), and (±)-hippospondine G (7), were isolated from the marine sponge H. lachne, together with one known 3-alkylpyridine alkaloid (8). The undescribed structures were elucidated by HRESIMS, NMR, DP4+ and CP3 probability analysis, and the Snatzke's method. Hippospondines A-D (1-4) represent the rare example of inner salt type alkylpyridinium alkaloid with a farnesyl moiety. Compounds 1-3 and 8 were subjected to cytotoxic and lymphocyte proliferation assays. Compound 3 exhibited a weak promotion effect on the ConA-induced T lymphocyte proliferation.


Assuntos
Alcaloides , Antineoplásicos , Poríferos , Animais , Espectroscopia de Ressonância Magnética , Antineoplásicos/química , Alcaloides/química , China , Estrutura Molecular
16.
J Biomol Struct Dyn ; : 1-14, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38189304

RESUMO

Type 2 diabetes is a medical condition involving elevated blood glucose levels resulting from impaired or improper insulin utilization. As the number of type 2 diabetes cases increases each year, there is an urgent need to develop novel drugs having new targets and/or complementing existing therapeutic protocols. In this regard, marine sponge-derived compounds hold great potential due to their potent biological activity and structural diversity. In this study, a small library of 50 marine sponge-derived compounds were examined for their activity towards type 2 diabetes targets, namely dipeptidyl peptidase-4 (DPP-4) and protein tyrosine phosphatase 1B (PTP1B). The compounds were first subjected to molecular docking on protein models based on their respective co-crystal structures to assess binding free energies (BFE) and conformations. Clustering analysis yielded BFE that ranged from 24.54 kcal/mol to -9.97 kcal/mol for DPP-4, and from -4.98 kcal/mol to -8.67 kcal/mol for PTP1B. Interaction analysis on the top ten compounds with the most negative BFE towards each protein target showed similar intermolecular interactions and key interacting residues as in the previously solved co-crystal structure. These compounds were subjected to absorption, distribution, metabolism, excretion, and toxicity (ADMET) profiling to characterize drug-likeness and combining the results from these analyses, (S)-6'-debromohamacanthin B was identified as a potential multi-target inhibitor of DPP-4 and PTP1B, having favorable protein interaction, no Lipinski violations, good gastrointestinal (GI) tract absorption, blood-brain barrier (BBB) penetration, and no predicted toxicity. Finally, the interaction of (S)-6'-debromohamacanthin B with the two proteins was validated using molecular dynamics simulations over 100 ns through RMSD, radius of gyration, PCA, and molecular mechanics Poisson-Boltzmann surface area (MMPBSA) confirming favorable interactions with the respective proteins.Communicated by Ramaswamy H. Sarma.


A 50-compound library previously reported from marine sponges was docked to putative T2DM targets, DDP-4 and PTP1B.(S)-6'-debromohamacanthin B was identified as a probable dual-targeting compound based on binding interactions and ADMET evaluation.Interaction of (S)-6'-debromohamacanthin B with DPP-4 and PTP1B was validated by MD simulations.

17.
Chem Biodivers ; 21(4): e202302069, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38246882

RESUMO

Two new dihydroisocoumarins, exserolides L and M (1 and 2), along with six known compounds (3-8) were isolated from the extract of the marine-sponge-derived fungus Setosphaeria sp. SCSIO41009. Their structures were established by spectroscopic analyses. The absolute configurations of two new compounds were determined by modified Mosher's method and ECD data. Compounds 1 and 4 showed significant antiviral activities against A/Puerto Rico/8/34 H274Y (H1 N1) with IC50 values of 4.07±0.76 µM and 20.06±4.85 µM, respectively.


Assuntos
Ascomicetos , Isocumarinas , Estrutura Molecular , Isocumarinas/química , Ascomicetos/química
18.
Mar Drugs ; 21(12)2023 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-38132933

RESUMO

Marine sponges are highly efficient in removing organic pollutants and their cultivation, adjacent to fish farms, is increasingly considered as a strategy for improving seawater quality. Moreover, these invertebrates produce a plethora of bioactive metabolites, which could translate into an extra profit for the aquaculture sector. Here, we investigated the chemical profile and bioactivity of two Mediterranean species (i.e., Agelas oroides and Sarcotragus foetidus) and we assessed whether cultivated sponges differed substantially from their wild counterparts. Metabolomic analysis of crude sponge extracts revealed species-specific chemical patterns, with A. oroides and S. foetidus dominated by alkaloids and lipids, respectively. More importantly, farmed and wild explants of each species demonstrated similar chemical fingerprints, with the majority of the metabolites showing modest differences on a sponge mass-normalized basis. Furthermore, farmed sponge extracts presented similar or slightly lower antibacterial activity against methicillin-resistant Staphylococcus aureus, compared to the extracts resulting from wild sponges. Anticancer assays against human colorectal carcinoma cells (HCT-116) revealed marginally active extracts from both wild and farmed S. foetidus populations. Our study highlights that, besides mitigating organic pollution in fish aquaculture, sponge farming can serve as a valuable resource of biomolecules, with promising potential in pharmaceutical and biomedical applications.


