Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 291
Filtrar
1.
J Med Virol ; 96(7): e29789, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38988206

RESUMO

Merkel cell carcinoma (MCC) is a highly aggressive skin cancer associated with integration of Merkel cell polyomavirus (MCPyV). MCPyV-encoded T-antigens (TAs) are pivotal for sustaining MCC's oncogenic phenotype, i.e., repression of TAs results in reactivation of the RB pathway and subsequent cell cycle arrest. However, the MCC cell line LoKe, characterized by a homozygous loss of the RB1 gene, exhibits uninterrupted cell cycle progression after shRNA-mediated TA repression. This unique feature allows an in-depth analysis of the effects of TAs beyond inhibition of the RB pathway, revealing the decrease in expression of stem cell-related genes upon panTA-knockdown. Analysis of gene regulatory networks identified members of the E2F family (E2F1, E2F8, TFDP1) as key transcriptional regulators that maintain stem cell properties in TA-expressing MCC cells. Furthermore, minichromosome maintenance (MCM) genes, which encodes DNA-binding licensing proteins essential for stem cell maintenance, were suppressed upon panTA-knockdown. The decline in stemness occurred simultaneously with neural differentiation, marked by the increased expression of neurogenesis-related genes such as neurexins, BTG2, and MYT1L. This upregulation can be attributed to heightened activity of PBX1 and BPTF, crucial regulators of neurogenesis pathways. The observations in LoKe were confirmed in an additional MCPyV-positive MCC cell line in which RB1 was silenced before panTA-knockdown. Moreover, spatially resolved transcriptomics demonstrated reduced TA expression in situ in a part of a MCC tumor characterized by neural differentiation. In summary, TAs are critical for maintaining stemness of MCC cells and suppressing neural differentiation, irrespective of their impact on the RB-signaling pathway.


Assuntos
Antígenos Virais de Tumores , Diferenciação Celular , Técnicas de Silenciamento de Genes , Poliomavírus das Células de Merkel , Proteínas de Ligação a Retinoblastoma , Humanos , Poliomavírus das Células de Merkel/genética , Antígenos Virais de Tumores/genética , Antígenos Virais de Tumores/metabolismo , Linhagem Celular Tumoral , Diferenciação Celular/genética , Proteínas de Ligação a Retinoblastoma/genética , Proteínas de Ligação a Retinoblastoma/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Carcinoma de Célula de Merkel/virologia , Carcinoma de Célula de Merkel/genética , Células-Tronco Neoplásicas/virologia , Células-Tronco Neoplásicas/metabolismo , Neoplasias Cutâneas/virologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Redes Reguladoras de Genes , Neurônios/virologia
2.
Gastroenterol Hepatol Bed Bench ; 17(2): 121-131, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38994506

RESUMO

Polyomaviruses are a group of small, double-stranded DNA viruses that are known to be associated with the development of certain human diseases, but there is evidence that these viruses might be associated with gastrointestinal (GI) cancers. Several polyomaviruses have been identified, such as JC polyomavirus (JCPyV), BK polyomavirus (BKPyV) and recently Merkel cell polyomavirus (MCPyV). Although the direct effects of polyomaviruses on transformation of human cells and cancer development are not clearly recognized, their association with certain human diseases including GI cancers has been proposed through several molecular and epidemiological studies. For example, JCPyV and BKPyV have been linked to colorectal cancer, as there is growing evidence of finding viral genomes in cancerous tissues. Nevertheless, the major role of JCPyV, BKPyV and MCPyV in colorectal cancer progression is still under extensive investigation, and further surveys is required to establish a conclusive cause-and-effect relationship. Understanding the role of these viruses in cancer development has significant implications for diagnosis, treatment, and prevention strategies. It seems that proving a causal link between polyomaviruses and GI cancers might provide a novel path for targeted therapies or design and development of specific therapeutic vaccines. In addition, performing research on the possible link can provide insights into the underlying molecular mechanisms of carcinogenesis, potentially leading to the identification of novel biomarkers. This review focuses on polyomaviruses, in particular a recently discovered polyomavirus, MCPyV, and their possible link with human gastrointestinal disorders.

4.
Virol J ; 21(1): 125, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831469

RESUMO

BACKGROUND: Merkel Cell Carcinoma (MCC) is an aggressive skin cancer that is three times deadlier than melanoma. In 2008, it was found that 80% of MCC cases are caused by the genomic integration of a novel polyomavirus, Merkel Cell Polyomavirus (MCPyV), and the expression of its small and truncated large tumor antigens (ST and LT-t, respectively). MCPyV belongs to a family of human polyomaviruses; however, it is the only one with a clear association to cancer. METHODS: To investigate the role and mechanisms of various polyomavirus tumor antigens in cellular transformation, Rat-2 and 293A cells were transduced with pLENTI MCPyV LT-t, MCPyV ST, TSPyV ST, HPyV7 ST, or empty pLENTI and assessed through multiple transformation assays, and subcellular fractionations. One-way ANOVA tests were used to assess statistical significance. RESULTS: Soft agar, proliferation, doubling time, glucose uptake, and serum dependence assays confirmed ST to be the dominant transforming protein of MCPyV. Furthermore, it was found that MCPyV ST is uniquely transforming, as the ST antigens of other non-oncogenic human polyomaviruses such as Trichodysplasia Spinulosa-Associated Polyomavirus (TSPyV) and Human Polyomavirus 7 (HPyV7) were not transforming when similarly assessed. Identification of structural dissimilarities between transforming and non-transforming tumor antigens revealed that the uniquely transforming domain(s) of MCPyV ST are likely located within the structurally dissimilar loops of the MCPyV ST unique region. Of all known MCPyV ST cellular interactors, 62% are exclusively or transiently nuclear, suggesting that MCPyV ST localizes to the nucleus despite the absence of a canonical nuclear localization signal. Indeed, subcellular fractionations confirmed that MCPyV ST could achieve nuclear localization through a currently unknown, regulated mechanism independent of its small size, as HPyV7 and TSPyV ST proteins were incapable of nuclear translocation. Although nuclear localization was found to be important for several transforming properties of MCPyV ST, some properties were also performed by a cytoplasmic sequestered MCPyV ST, suggesting that MCPyV ST may perform different transforming functions in individual subcellular compartments. CONCLUSIONS: Together, these data further elucidate the unique differences between MCPyV ST and other polyomavirus ST proteins necessary to understand MCPyV as the only known human oncogenic polyomavirus.


Assuntos
Antígenos Virais de Tumores , Núcleo Celular , Poliomavírus das Células de Merkel , Poliomavírus das Células de Merkel/genética , Poliomavírus das Células de Merkel/fisiologia , Humanos , Antígenos Virais de Tumores/genética , Antígenos Virais de Tumores/metabolismo , Núcleo Celular/virologia , Núcleo Celular/metabolismo , Animais , Ratos , Sinais de Localização Nuclear , Carcinoma de Célula de Merkel/virologia , Linhagem Celular , Neoplasias Cutâneas/virologia , Neoplasias Cutâneas/patologia , Transformação Celular Viral , Antígenos Transformantes de Poliomavirus/genética , Antígenos Transformantes de Poliomavirus/metabolismo , Infecções por Polyomavirus/virologia
5.
mBio ; : e0111724, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940554

RESUMO

Merkel cell polyomavirus (MCPyV) is a double-stranded tumor virus that is the main causative agent of Merkel cell carcinoma (MCC). The MCPyV large T antigen (LT), an essential viral DNA replication protein, maintains viral persistence by interacting with host Skp1-Cullin 1-F-box (SCF) E3 ubiquitin ligase complexes, which subsequently induces LT's proteasomal degradation, restricting MCPyV DNA replication. SCF E3 ubiquitin ligases require their substrates to be phosphorylated to bind them, utilizing phosphorylated serine residues as docking sites. The MCPyV LT unique region (MUR) is highly phosphorylated and plays a role in multiple host protein interactions, including SCF E3 ubiquitin ligases. Therefore, this domain highly governs LT stability. Though much work has been conducted to identify host factors that restrict MCPyV LT protein expression, the kinase(s) that cooperates with the SCF E3 ligase remains unknown. Here, we demonstrate that casein kinase 1 alpha (CK1α) negatively regulates MCPyV LT stability and LT-mediated replication by modulating interactions with the SCF ß-TrCP. Specifically, we show that numerous CK1 isoforms (α, δ, ε) localize in close proximity to MCPyV LT through in situ proximity ligation assays (PLA) and CK1α overexpression mainly resulted in decreased MCPyV LT protein expression. Inhibition of CK1α using short hairpin RNA (shRNA) and treatment of a CK1α inhibitor or an mTOR inhibitor, TORKinib, resulted in decreased ß-TrCP interaction with LT, increased LT expression, and enhanced MCPyV replication. The expression level of the CSNK1A1 gene transcripts is higher in MCPyV-positive MCC, suggesting a vital role of CK1α in limiting MCPyV replication required for establishing persistent infection. IMPORTANCE: Merkel cell polyomavirus (MCPyV) large tumor antigen is a polyphosphoprotein and the phosphorylation event is required to modulate various functions of LT, including viral replication. Therefore, cellular kinase pathways are indispensable for governing MCPyV polyomavirus infection and life cycle in coordinating with the immunosuppression environment at disease onset. Understanding the regulation mechanisms of MCPyV replication by viral and cellular factors will guide proper prevention strategies with targeted inhibitors for MCPyV-associated Merkel cell carcinoma (MCC) patients, who currently lack therapies.

6.
Arch Dermatol Res ; 316(6): 312, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822924

RESUMO

Merkel cell carcinoma (MCC) is an aggressive neuroendocrine skin cancer with high rates of metastasis and mortality. In vitro studies suggest that selinexor (KPT-330), an inhibitor of exportin 1, may be a targeted therapeutic option for MCC. This selective inhibitor prevents the transport of oncogenic mRNA out of the nucleus. Of note, 80% of MCC tumors are integrated with Merkel cell polyomavirus (MCPyV), and virally encoded tumor-antigens, small T (sT) and large T (LT) mRNAs may require an exportin transporter to relocate to the cytoplasm and modulate host tumor-suppressing pathways. To explore selinexor as a targeted therapy for MCC, we examine its ability to inhibit LT and sT antigen expression in vitro and its impact on the prostaglandin synthesis pathway. Protein expression was determined through immunoblotting and quantified by densitometric analysis. Statistical significance was determined with t-test. Treatment of MCPyV-infected cell lines with selinexor resulted in a significant dose-dependent downregulation of key mediators of the prostaglandin synthesis pathway. Given the role of prostaglandin synthesis pathway in MCC, our findings suggest that selinexor, alone or in combination with immunotherapy, could be a promising treatment for MCPyV-infected MCC patients who are resistant to chemotherapy and immunotherapy.


Assuntos
Carcinoma de Célula de Merkel , Hidrazinas , Neoplasias Cutâneas , Triazóis , Hidrazinas/farmacologia , Hidrazinas/uso terapêutico , Humanos , Carcinoma de Célula de Merkel/virologia , Carcinoma de Célula de Merkel/tratamento farmacológico , Carcinoma de Célula de Merkel/patologia , Triazóis/farmacologia , Triazóis/uso terapêutico , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/virologia , Neoplasias Cutâneas/patologia , Linhagem Celular Tumoral , Prostaglandinas/metabolismo , Poliomavírus das Células de Merkel , Proteína Exportina 1 , Carioferinas/metabolismo , Carioferinas/antagonistas & inibidores , Antígenos Virais de Tumores , Receptores Citoplasmáticos e Nucleares/metabolismo
7.
Virology ; 597: 110143, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38917692

RESUMO

Merkel Cell Carcinoma (MCC) is a rare neuroendocrine skin cancer. In our previous work, we decoded genes specifically deregulated by MCPyV early genes as opposed to other polyomaviruses and established functional importance of NDRG1 in inhibiting cellular proliferation and migration in MCC. In the present work, we found the SET protein, (I2PP2A, intrinsic inhibitor of PP2A) upstream of NDRG1 which was modulated by MCPyV early genes, both in hTERT-HK-MCPyV and MCPyV-positive (+) MCC cell lines. Additionally, MCC dermal tumour nodule tissues showed strong SET expression. Inhibition of the SET-PP2A interaction in hTERT-HK-MCPyV using the small molecule inhibitor, FTY720, increased NDRG1 expression and inhibited cell cycle regulators, cyclinD1 and CDK2. SET inhibition by shRNA and FTY720 also decreased cell proliferation and colony formation in MCPyV(+) MCC cells. Overall, these results pave a path for use of drugs targeting SET protein for the treatment of MCC.


Assuntos
Carcinoma de Célula de Merkel , Movimento Celular , Proliferação de Células , Poliomavírus das Células de Merkel , Proteína Fosfatase 2 , Humanos , Poliomavírus das Células de Merkel/fisiologia , Poliomavírus das Células de Merkel/genética , Proteína Fosfatase 2/metabolismo , Proteína Fosfatase 2/genética , Carcinoma de Célula de Merkel/virologia , Carcinoma de Célula de Merkel/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Cloridrato de Fingolimode/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Linhagem Celular Tumoral , Chaperonas de Histonas/metabolismo , Chaperonas de Histonas/genética , Infecções por Polyomavirus/virologia , Neoplasias Cutâneas/virologia , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/metabolismo , Quinase 2 Dependente de Ciclina/metabolismo , Quinase 2 Dependente de Ciclina/genética
8.
Radiol Case Rep ; 19(8): 2978-2983, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38737184

RESUMO

Merkel cell carcinoma (MCC) is a neuroendocrine skin cancer with a high risk of recurrence and metastasis. Regular surveillance through physical exams and imaging studies is crucial for the timely detection of recurrences. MCC patients who produce antibodies to the Merkel cell polyomavirus oncoprotein may benefit from antibody testing in addition to routine imaging surveillance for the early detection of disease recurrence. The clinically available Anti MERKel cell panel (AMERK) is a sensitive tumor marker for Merkel cell polyomavirus positive MCC. Although AMERK is highly sensitive, imaging remains necessary to confirm the location of disease recurrence. MCC exhibits characteristic imaging features, making appropriate imaging modalities, and interpretation important for detection. We present 3 representative patient cases that highlight effective utilization of the AMERK test in addition to imaging for the early detection of MCC recurrence. The rise in the AMERK titer may occur before the disease reaches detectable size on computed tomography scans. Positron emission tomography (PET)-CT can serve as an alternative modality for the early detection of disease. Even subtle abnormalities in 18F-FDG uptake may be significant if accompanied by an increased AMERK titer. Alternative imaging modalities, such as 68Ga-DOTATATE PET-CT and magnetic resonance imaging, can be useful in revealing clinically occult disease in MCC patients. In summary, the AMERK antibody test, alongside imaging, enhances sensitivity in detecting recurrence. By combining these strategies of blood test and imaging, healthcare professionals can identify early signs of MCC recurrence, leading to prompt interventions and improved patient outcomes.

9.
Cancer ; 130(15): 2670-2682, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38696121

RESUMO

BACKGROUND: Merkel cell carcinoma (MCC) is an aggressive cancer with often poor outcomes. Limited biomarkers exist for predicting clinical outcomes. The Merkel cell polyomavirus (MCPyV) serum antibody test (AMERK) has shown potential for indicating better recurrence-free survival in a single-institution study. The study aimed to evaluate the link between initial AMERK serostatus and survival. Secondary objectives included examining the relationship between initial AMERK titer levels and tumor burden. METHODS: A retrospective cohort study across two institutions analyzed patients tested with AMERK within 90 days of MCC diagnosis. Regression models assessed the association of survival outcomes with serostatus, considering various factors. The relationship between AMERK titer and tumor burden indicators was evaluated using ANOVA. Significance testing was exploratory, without a fixed significance level. RESULTS: Of 261 MCC patients tested, 49.4% were initially seropositive (titer ≥75). Multivariable analysis showed that seropositivity improved recurrence, event-free, overall, and MCC-specific survival rates. Strong associations were found between initial AMERK titer and clinical, tumor, and nodal stages, tumor size, and disease extent. Notably, improved survival with seropositivity was observed only in patients with localized disease at initial presentation. CONCLUSION: Circulating antibodies to MCPyV oncoproteins, as indicated by the AMERK test, are linked with better survival in MCC patients with localized disease at presentation. This could enhance patient risk profiling and treatment personalization. The study's retrospective nature and exploratory analysis are key limitations. PLAIN LANGUAGE SUMMARY: Merkel cell carcinoma (MCC) is a potentially aggressive skin cancer, and tools to predict patient outcomes are limited. A blood test called anti-Merkel cell panel (AMERK), which checks for specific antibodies related to this cancer, might give us some clues. In this study, we looked at 261 MCC patients who took the AMERK test within 90 days of diagnosis. We found that patients with an initial positive AMERK result tended to have better outcomes, especially if their cancer was in the early stages. However, it is important to note that this study has limitations, including using retrospective data and exploratory analyses.


Assuntos
Anticorpos Antivirais , Carcinoma de Célula de Merkel , Poliomavírus das Células de Merkel , Neoplasias Cutâneas , Humanos , Carcinoma de Célula de Merkel/virologia , Carcinoma de Célula de Merkel/sangue , Carcinoma de Célula de Merkel/mortalidade , Carcinoma de Célula de Merkel/diagnóstico , Carcinoma de Célula de Merkel/imunologia , Poliomavírus das Células de Merkel/imunologia , Poliomavírus das Células de Merkel/isolamento & purificação , Feminino , Masculino , Estudos Retrospectivos , Idoso , Prognóstico , Pessoa de Meia-Idade , Neoplasias Cutâneas/sangue , Neoplasias Cutâneas/virologia , Neoplasias Cutâneas/mortalidade , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/patologia , Anticorpos Antivirais/sangue , Idoso de 80 Anos ou mais , Infecções Tumorais por Vírus/virologia , Infecções por Polyomavirus/sangue , Infecções por Polyomavirus/diagnóstico , Infecções por Polyomavirus/virologia , Infecções por Polyomavirus/imunologia
11.
Biomedicines ; 12(4)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38672065

RESUMO

Despite recent advances in prevention, detection and treatment, oral squamous cell carcinoma (OSCC) remains a global health concern, strongly associated with environmental and lifestyle risk factors and infection with oncogenic viruses. Merkel Cell Polyomavirus (MCPyV), well known to be the causative agent of Merkel Cell Carcinoma (MCC) has been found in OSCC, suggesting its potential role as a co-factor in the development of oral cavity cancers. To improve our understanding about MCPyV in oral cavities, the detection and analysis of MCPyV DNA, transcripts and miRNA were performed on OSCCs and oral potentially malignant disorders (OPMDs). In addition, the cellular miR-375, known to be deregulated in tumors, was examined. MCPyV DNA was found in 3 out of 11 OSCC and 4 out of 12 OPMD samples, with a viral mean value of 1.49 × 102 copies/mL. Viral integration was not observed and LTAg and VP1 transcripts were detected. Viral miRNAs were not detected whereas the cellular miR-375 was found over expressed in all MCPyV positive oral specimens. Our results reported evidence of MCPyV replication in both OSCC and OPMD suggesting the oral cavity as a site of replicative MCPyV infection, therefore underscoring an active role of this virus in the occurrence of oral lesions.

12.
An Bras Dermatol ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38555263

RESUMO

BACKGROUND: Merkel cell polyomavirus (MCPyV), a human polyomavirus that is unequivocally linked to merkel cell carcinoma (MCC), has been found in association with keratinocytes carcinomas (KC), especially basal cell carcinoma (BCC) and cutaneous squamous cell carcinoma (cSCC). Nevertheless, there is scarce information about the possible involvement of MCPyV in the development of KC. OBJECTIVES: To assess the presence of MCPyV DNA and Large-T Antigen (LT-Ag) via Polymerase Chain Reaction (PCR) and Immunohistochemistry (IHC) in cases of KC, and to correlate its presence with immunohistochemical markers p16, p53, and ki67, tumor type and subtype, sun-exposed location, and epidemiological data. METHODS: The prevalence of MCPyV DNA, LT-Ag, and immunohistochemical markers p16, p53, and ki67 was assessed by PCR and Immunohistochemistry (IHC) in 127 cases of KC, these results were correlated with tumor type and subtype, sun-exposed location, and epidemiological data. RESULTS: The MCPyV DNA was detected in 42.57% (43 of 101) cases by PCR, the LT-Ag was detected in 16.4% (20 of 122) of cases, p16 in 81.5% (97 of 119), p53 in 66.4% (83 of 125), ki67 in 89% (73 of 82). No correlation between MCPyV LT-Ag and DNA confronted with tumor type, subtype, location site, and immunohistochemical markers was found. A single correlation between the MCPyV LT-Ag and cSCC tumors and peri-tumoral lymphocyte cells was noted. STUDY LIMITATIONS: Further steps need to be taken to better evaluate the MCPyV influence and its possible role in KC carcinogenesis, as the evaluation of the virus genome state, the gene sequence that encodes LT-Ag in the KC tumor cells, and in situ hybridization for viral DNA or RNA in these cells. CONCLUSIONS: Despite the frequent detection of MCPyV in KC, the data available so far does not support the hypothesis of a causal relationship between them.

13.
Infect Agent Cancer ; 19(1): 9, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38515111

RESUMO

Merkel cell polyomavirus (MCPyV) is associated with Merkel cell carcinoma (MCC). In tumor cells the MCPyV large T antigen (LT-Ag) is frequently found truncated and this is considered a major tumor-specific signature. The role of MCPyV in other, non-MCC tumours, is little known. Viral DNA and/or tumour-specific mutations have been sometimes detected in different tumours, but such data are not unequivocal and the involvement of the virus in the tumorigenesis is not clear. In a previous study, we demonstrated a significantly higher prevalence of MCPyV DNA in formalin fixed paraffin embedded (FFPE) porocarcinoma tissues compared to the normal skin. In the present study, we investigated the presence of truncating mutations in MCPyV LT-Ag coding region in porocarcinoma specimens. Using several overlapped PCR primer pairs, the complete LT-Ag sequence from two biopsies were obtained. No truncating mutations were detected. The lack of truncating mutations in LT-Ag sequence does not seem to support the role of MCPyV in porocarcinoma oncogenesis. However, an oncogenetic mechanism, different from that proposed for MCC and not associated with the LT-Ag mutations/deletions, cannot be excluded. Further studies of more sequences coding for LT-Ag would be needed to verify this hypothesis.

14.
Cell Rep Med ; 5(2): 101412, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38340723

RESUMO

Understanding cancer immunobiology has been hampered by difficulty identifying cancer-specific T cells. Merkel cell polyomavirus (MCPyV) causes most Merkel cell carcinomas (MCCs). All patients with virus-driven MCC express MCPyV oncoproteins, facilitating identification of virus (cancer)-specific T cells. We studied MCPyV-specific T cells from 27 patients with MCC using MCPyV peptide-HLA-I multimers, 26-color flow cytometry, single-cell transcriptomics, and T cell receptor (TCR) sequencing. In a prospective clinical trial, higher circulating MCPyV-specific CD8 T cell frequency before anti-PD-1 treatment was strongly associated with 2-year recurrence-free survival (75% if detectable, 0% if undetectable, p = 0.0018; ClinicalTrial.gov: NCT02488759). Intratumorally, such T cells were typically present, but their frequency did not significantly associate with response. Circulating MCPyV-specific CD8 T cells had increased stem/memory and decreased exhaustion signatures relative to their intratumoral counterparts. These results suggest that cancer-specific CD8 T cells in the blood may play a role in anti-PD-1 responses. Thus, strategies that augment their number or mobilize them into tumors could improve outcomes.


Assuntos
Carcinoma de Célula de Merkel , Neoplasias Cutâneas , Humanos , Carcinoma de Célula de Merkel/tratamento farmacológico , Carcinoma de Célula de Merkel/patologia , Linfócitos T CD8-Positivos/patologia , Receptor de Morte Celular Programada 1 , Estudos Prospectivos , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/patologia , Ensaios Clínicos como Assunto
15.
Cell Rep Med ; 5(2): 101390, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38340724

RESUMO

Merkel cell carcinoma is a skin cancer often driven by Merkel cell polyomavirus (MCPyV) with high rates of response to anti-PD-1 therapy despite low mutational burden. MCPyV-specific CD8 T cells are implicated in anti-PD-1-associated immune responses and provide a means to directly study tumor-specific T cell responses to treatment. Using mass cytometry and combinatorial tetramer staining, we find that baseline frequencies of blood MCPyV-specific cells correlated with response and survival. Frequencies of these cells decrease markedly during response to therapy. Phenotypes of MCPyV-specific CD8 T cells have distinct expression patterns of CD39, cutaneous lymphocyte-associated antigen (CLA), and CD103. Correspondingly, overall bulk CD39+CLA+ CD8 T cell frequencies in blood correlate with MCPyV-specific cell frequencies and similarly predicted favorable clinical outcomes. Conversely, frequencies of CD39+CD103+ CD8 T cells are associated with tumor burden and worse outcomes. These cell subsets can be useful as biomarkers and to isolate blood-derived tumor-specific T cells.


Assuntos
Carcinoma de Célula de Merkel , Poliomavírus das Células de Merkel , Oligossacarídeos , Antígeno Sialil Lewis X/análogos & derivados , Neoplasias Cutâneas , Humanos , Carcinoma de Célula de Merkel/tratamento farmacológico , Carcinoma de Célula de Merkel/metabolismo , Carcinoma de Célula de Merkel/patologia , Poliomavírus das Células de Merkel/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Linfócitos T CD8-Positivos , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/metabolismo , Biomarcadores/metabolismo
16.
Infect Agent Cancer ; 19(1): 1, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38178185

RESUMO

BACKGROUND: Merkel cell carcinoma (MCC) comprises a rare malignant primary skin tumor presenting neuroendocrine differentiation. Recently, agents blocking the programmed cell death protein 1 and programmed cell death protein ligand 1 pathway (PD-1/PD-L1) have demonstrated objective and durable tumor regressions in patients presenting advanced MCC. This study aimed to describe the sociodemographic, clinical, and histopathological characteristics of MCC patients, also assessing the prevalence of PD-L1 expression and Merkel cell Polyomavirus (MCPyV), as well as their prognostic roles. METHODS: Data from patients diagnosed with MCC between 1996 and 2019 at a reference cancer center in Rio de Janeiro, southeastern Brazil, were evaluated in a retrospective study. Tumor samples were tested for MCPyV and PD-L1 employing immunohistochemistry. Survival analyses were carried out employing the Kaplan-Meier method and curves were compared using the log-rank test. A multiple semiparametric Cox model was used. Values p < 0.05 were considered significant. RESULTS: A total of 65 patients were included in the study, with a mean age at diagnosis of 72 (standard deviation 13.9). A total of 56.9% (37/65) of the patients were male, 86.2% (56/65) were white, and 56.9% (37/64) were illiterate or with incomplete elementary school. MCPyV immunohistochemistry was positive in 29 cases (44.6%) and PD-L1 positivity was ≥ 1% in 42 cases (64.6%). Significant associations between MCPyV and PD-L1 expression ≥ 1% (p = 0.003) and PD-L1 expression ≥ 5% (p = 0.005) were noted. Concerning the multivariate analysis, only education level and advanced MCC stage indicated statistically significant worse progression-free survival. Regarding overall survival (OS), being male, education level and advanced stage comprised risk factors. The estimated OS at 60 months for stages I to III was of 48.9% and for stage IV, 8.9%. CONCLUSIONS: This is the first large Brazilian cohort to assess the prevalence of MCPyV in MCC tumors, as well as PD-L1 expression and their associations. No correlations were noted between MCPyV infection or PD-L1 expression and survival rates.

17.
Cancers (Basel) ; 16(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38254900

RESUMO

Combined Merkel cell carcinoma (MCC) and squamous cell carcinoma (SCC) have classically been regarded as more aggressive than conventional, pure, Merkel cell polyomavirus (MCPyV)-positive MCC. It is still unknown whether combined MCC and SCC are more aggressive than pure, MCPyV-negative MCC, and the origin of both the SCC and MCC elements of these combined tumors has not been elucidated. The main objective of this systematic review was to assess whether combined MCC and SCC tumors are associated with a worse prognosis than pure MCC; the secondary goals were the characterization of the clinical and histopathological features of these combined neoplasms. A total of 38 studies, including 152 patients, were selected for review. In total, 76% of the cases were MCPyV-negative, whereas 4% were MCPyV-positive. The most frequent histopathological pattern was that of an SCC in situ combined with a dermal MCC (36%), followed by both an in situ and invasive SCC combined with a dermal MCC (20%). Forty-seven percent of all cases fitted in the morphology of the so-called "collision tumors". Three combined MCC cases that would fit in the morphological category of collision tumors presented both squamous and neuroendocrine elements in their respective nodal metastases. The mean overall survival was 36 months, comparable to that of pure, MCPyV-negative MCC. This review found similarly aggressive behavior for combined MCC and SCC and pure, MCPyV-negative MCC. Preliminary data strongly suggest that all MCPyV-negative MCC tumors, whether combined or pure, are part of a common spectrum.

18.
Protein Sci ; 33(2): e4876, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38108201

RESUMO

Nucleocytoplasmic transport regulates the passage of proteins between the nucleus and cytoplasm. In the best characterized pathway, importin (IMP) α bridges cargoes bearing basic, classical nuclear localization signals (cNLSs) to IMPß1, which mediates transport through the nuclear pore complex. IMPα recognizes three types of cNLSs via two binding sites: the major binding site accommodates monopartite cNLSs, the minor binding site recognizes atypical cNLSs, while bipartite cNLSs simultaneously interact with both major and minor sites. Despite the growing knowledge regarding IMPα-cNLS interactions, our understanding of the evolution of cNLSs is limited. We combined bioinformatic, biochemical, functional, and structural approaches to study this phenomenon, using polyomaviruses (PyVs) large tumor antigens (LTAs) as a model. We characterized functional cNLSs from all human (H)PyV LTAs, located between the LXCXE motif and origin binding domain. Surprisingly, the prototypical SV40 monopartite NLS is not well conserved; HPyV LTA NLSs are extremely heterogenous in terms of structural organization, IMPα isoform binding, and nuclear targeting abilities, thus influencing the nuclear accumulation properties of full-length proteins. While several LTAs possess bipartite cNLSs, merkel cell PyV contains a hybrid bipartite cNLS whose upstream stretch of basic amino acids can function as an atypical cNLS, specifically binding to the IMPα minor site upon deletion of the downstream amino acids after viral integration in the host genome. Therefore, duplication of a monopartite cNLS and subsequent accumulation of point mutations, optimizing interaction with distinct IMPα binding sites, led to the evolution of bipartite and atypical NLSs binding at the minor site.


Assuntos
Antígenos de Neoplasias , Sinais de Localização Nuclear , alfa Carioferinas , Humanos , Transporte Ativo do Núcleo Celular/fisiologia , alfa Carioferinas/genética , alfa Carioferinas/química , alfa Carioferinas/metabolismo , Sequência de Aminoácidos , Antígenos de Neoplasias/metabolismo , Núcleo Celular/metabolismo , Sinais de Localização Nuclear/química , Sinais de Localização Nuclear/genética , Sinais de Localização Nuclear/metabolismo
19.
Proc Natl Acad Sci U S A ; 120(51): e2316467120, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38079542

RESUMO

Merkel cell polyomavirus (MCV or MCPyV) is an alphapolyomavirus causing human Merkel cell carcinoma and encodes four tumor (T) antigen proteins: large T (LT), small tumor (sT), 57 kT, and middle T (MT)/alternate LT open reading frame proteins. We show that MCV MT is generated as multiple isoforms through internal methionine translational initiation that insert into membrane lipid rafts. The membrane-localized MCV MT oligomerizes and promiscuously binds to lipid raft-associated Src family kinases (SFKs). MCV MT-SFK interaction is mediated by a Src homology (SH) 3 recognition motif as determined by surface plasmon resonance, coimmunoprecipitation, and bimolecular fluorescence complementation assays. SFK recruitment by MT leads to tyrosine phosphorylation at a SH2 recognition motif (pMTY114), allowing interaction with phospholipase C gamma 1 (PLCγ1). The secondary recruitment of PLCγ1 to the SFK-MT membrane complex promotes PLCγ1 tyrosine phosphorylation on Y783 and activates the NF-κB inflammatory signaling pathway. Mutations at either the MCV MT SH2 or SH3 recognition sites abrogate PLCγ1-dependent activation of NF-κB signaling and increase viral replication after MCV genome transfection into 293 cells. These findings reveal a conserved viral targeting of the SFK-PLCγ1 pathway by both MCV and murine polyomavirus (MuPyV) MT proteins. The molecular steps in how SFK-PLCγ1 activation is achieved, however, differ between these two viruses.


Assuntos
Carcinoma de Célula de Merkel , Poliomavírus das Células de Merkel , Infecções por Polyomavirus , Neoplasias Cutâneas , Camundongos , Animais , Humanos , Antígenos Transformantes de Poliomavirus/metabolismo , Poliomavírus das Células de Merkel/metabolismo , NF-kappa B/metabolismo , Quinases da Família src/metabolismo , Fosfolipase C gama/metabolismo , Transdução de Sinais , Antígenos Virais de Tumores/genética , Carcinoma de Célula de Merkel/genética , Tirosina/metabolismo
20.
J Dtsch Dermatol Ges ; 21(12): 1524-1548, 2023 12.
Artigo em Alemão | MEDLINE | ID: mdl-38082520
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA