Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.553
Filtrar
1.
Cells ; 13(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38727275

RESUMO

ATP-binding cassette (ABC) transporters play a crucial role for the efflux of a wide range of substrates across different cellular membranes. In the central nervous system (CNS), ABC transporters have recently gathered significant attention due to their pivotal involvement in brain physiology and neurodegenerative disorders, such as Alzheimer's disease (AD). Glial cells are fundamental for normal CNS function and engage with several ABC transporters in different ways. Here, we specifically highlight ABC transporters involved in the maintenance of brain homeostasis and their implications in its metabolic regulation. We also show new aspects related to ABC transporter function found in less recognized diseases, such as Huntington's disease (HD) and experimental autoimmune encephalomyelitis (EAE), as a model for multiple sclerosis (MS). Understanding both their impact on the physiological regulation of the CNS and their roles in brain diseases holds promise for uncovering new therapeutic options. Further investigations and preclinical studies are warranted to elucidate the complex interplay between glial ABC transporters and physiological brain functions, potentially leading to effective therapeutic interventions also for rare CNS disorders.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Sistema Nervoso Central , Neuroglia , Humanos , Transportadores de Cassetes de Ligação de ATP/metabolismo , Neuroglia/metabolismo , Animais , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Doenças do Sistema Nervoso Central/metabolismo , Doenças do Sistema Nervoso Central/patologia
2.
Clin Res Hepatol Gastroenterol ; : 102370, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38729564

RESUMO

Cholecystectomy is considered as a safe procedure to treat patients with gallstones. However, epidemiological studies highlighted an association between cholecystectomy and metabolic disorders, such as type 2 diabetes mellitus and metabolic dysfunction-associated steatotic liver disease (MASLD), independently of the gallstone disease. Following cholecystectomy, bile acids flow directly from the liver into the intestine, leading to changes in the entero-hepatic circulation of bile acids and their metabolism. The changes in bile acids metabolism impact the gut microbiota. Therefore, cholecystectomized patients display gut dysbiosis characterized by a reduced diversity, a loss of bacteria producing short-chain fatty acids and an increase in pro-inflammatory bacteria. Alterations of both bile acids metabolism and gut microbiota occurring after cholecystectomy can promote the development of metabolic disorders. In this review, we discuss the impact of cholecystectomy on bile acids and gut microbiota and its consequences on metabolic functions.

3.
Biomed Pharmacother ; 175: 116694, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38713943

RESUMO

The incidence of metabolic diseases has progressively increased, which has a negative impact on human health and life safety globally. Due to the good efficacy and limited side effects, there is growing interest in developing effective drugs to treat metabolic diseases from natural compounds. Kaempferol (KMP), an important flavonoid, exists in many vegetables, fruits, and traditional medicinal plants. Recently, KMP has received widespread attention worldwide due to its good potential in the treatment of metabolic diseases. To promote the basic research and clinical application of KMP, this review provides a timely and comprehensive summary of the pharmacological advances of KMP in the treatment of four metabolic diseases and its potential molecular mechanisms of action, including diabetes mellitus, obesity, non-alcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH), and atherosclerosis. According to the research, KMP shows remarkable therapeutic effects on metabolic diseases by regulating multiple signaling transduction pathways such as NF-κB, Nrf2, AMPK, PI3K/AKT, TLR4, and ER stress. In addition, the most recent literature on KMP's natural source, pharmacokinetics studies, as well as toxicity and safety are also discussed in this review, thus providing a foundation and evidence for further studies to develop novel and effective drugs from natural compounds. Collectively, our manuscript strongly suggested that KMP could be a promising candidate for the treatment of metabolic diseases.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38733902

RESUMO

Nutritional metabolic diseases in fish frequently arise in the setting of intensive aquaculture. The etiology and pathogenesis of these conditions involve energy metabolic disorders influenced by both internal genetic factors and external environmental conditions. The exploration of genes associated with nutritional and metabolic disorder has sparked considerable interest within both the aquaculture scientific community and the industry. High-throughput sequencing technology offers researchers extensive genetic information. Effectively mining, analyzing, and securely storing this data is crucial, especially for advancing disease prevention and treatment strategies. Presently, the exploration and application of gene databases concerning nutritional and metabolic disorders in fish are at a nascent stag. Therefore, this study focused on the model organism zebrafish and five primary economic fish species as the subjects of investigation. Using information from KEGG, OMIM, and existing literature, a novel gene database associated with nutritional metabolic diseases in fish was meticulously constructed. This database encompassed 4583 genes for Danio rerio, 6287 for Cyprinus carpio, 3289 for Takifugu rubripes, 3548 for Larimichthys crocea, 3816 for Oreochromis niloticus, and 5708 for Oncorhynchus mykiss. Through a comparative systems biology approach, we discerned a relatively high conservation of genes linked to nutritional metabolic diseases across these fish species, with over 54.9 % of genes being conserved throughout all six species. Additionally, the analysis pinpointed the existence of 13 species-specific genes within the genomes of large yellow croaker, tilapia, and rainbow trout. These genes exhibit the potential to serve as novel candidate targets for addressing nutritional metabolic diseases.

5.
Sci Rep ; 14(1): 10451, 2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714716

RESUMO

This study aimed to retrospectively analyze the perioperative and postoperative follow-up data of patients with super obesity who had undergone RYGB, SG, BPD/DS, and SADI-S. A retrospective observational study was conducted to analyze the perioperative and postoperative follow-up data of 60 patients with super obesity who had undergone bariatric surgery. A total of 34 men and 26 women were included in this study. The participants had an average preoperative BMI of 53.81 ± 3.25 kg/m2. The body weight and BMI of all four patient groups decreased significantly at 3, 6, and 12 months postoperatively compared with the preoperative values. Additionally, the TWL (%) and EWL (%) of all four groups increased gradually over the same period. Compared with the preoperative values, the systolic and diastolic blood pressure, glycosylated hemoglobin, uric acid, triglycerides, and total cholesterol decreased to varying degrees in the four groups 1 year postoperatively. RYGB, SG, BPD/DS, and SADI-S are all safe and effective in treating super obese patients and improving their metabolic diseases to a certain extent.


Assuntos
Cirurgia Bariátrica , Índice de Massa Corporal , Obesidade Mórbida , Humanos , Masculino , Feminino , Adulto , Obesidade Mórbida/cirurgia , Obesidade Mórbida/complicações , Estudos Retrospectivos , Pessoa de Meia-Idade , Cirurgia Bariátrica/métodos , Resultado do Tratamento , China , Redução de Peso , Seguimentos , População do Leste Asiático
6.
Front Cell Dev Biol ; 12: 1405546, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38745862

RESUMO

Silent information regulator two homolog 1 (SIRT1), an NAD + -dependent histone deacetylase, plays a pivotal regulatory role in a myriad of physiological processes. A growing body of evidence suggests that SIRT1 can exert protective effects in metabolic disorders and neurodegenerative diseases by inhibiting endoplasmic reticulum (ER) stress and the nuclear factor-κB (NF-κB) inflammatory signaling pathway. This review systematically elucidates the molecular mechanisms and biological significance of SIRT1 in regulating ER stress and the NF-κB pathway. On one hand, SIRT1 can deacetylate key molecules in the ER stress pathway, such as glucose-regulated protein 78 (GRP78), X-box binding protein 1 (XBP1), PKR-like ER kinase (PERK), inositol-requiring enzyme 1α (IRE1α), and activating transcription factor 6 (ATF6), thereby alleviating ER stress. On the other hand, SIRT1 can directly or indirectly remove the acetylation modification of the NF-κB p65 subunit, inhibiting its transcriptional activity and thus attenuating inflammatory responses. Through these mechanisms, SIRT1 can ameliorate insulin resistance in metabolic diseases, exert cardioprotective effects in ischemia-reperfusion injury, and reduce neuronal damage in neurodegenerative diseases. However, it is important to note that while these findings are promising, the complex nature of the biological systems involved warrants further investigation to fully unravel the intricacies of SIRT1's regulatory mechanisms. Nevertheless, understanding the regulatory mechanisms of SIRT1 on ER stress and the NF-κB pathway is of great significance for expanding our knowledge of the pathogenesis of related diseases and exploring new preventive and therapeutic strategies targeting SIRT1.

7.
Front Public Health ; 12: 1394328, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38746000

RESUMO

Objective: The aim of this study was to evaluate the effect of sprint interval training (SIT) and [high intensive interval training (HIIT)] carried out during the cool-down period of the physical education classes on body composition, blood pressure variables (BP) and pulse rate (PR), and cardiorespiratory fitness of adolescents who are overweight and obese, and to compare the differences in enjoyment in response to SIT vs. HIIT. Methods: For this randomized controlled trial, forty-five adolescents were recruited from a high school and were randomly placed into three groups. SIT and HIIT trained for 8 weeks, twice a week, for 12 min/session. Experimental group (EG) 3 was the control, and they maintained their regular physical education class schedule. The SIT group performed 6 sets of 60 s of work (90-95%HRmax) / 60 s of rest (50-55%HRmax), and the HIIT group performed 3 sets of 2 min of work (80-85%HRmax) / 2 min of rest (50-55%HRmax). Results: Both experimental groups showed a significant improvement in fat mass (FM) (%) and trunk FM (kg). In addition, EG2 reported a significance improvement in lean mass (kg), blood pressure BP (mmHG), systolic blood pressure (SBP) (mmHg), diastolic blood pressure (DBP) (mmHg), PR (bpm), and VO2max (ml/kg/min). Conclusion: The present study found that a HIIT protocol performed during the cool-down period of the physical education classes generated adaptations such as improvement in body composition, BP variables and PR, and cardiorespiratory fitness, in overweight and obese adolescents. In contrast, the group of overweight and obese adolescents who performed SIT showed limited benefits, with changes in fat mass only.


Assuntos
Pressão Sanguínea , Treinamento Intervalado de Alta Intensidade , Sobrepeso , Educação Física e Treinamento , Humanos , Adolescente , Masculino , Feminino , Sobrepeso/terapia , Pressão Sanguínea/fisiologia , Composição Corporal , Aptidão Cardiorrespiratória/fisiologia , Frequência Cardíaca/fisiologia , Obesidade/terapia
8.
Front Nutr ; 11: 1403863, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711531
9.
Artigo em Inglês | MEDLINE | ID: mdl-38703323

RESUMO

Blautia wexlerae (B. wexlerae) is a strong candidate with the potential to become a next-generation probiotics (NGPs) and has recently been shown for the first time to exhibit potential in modulating host metabolic levels and alleviating metabolic diseases. However, the factors affecting the change in abundance of B. wexlerae and the pattern of its abundance change in the associated indications remain to be further investigated. Here, we summarize information from published studies related to B. wexlerae; analyze the effects of food source factors such as prebiotics, probiotics, low protein foods, polyphenols, vitamins, and other factors on the abundance of B. wexlerae; and explore the patterns of changes in the abundance of B. wexlerae in metabolic diseases, neurological diseases, and other diseases. At the same time, the development potential of B. wexlerae was evaluated in the direction of functional foods and special medical foods.

10.
Heliyon ; 10(9): e29718, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38694079

RESUMO

Diabetes is a complex disease that affects a large percentage of the world's population, and it is associated with several risk factors. Self-management poses a significant challenge, but natural sources have shown great potential in providing effective glucose reducing solutions. Flavonoids, a class of bioactive substances found in different natural sources including medicinal plants, have emerged as promising candidates in this regard. Indeed, several flavonoids, including apigenin, arbutin, catechins, and cyanidin, have demonstrated remarkable anti-diabetic properties. The clinical effectiveness of these flavonoids is linked to their potential to decrease blood glucose concentration and increase insulin concentration. Thus, the regulation of certain metabolic pathways such as glycolysis and neoglycogenesis has also been demonstrated. In vitro and in vivo investigations revealed different mechanisms of action related to flavonoid compounds at subcellular, cellular, and molecular levels. The main actions reside in the activation of glycolytic signaling pathways and the inhibition of signaling that promotes glucose synthesis and storage. In this review, we highlight the clinical efficiency of natural flavonoids as well as the molecular mechanisms underlying this effectiveness.

11.
JIMD Rep ; 65(3): 182-187, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38736637

RESUMO

The interface between pediatric palliative care (PPC) and inborn metabolic diseases (IMD) remains incipient, though these conditions fill the state of art of complex chronic diseases, eligible to this health approach. We analyzed the medical records of PPC clinic during the years 2001 to 2021 and the IMD outpatients. We established a parallel with the world scientific literature concerning the epidemiology of PPC and IMD. Among outpatients, 14% were diagnosed with IMD, which were referred to the PPC service earlier compared to Non-IMD cases. The Group 3 (complex molecules) was the most frequent (64.7%), following by Group 1 representing by small molecules (21.6%), the latter having a lower median age at diagnosis when compared to the former (0.7 vs. 5.2 years, p = 0.001). The sphingolipidoses were the pathologies most frequent in our cohort, in line with what was observed in the literature. There were no differences between IMD groups in terms of diagnosis and PPC referral age, however in Non-IMD conditions, the age of diagnosis were earlier than IMD. Nevertheless, IMD group showed lower age of referral to PPC. The IMD comprises large fraction of outpatients in the PPC setting, thus further studies are needed in this field.

12.
Molecules ; 29(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38731514

RESUMO

While FXR has shown promise in regulating bile acid synthesis and maintaining glucose and lipid homeostasis, undesired side effects have been observed in clinical trials. To address this issue, the development of intestinally restricted FXR modulators has gained attention as a new avenue for drug design with the potential for safer systematic effects. Our review examines all currently known intestinally restricted FXR ligands and provides insights into the steps taken to enhance intestinal selectivity.


Assuntos
Receptores Citoplasmáticos e Nucleares , Humanos , Receptores Citoplasmáticos e Nucleares/metabolismo , Ligantes , Animais , Ácidos e Sais Biliares/metabolismo , Ácidos e Sais Biliares/química , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Intestinos/efeitos dos fármacos
13.
ACS Biomater Sci Eng ; 10(5): 3097-3107, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38591966

RESUMO

To develop a peri-implantitis model in a Gottingen minipig and evaluate the effect of local application of salicylic acid poly(anhydride-ester) (SAPAE) on peri-implantitis progression in healthy, metabolic syndrome (MS), and type-2 diabetes mellitus (T2DM) subjects. Eighteen animals were allocated to three groups: (i) control, (ii) MS (diet for obesity induction), and (iii) T2DM (diet plus streptozotocin for T2DM induction). Maxillary and mandible premolars and first molar were extracted. After 3 months of healing, four implants per side were placed in both jaws of each animal. After 2 months, peri-implantitis was induced by plaque formation using silk ligatures. SAPAE polymer was mixed with mineral oil (3.75 mg/µL) and topically applied biweekly for up to 60 days to halt peri-implantitis progression. Periodontal probing was used to assess pocket depth over time, followed by histomorphologic analysis of harvested samples. The adopted protocol resulted in the onset of peri-implantitis, with healthy minipigs taking twice as long to reach the same level of probing depth relative to MS and T2DM subjects (∼3.0 mm), irrespective of jaw. In a qualitative analysis, SAPAE therapy revealed decreased levels of inflammation in the normoglycemic, MS, and T2DM groups. SAPAE application around implants significantly reduced the progression of peri-implantitis after ∼15 days of therapy, with ∼30% lower probing depth for all systemic conditions and similar rates of probing depth increase per week between the control and SAPAE groups. MS and T2DM conditions presented a faster progression of the peri-implant pocket depth. SAPAE treatment reduced peri-implantitis progression in healthy, MS, and T2DM groups.


Assuntos
Peri-Implantite , Ácido Salicílico , Porco Miniatura , Animais , Suínos , Peri-Implantite/tratamento farmacológico , Peri-Implantite/patologia , Ácido Salicílico/administração & dosagem , Ácido Salicílico/farmacologia , Ácido Salicílico/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Modelos Animais de Doenças , Progressão da Doença , Hiperglicemia/tratamento farmacológico , Masculino , Diabetes Mellitus Experimental/tratamento farmacológico , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/metabolismo , Implantes Dentários
14.
Pediatr Neurol ; 155: 149-155, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38653183

RESUMO

BACKGROUND: Neuronal ceroid lipofuscinoses (NCLs) represent a heterogeneous group of inherited metabolic lysosomal disorders characterized by neurodegeneration. This study sought to describe the clinical and molecular characteristics of NCLs in Saudi Arabia and determine the most common types in that population. METHODS: A retrospective review of electronic medical records was conducted for 63 patients with NCL (55 families) from six tertiary and referral centers in Saudi Arabia between 2008 and 2022. Clinical, radiological, and neurophysiological data as well as genetic diagnoses were reviewed. RESULTS: CLN6 was the predominant type, accounting for 45% of cases in 25 families. The most common initial symptoms were speech delay (53%), cognitive decline (50%) and/or gait abnormalities (48%), and seizure (40%). Behavioral symptomatology was observed in 20%, whereas visual impairment was less frequently (9.3%) encountered. Diffuse cerebral and cerebellar atrophy was the predominant finding on brain magnetic resonance imaging. Electroencephalography generally revealed background slowing in all patients with generalized epileptiform discharges in 60%. The most common genotype detected was the p.Ser265del variant found in 36% (20 of 55 families). The most rapidly progressive subtypes were CLN2 and CLN6. Two patients with each died at age five years. The earliest age at which a patient was nonambulatory was two years in a patient with CLN14. CONCLUSIONS: This is the largest molecularly confirmed NCL cohort study from Saudi Arabia. Characterizing the natural history of specific NLC types can increase understanding of the underlying pathophysiology and distinctive genotype-phenotype characteristics, facilitating early diagnosis and treatment initiation as well as genetic counseling for families.

15.
J Med Ultrasound ; 32(1): 1-7, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38665355

RESUMO

Fetal microcephaly is a small head with various losses of cerebral cortical volume. The affected cases may suffer from a wide range in severity of impaired cerebral development from slight to severe mental retardation. It can be an isolated finding or with other anomalies depending on the heterogeneous causes including genetic mutations, chromosomal abnormalities, congenital infectious diseases, maternal alcohol consumption, and metabolic disorders during pregnancy. It is often a lifelong and incurable condition. Thus, early detection of fetal microcephaly and identification of the underlying causes are important for clinical staff to provide appropriate genetic counseling to the parents and accurate management.

16.
Nutrients ; 16(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38612964

RESUMO

Chlorogenic acid (CGA) is a type of polyphenol compound found in rich concentrations in many plants such as green coffee beans. As an active natural substance, CGA exerts diverse therapeutic effects in response to a variety of pathological challenges, particularly conditions associated with chronic metabolic diseases and age-related disorders. It shows multidimensional functions, including neuroprotection for neurodegenerative disorders and diabetic peripheral neuropathy, anti-inflammation, anti-oxidation, anti-pathogens, mitigation of cardiovascular disorders, skin diseases, diabetes mellitus, liver and kidney injuries, and anti-tumor activities. Mechanistically, its integrative functions act through the modulation of anti-inflammation/oxidation and metabolic homeostasis. It can thwart inflammatory constituents at multiple levels such as curtailing NF-kB pathways to neutralize primitive inflammatory factors, hindering inflammatory propagation, and alleviating inflammation-related tissue injury. It concurrently raises pivotal antioxidants by activating the Nrf2 pathway, thus scavenging excessive cellular free radicals. It elevates AMPK pathways for the maintenance and restoration of metabolic homeostasis of glucose and lipids. Additionally, CGA shows functions of neuromodulation by targeting neuroreceptors and ion channels. In this review, we systematically recapitulate CGA's pharmacological activities, medicinal properties, and mechanistic actions as a potential therapeutic agent. Further studies for defining its specific targeting molecules, improving its bioavailability, and validating its clinical efficacy are required to corroborate the therapeutic effects of CGA.


Assuntos
Ácido Clorogênico , Polifenóis , Ácido Clorogênico/farmacologia , Ácido Clorogênico/uso terapêutico , Homeostase , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Disponibilidade Biológica
18.
Artigo em Inglês | MEDLINE | ID: mdl-38676520

RESUMO

Comprehensive and effective care techniques have become essential due to the global epidemic dimensions of metabolic disorders, including diabetes, obesity, and cardiovascular ailments. Recent research highlights the potential of dietary supplements, herbal extracts, and phytochemicals in treating metabolic diseases. This abstract conveys the current state of the science in this field by highlighting these findings' underlying mechanisms and potential therapeutic applications. Plant-based diets contain naturally occurring bioactive molecules termed phytochemicals, which have shown promise in treating various metabolic illnesses. Examples include curcumin, flavonoids, and polyphenols' insulin-sensitizing, antioxidant, and antiinflammatory properties. Herbal extracts, derived from ancient medicinal herbs, have been used by people for years to treat a wide range of ailments. Recent studies have shown the efficacy of these strategies in improving lipid profiles, glucose metabolism, and overall cardiovascular health. Omega-3 fatty acids, vitamins, and minerals are just a few of the numerous nutritional supplements that are critical to metabolic health. These vitamins improve insulin sensitivity, regulate blood sugar, and decrease inflammation. Probiotics and prebiotics also affect the gut flora, which significantly affects metabolic function. These natural medicines' ability to treat metabolic diseases either by themselves or in combination with conventional medical interventions. However, when using it therapeutically, one must consider the differences in doses, individual responses, and bioavailability. The article concludes that phytochemicals, plant extracts, and food supplements offer a promising avenue for the management of metabolic illnesses. Comprehensive research, including clinical studies, is needed to ascertain their safety and efficacy characteristics. When added to treatment strategies, these natural therapies could be helpful supplements that improve overall health and the quality of life among individuals with metabolic diseases. Naringenin, a citrus flavonoid, can potentially prevent kidney injury in hyperuricemia by reducing uric acid, inflammation, apoptosis, DNA damage, and activating antioxidants. Further research and professional consultation are essential. Factors contributing to metabolic diseases, current approaches to management nutritional approaches for managing obesityassociated metabolic impairments in the liver and small intestine, and nutritional approaches for managing obesity-associated metabolic dysregulation are also explained briefly.

19.
Environ Res ; 252(Pt 3): 118965, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38642640

RESUMO

Promising evidence suggests a link between environmental factors, particularly air pollution, and diabetes and obesity. However, it is still unclear whether men and women are equally susceptible to environmental exposures. Therefore, we aimed to assess sex-specific long-term effects of environmental exposures on metabolic diseases. We analyzed cross-sectional data from 3,034 participants (53.7% female, aged 53-74 years) from the KORA Fit study (2018/19), a German population-based cohort. Environmental exposures, including annual averages of air pollutants [nitrogen oxides (NO2, NOx), ozone, particulate matter of different diameters (PM10, PMcoarse, PM2.5), PM2.5abs, particle number concentration], air temperature and surrounding greenness, were assessed at participants' residences. We evaluated sex-specific associations of environmental exposures with prevalent diabetes, obesity, body-mass-index (BMI) and waist circumference using logistic or linear regression models with an interaction term for sex, adjusted for age, lifestyle factors and education. Further effect modification, in particular by urbanization, was assessed in sex-stratified analyses. Higher annual averages of air pollution, air temperature and greenness at residence were associated with diabetes prevalence in men (NO2: Odds Ratio (OR) per interquartile range increase in exposure: 1.49 [95% confidence interval (CI): 1.13, 1.95], air temperature: OR: 1.48 [95%-CI: 1.15, 1.90]; greenness: OR: 0.78 [95%-CI: 0.59, 1.01]) but not in women. Conversely, higher levels of air pollution, temperature and lack of greenness were associated with lower obesity prevalence and BMI in women. After including an interaction term for urbanization, only higher greenness was associated with higher BMI in rural women, whereas higher air pollution was associated with higher BMI in urban men. To conclude, we observed sex-specific associations of environmental exposures with metabolic diseases. An additional interaction between environmental exposures and urbanization on obesity suggests a higher susceptibility to air pollution among urban men, and higher susceptibility to greenness among rural women, which needs corroboration in future studies.

20.
Ann Biol Clin (Paris) ; 82(1): 24-31, 2024 04 19.
Artigo em Francês | MEDLINE | ID: mdl-38638016

RESUMO

Newborn screening is a major public health concern. In France, it was established in 1972 with systematic screening for phenylketonuria. Subsequently, other screenings, including congenital hypothyroidism, congenital adrenal hyperplasia, cystic fibrosis, and sickle cell disease, were added. The introduction of tandem mass spectrometry in screening laboratories in 2020 enabled the inclusion of eight additional inherited metabolic diseases: aminoacidopathies (tyrosinemia type I, maple syrup urine disease, and homocystinuria), organic acidurias (isovaleric and glutaric type I acidurias), and disorders of fatty acid metabolism (MCADD, long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD), and primary carnitine deficiency). We briefly present these newly added diseases, of which public awareness is still incomplete.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Doenças Metabólicas , Fenilcetonúrias , Recém-Nascido , Humanos , Triagem Neonatal/métodos , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , França/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...