Assuntos
Agelas , Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Poríferos , Animais , Humanos , Poríferos/química , Agelas/química , Staphylococcus aureus Resistente à Meticilina/metabolismo , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/metabolismo
19.
Mar Drugs ; 21(11)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37999378

RESUMO

Investigation of the Vietnamese marine sponge Rhabdastrella globostellata led to the isolation of two new polar isomalabaricanes: rhabdastrellosides A (1) and B (2). Their structures and stereochemistry were elucidated with the application of 1D and 2D NMR, HRESIMS, and HRESIMS/MS methods, as well as chemical modifications and GC-MS analysis. Metabolites 1 and 2 are the first isomalabaricanes with non-oxidized cyclopentane ring in the tricyclic core system. Moreover, having a 3-O-disaccharide moiety in their structures, they increase a very rare group of isomalabaricane glycosides. We report here a weak cytotoxicity of 1 and 2 toward human neuroblastoma SH-SY5Y cells and normal rat H9c2 cardiomyocytes, as well as the cytoprotective activity of rhabdastrelloside B (2) at 1 µM evaluated using CoCl2-treated SH-SY5Y and H9c2 cells.


Assuntos
Antineoplásicos , Neuroblastoma , Poríferos , Triterpenos , Animais , Humanos , Ratos , Estrutura Molecular , Glicosídeos/farmacologia , Glicosídeos/química , Ensaios de Seleção de Medicamentos Antitumorais , Triterpenos/química , Poríferos/química , Antineoplásicos/química
20.
Int J Syst Evol Microbiol ; 73(11)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37982333

RESUMO

A Gram-stain-negative, aerobic and non-motile rods strain, designated as strain 2012CJ39-3T, was isolated from a marine sponge, Myxilla rosacea, collected on Chuja Island, Republic of Korea. Optimal growth of strain 2012CJ39-3T was observed at 25 °C, pH 7.0 and in the presence of 2.0-3.0 % (w/v) NaCl. Strain 2012CJ39-3T contained menaquinone-6 as the respiratory quinone, iso-C15 : 1 G, iso-C15 : 0, and iso-C17 : 0 3-OH as the predominant fatty acids, and phosphatidylethanolamine, an unidentified phospholipid, an unidentified glycolipid, three unidentified aminolipids and nine unidentified lipids as major polar lipids. The genomic DNA G+C content was 38.4 mol%. Results of phylogenetic analyses based on the 16S rRNA gene and whole-genome sequences revealed that strain 2012CJ39-3T formed a distinct phyletic lineage in the genus Muricauda. Strain 2012CJ39-3T was most closely related to Flagellimonas hymeniacidonis 176CP5-101T, Muricauda spongiicola 2012CJ35-5T, Muricauda algicola AsT0115T, Muricauda flava DSM 22638T and Muricauda parva SW169T with 96.5, 96.4, 96.3, 95.8 and 95.6 % 16S rRNA gene sequence similarity, respectively. The average nucleotide identity and digital DNA-DNA hybridization values between strain 2012CJ39-3T and M. spongiicola 2012CJ35-5T, F. hymeniacidonis 176CP5-101T, M. algicola AsT0115T, M. flava DSM 22638T and M. parva SW169T were 75.6, 74.2, 78.6, 75.3 and 74.8 % and 27.4, 19.9, 36.3, 24.2 and 18.9 %, respectively. Based on these results, strain 2012CJ39-3T represents a novel species of the genus Muricauda, for which the name Muricauda myxillae sp. nov. is proposed. The type strain is 2012CJ39-3T (=KACC 22644T= LMG 32582T). In addition, Flagellimonas hymeniacidonis is reclassified as Muricauda symbiotica nom. nov.


Assuntos
Flavobacteriaceae , Poríferos , Rosácea , Animais , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Composição de Bases , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA , Vitamina K 2/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA