Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 877
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39265488

RESUMO

Polygonatum cyrtonema Hua and its processed products have demonstrated cardio-protective effects, though the underlying mechanisms remain unclear. In this study, plasma metabolic profiling and pattern recognition were employed to explore the cardio-protective mechanisms of both crude and processed P. cyrtonema in a myocardial ischemia model induced by ligation, using gas chromatography-mass spectrometry. Post-modeling, plasma levels of creatine kinase-MB, lactate dehydrogenase, troponin T, and malondialdehyde were significantly elevated but were notably reduced after treatment. Conversely, plasma levels of glutathione peroxidase and superoxide dismutase, which were significantly decreased post-modeling, were restored following treatment. Hematoxylin-eosin (HE) and Masson staining revealed that both crude and processed P. cyrtonema effectively reduced inflammatory infiltration and fibrosis in cardiac tissue. Metabolic profiling identified 34 differential endogenous metabolites in the treatment groups, with 19 confirmed using standard compounds. The linear correlation coefficients (R2) for these standards ranged from 0.9960 to 0.9996, indicating high accuracy. The method exhibited excellent precision and repeatability, with relative standard deviation (RSD) values below 8.57%. Recovery rates were between 95.02% and 105.15%, and the stability of the standard compounds was confirmed after three freeze-thaw cycles, with RSD values under 4.42%. Both crude and processed P. cyrtonema were found to alleviate myocardial ischemia symptoms by regulating branched-chain amino acid metabolism and energy metabolism. These findings provide a solid foundation for the potential clinical use of this herb and its processed products in treating heart disease.

2.
Physiol Mol Biol Plants ; 30(9): 1413-1427, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39310702

RESUMO

Bryophyllum pinnatum (Lam.) Oken, a multipurpose medicinal herb, has drawn much interest for its therapeutic qualities from both traditional and modern medicine systems. Many active secondary metabolites, such as bufadienolides, triterpenes, phenols, alkaloids, glycosides, lipids, flavonoids, and organic acids, are responsible for the plant's curative properties. B. pinnatum exhibits a noteworthy significance in oncological research by exhibiting its ability to modify numerous pathways, which may suggest a potential anticancer impact. The herb is recommended for treating lithiasis, a common cause of renal failure, due to its effectiveness in dissolving stones and avoiding crystal formation. The plant has a major impact on diabetes, especially type II diabetes. Moreover, the versatility of B. pinnatum extends to its examination in connection to COVID-19. However, caution is warranted, as B. pinnatum has been reported to possess toxicity attributed to the presence of bufadienolides in its metabolic profile. A comprehensive investigation is essential to thoroughly understand and confirm the synthesis of potentially hazardous compounds. This is crucial for minimizing their presence and ensuring the safe consumption of B. pinnatum among diverse populations of organisms. This review highlights the various medical uses of B. pinnatum, including its ability to effectively treat kidney and liver diseases, as well as its anti-leishmanial, neuropharmacological, antibacterial, immunosuppressive, anti-tumour, and cytotoxic effects. While extensively employed in both traditional and scientific domains, the plant's complete medicinal potential, molecular mechanisms, safety profile, and pharmacodynamics remain ambiguous, rendering it an ideal candidate for pioneering research endeavours.

3.
Plant Physiol Biochem ; 216: 109076, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39303411

RESUMO

Ongoing climate changes are expected to intensify drought periods in tropical regions, directly impacting epiphytic bromeliads that depend on intermittent water availability. This study aimed to elucidate if Acanthostachys pitcairnioides, an epiphytic bromeliad of Atlantic Forest, tolerates extended drought periods and the potential strategies involved in its tolerance and recovery capacity. We suppressed irrigation for 42 days, rehydrated plants for four days, and evaluated leaf water status, and photochemical, metabolic, and anatomical changes. During the initial 28 days of drought, translocation of water from hydrenchyma to chlorenchyma, higher chlorophyll content, and accumulation of abscisic and salicylic acid and antioxidants contributed to maintaining the cell turgor and functionality of photosynthetic apparatus. At 42 days, a significant reduction in leaf water content to 45.5% was accompanied by a 2.5-fold increase in non-photochemical quenching and enhanced levels of carotenoids, anthocyanins, osmoregulators (proline, myo-inositol, and trehalose), and phytohormones (abscisic acid and jasmonates). After rewatering, water storage in the hydrenchyma and almost all pigments, hormones, and metabolites were restored to pre-stress conditions. Leaf succulence, carbohydrate and organic acid accumulation, and carbon isotope data (δ13C-14.5‰) provide evidence of induction of CAM metabolism by water limitation in A. pitcairnioides. Our findings indicate the prevalence of water accumulation strategy during the first half of the drought stress. At the end of the drought period, the complete depletion of water from the hydrenchyma favored the osmotic adjustment. Considering this set of tolerance strategies and the rapid recovery after rehydration, A. pitcairnioides can successfully withstand environments with restricted water availability.

4.
Artigo em Inglês | MEDLINE | ID: mdl-39303804

RESUMO

OBJECTIVE: Chronic venous disease (CVD) is a condition presenting a great burden to patients and society, with poorly characterised pathophysiology. Metabolic phenotyping can elucidate mechanisms of disease and identify candidate biomarkers. The aim of this study was to determine differences in the metabolic signature between symptomatic patients with CVD and asymptomatic volunteers using proton nuclear magnetic resonance spectroscopy (1H-NMR). METHODS: This was a prospective case-control study of consecutive patients with symptomatic CVD and asymptomatic volunteers recruited from a single centre. Participants underwent clinical assessment, venous duplex ultrasound, and blood and urine sampling. Disease stage was defined according to the Clinical-Etiology-Anatomy-Pathophysiology (CEAP) classification. 1H-NMR experiments were performed, with data analysed via multivariate statistical techniques. RESULTS: A total of 622 participants were recruited, including 517 symptomatic patients with CVD (telangiectasia [C1] 0.6%, varicose veins [C2] 48.5%, swelling [C3] 12.0%, skin changes [C4] 27.7%, healed or active ulceration [C5/6] 11.2%) and 105 asymptomatic participants (no disease [C0] 69.5%, telangiectasia [C1] 29.6%). Multivariate analysis revealed differences between the metabolic profile of the symptomatic CVD and asymptomatic groups, and between CEAP clinical classes in the CVD group. Serum aromatic amino acids positively correlated with increasing CEAP clinical class (p < .001). Urinary formate, creatinine, glycine, citrate, succinate, pyruvate, and 2-hydroxyisobutyrate negatively correlated with increasing CEAP clinical class (p < .001). These metabolites are involved in the tricarboxylic acid cycle, hypoxia inducible factor pathway, and one carbon metabolism. CONCLUSION: Untargeted biofluid analysis via 1H-NMR has detected metabolites associated with the presence and severity of CVD, highlighting biological pathways of relevance and providing candidate biomarkers to explore in future research.

5.
Artigo em Inglês | MEDLINE | ID: mdl-39278738

RESUMO

BACKGROUND AND AIMS: Body composition has been linked with clinical and prognostic outcomes in patients with cancer and cardiovascular diseases. Body composition analysis in lung cancer screening (LCS) is very limited. This study aimed at assessing the association of subcutaneous fat volume (SFV) and subcutaneous fat density (SFD), measured on chest ultra-low dose computed tomography (ultra-LDCT) images by a fully automated artificial intelligence (AI)-based software, with clinical and anthropometric characteristics in a LCS population. METHODS AND RESULTS: Demographic, clinical, and dietary data were obtained from the written questionnaire completed by each participant at the first visit, when anthropometric measurements, blood sample collection and chest ultra-LDCT were performed. Images were analyzed for automated 3D segmentation of subcutaneous fat and muscle. The analysis included 938 volunteers (372 females); men with a smoking history of ≥40 pack-years had higher SFV (p = 0.0009), while former smokers had lower SFD (p = 0.0019). In female participants, SFV and SFD differed significantly according to age. SFV increased with rising BMI, waist circumference, waist-hip ratio, and CRP levels ≥2 mg/L (p < 0.0001), whereas SFD decreased with rising BMI, waist circumference, waist-hip ratio, and CRP levels ≥2 mg/L (p < 0.001) in both sexes. SFV was associated with glycemia and triglycerides levels (p = 0.0067 and p=<0.0001 in males, p = 0.0074 and p < 0.0001 in females, respectively), while SFD with triglycerides levels (p < 0.0001). CONCLUSION: We observed different associations of SFV and SFD with age and smoking history between men and women, whereas the association with anthropometric data, CRP, glycemia and triglycerides levels was similar in the two sexes.

6.
Metabolites ; 14(9)2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39330490

RESUMO

Liraglutide, a glucagon-like peptide-1 receptor agonist, is effective in the treatment of type 2 diabetes mellitus (T2DM) and obesity. Despite its benefits, including improved glycemic control and weight loss, the common metabolic changes induced by liraglutide and correlations between those in rodents and humans remain unknown. Here, we used advanced machine learning techniques to analyze the plasma metabolomic data in diet-induced obese (DIO) mice and patients with T2DM treated with liraglutide. Among the machine learning models, Support Vector Machine was the most suitable for DIO mice, and Gradient Boosting was the most suitable for patients with T2DM. Through the cross-evaluation of machine learning models, we found that liraglutide promotes metabolic shifts and interspecies correlations in these shifts between DIO mice and patients with T2DM. Our comparative analysis helped identify metabolic correlations influenced by liraglutide between humans and rodents and may guide future therapeutic strategies for T2DM and obesity.

7.
Metabolites ; 14(9)2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39330518

RESUMO

BACKGROUND: Neolamarckia cadamba (Rubiaceae) is a well-recognized medicinal plant with recorded therapeutical attributes. However, a thorough assessment of active compounds in its fruits is lacking, limiting their use and valorization in pharmacological industries. METHODS: Thus, this study investigated variations in the fruits' secondary metabolite (SM) profiles, as well as antioxidant activities in aqueous (WA) and ethanol (ET) extracts. RESULTS: Liquid chromatography-electrospray ionization tandem mass spectrometry identified 541 SMs, of which 14 and 1 (di-O-glucosylquinic acid) were specifically detected in ET and WA, respectively. Phenolic acids (36.97%), flavonoids (28.10%), terpenoids (12.20%), and alkaloids (9.98%) were the dominant SMs. The SM profiles of the fruits in WA and ET were quite different. We revealed 198 differentially extracted (DE) metabolites between WA and ET, including 62 flavonoids, 57 phenolic acids, 45 terpenoids, 14 alkaloids, etc. Most DE flavones (36 out of 40), terpenoids (45 out of 45), and alkaloids (12 out of 14) had higher content in ET. Catechin and its derivatives, procyanidins, and tannins had higher content in WA. ABTS and DPPH assays showed that the antioxidant activity of ET was significantly higher than that of WA. CONCLUSIONS: Our findings will facilitate the efficient extraction and evaluation of specific active compounds in N. cadamba.

8.
Food Chem ; 463(Pt 3): 141384, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39340903

RESUMO

'Zaojiaomi' is a traditional food derived from Gleditsia sinensis or Gleditsia japonica var. delavayi endosperm. However, metabolite profile of Gymnocladus chinensis endosperm and its comparison to the aforementioned species remains understudied. This research employed a UPLC-MS based metabolomics approach to investigate and compare metabolite composition of G. chinensis endosperm with that of G. sinensis and G. japonica endosperm. A total of 1177 metabolites were identified, with 579 and 577 differentially abundant metabolites found between G. chinensis vs. G. japonica and G. chinensis vs. G. sinensis, respectively. They were mainly enriched in pathways related to flavonoid biosynthesis, suggesting potential for enhanced antioxidant activity, compared to G. japonica and G. sinensis. Additionally, G. chinensis endosperm was found to be rich in L-arginine, L-aspartic acid, and zinc elements, which have various health benefits. These findings provide valuable insights into metabolic composition of G. chinensis endosperm and its potential as a functional food source.

9.
Adv Sci (Weinh) ; : e2406668, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39231358

RESUMO

Metabolic dysregulation is a key driver of cellular senescence, contributing to the progression of systemic aging. The heterogeneity of senescent cells and their metabolic shifts are complex and unexplored. A microfluidic SlipChip integrated with surface-enhanced Raman spectroscopy (SERS), termed SlipChip-SERS, is developed for single-cell metabolism analysis. This SlipChip-SERS enables compartmentalization of single cells, parallel delivery of saponin and nanoparticles to release intracellular metabolites and to realize SERS detection with simple slipping operations. Analysis of different cancer cell lines using SlipChip-SERS demonstrated its capability for sensitive and multiplexed metabolic profiling of individual cells. When applied to human primary fibroblasts of different ages, it identified 12 differential metabolites, with spermine validated as a potent inducer of cellular senescence. Prolonged exposure to spermine can induce a classic senescence phenotype, such as increased senescence-associated ß-glactosidase activity, elevated expression of senescence-related genes and reduced LMNB1 levels. Additionally, the senescence-inducing capacity of spermine in HUVECs and WRL-68 cells is confirmed, and exogenous spermine treatment increased the accumulation and release of H2O2. Overall, a novel SlipChip-SERS system is developed for single-cell metabolic analysis, revealing spermine as a potential inducer of senescence across multiple cell types, which may offer new strategies for addressing ageing and ageing-related diseases.

10.
Sports Med Open ; 10(1): 99, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39289269

RESUMO

BACKGROUND: This study used metabolic phenotyping to explore the responses of highly-trained cross-country skiers to a standardized exercise test, which was part of the athletes' routine testing, and determine whether metabolic phenotyping could discriminate specific physiological, performance, and illness characteristics. METHODS: Twenty-three highly-trained cross-country skiers (10 women and 13 men) participated in this study. Capillary whole-blood samples were collected before (at rest) and 2.5 min after (post-exercise) a roller-ski treadmill test consisting of 5-6 × 4-min submaximal stages followed by a self-paced time trial (~ 3 min) and analyzed using mass spectrometry. Performance level was defined by International Ski Federation distance and sprint rankings. Illness data were collected prospectively for 33 weeks using the Oslo Sports Trauma Research Center Questionnaire on Health Problems. Orthogonal partial least squares-discriminant analyses (OPLS-DA) followed by enrichment analyses were used to identify metabolic phenotypes of athlete groups with specific physiological, performance, and illness characteristics. RESULTS: Blood metabolite phenotypes were significantly different after the standardized exercise test compared to rest for metabolites involved in energy, purine, and nucleotide metabolism (all OPLS-DA p < 0.001). Acute changes in the metabolic phenotype from rest to post-exercise could discriminate athletes with: (1) higher vs. lower peak blood lactate concentrations; (2) superior vs. inferior performance levels in sprint skiing, and (3) ≥ 2 vs. ≤ 1 self-reported illness episodes in the 33-week study period (all p < 0.05). The most important metabolites contributing to the distinction of groups according to (1) post-exercise blood lactate concentrations, (2) sprint performance, and (3) illness frequency were: (1) inosine, hypoxanthine, and deoxycholic acid, (2) sorbitol, adenosine monophosphate, and 2-hydroxyleuroylcarnitine, and (3) glucose-6-phosphate, squalene, and deoxycholic acid, respectively. CONCLUSION: Metabolic phenotyping discriminated between athlete groups with higher vs. lower post-exercise blood lactate concentrations, superior vs. inferior sprint skiing performance, and more vs. less self-reported illnesses. While the biological relevance of the identified biomarkers requires validation in future research, metabolic phenotyping shows promise as a tool for routine monitoring of highly-trained endurance athletes.

11.
Nat Prod Res ; : 1-5, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39225372

RESUMO

Triptophenolide, a major diterpenoid extracted from Tripterygium wilfordii Hook. f., has been reported to possess significant anti-tumour, anti-androgen and anti-inflammatory activities. However, the metabolic fate of triptophenolide remains unknown. Therefore, this study focused on the metabolic profiling of triptophenolide in rat plasma, urine, bile and faeces following intragastric administration. An ultraperformance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry with combination of extracted ion chromatogram strategy based on 71 typical metabolic reactions was established to comprehensively profile the metabolites of triptophenolide. This strategy allowed for the identification of 17 metabolites from the biosamples. Reduction, oxidation, glucuronide conjugation, and hydroxylation were considered as its main metabolic pathways in vivo. The present study will be greatly helpful for the further pharmacological studies on triptophenolide and would provide valuable information for its clinical application.

12.
Metabolites ; 14(8)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39195522

RESUMO

Common wheat (Triticum aestivum L.) is one of the most valuable cereal crops worldwide. This study examined leaf extracts of 30 accessions of T. aestivum and its subspecies using 48 h maceration with methanol by GC-MS and GCxGC-MS. The plants were grown from seeds of the wheat genetics collection of the Wheat Genetics Sector of the Institute of Cytology and Genetics, SB RAS. The analysis revealed 263 components of epicuticular waxes, including linear and branched alkanes, aliphatic alcohols, aldehydes, ketones, ß-diketones, carboxylic acids and their derivatives, mono- and diterpenes, phytosterols, and tocopherols. Hierarchical cluster analysis and principal component analysis were used to identify and visualize the differences between the leaf extracts of different wheat cultivars. Three clusters were identified, with the leading components being (1) octacosan-1-ol, (2) esters of saturated and unsaturated alcohols, and (3) fatty acid alkylamides, which were found for the first time in plant extracts. The results highlight the importance of metabolic studies in understanding the adaptive mechanisms and increasing wheat resistance to stress factors. These are crucial for breeding new-generation cultivars with improved traits.

13.
Metabolites ; 14(8)2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39195545

RESUMO

This study investigates the growth tolerance mechanisms of Chlorella pyrenoidosa to 3-fluorophenol and its removal efficiency by algal cells. Our results indicate that C. pyrenoidosa can tolerate up to 100 mg/L of 3-fluorophenol, exhibiting a significant hormesis effect characterized by initial inhibition followed by promotion of growth. In C. pyrenoidosa cells, the activities of superoxide dismutase (SOD) and catalase (CAT), as well as the levels of malondialdehyde (MDA) and reactive oxygen species (ROS), were higher than or comparable to the control group. Metabolic analysis revealed that the 3-fluorophenol treatment activated pathways, such as glycerol phospholipid metabolism, autophagy, glycosylphosphatidylinositol (GPI)-anchored protein biosynthesis, and phenylpropanoid biosynthesis, contributed to the stabilization of cell membrane structures and enhanced cell repair capacity. After 240 h of treatment, over 50% of 3-fluorophenol was removed by algal cells, primarily through adsorption. Thus, C. pyrenoidosa shows potential as an effective biosorbent for the bioremediation of 3-fluorophenol.

14.
ACS Nano ; 18(32): 21336-21346, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39090798

RESUMO

Thyroid nodules (TNs) have emerged as the most prevalent endocrine disorder in China. Fine-needle aspiration (FNA) remains the standard diagnostic method for assessing TN malignancy, although a majority of FNA results indicate benign conditions. Balancing diagnostic accuracy while mitigating overdiagnosis in patients with benign nodules poses a significant clinical challenge. Precise, noninvasive, and high-throughput screening methods for high-risk TN diagnosis are highly desired but remain less explored. Developing such approaches can improve the accuracy of noninvasive methods like ultrasound imaging and reduce overdiagnosis of benign nodule patients caused by invasive procedures. Herein, we investigate the application of gold-doped zirconium-based metal-organic framework (ZrMOF/Au) nanostructures for metabolic profiling of thyroid diseases. This approach enables the efficient extraction of urine metabolite fingerprints with high throughput, low background noise, and reproducibility. Utilizing partial least-squares discriminant analysis and four machine learning models, including neural network (NN), random forest (RF), logistic regression (LR), and support vector machine (SVM), we achieved an enhanced diagnostic accuracy (98.6%) for discriminating thyroid cancer (TC) from low-risk TNs by using a diagnostic panel. Through the analysis of metabolic differences, potential pathway changes between benign nodule and malignancy are identified. This work explores the potential of rapid thyroid disease screening using the ZrMOF/Au-assisted LDI-MS platform, providing a potential method for noninvasive screening of thyroid malignant tumors. Integrating this approach with imaging technologies such as ultrasound can enhance the reliability of noninvasive diagnostic methods for malignant tumor screening, helping to prevent unnecessary invasive procedures and reducing the risk of overdiagnosis and overtreatment in patients with benign nodules.


Assuntos
Nódulo da Glândula Tireoide , Zircônio , Nódulo da Glândula Tireoide/diagnóstico por imagem , Nódulo da Glândula Tireoide/diagnóstico , Nódulo da Glândula Tireoide/patologia , Humanos , Zircônio/química , Ouro/química , Metabolômica , Feminino
15.
Biomolecules ; 14(8)2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39199411

RESUMO

M2-like macrophages promote tumor growth and cancer immune evasion. This study used an in vitro model to investigate how hypoxia and tumor metabolism affect macrophage polarization. Liver cancer cells (HepG2 and VX2) and macrophages (THP1) were cultured under hypoxic (0.1% O2) and normoxic (21% O2) conditions with varying glucose levels (2 g/L or 4.5 g/L). Viability assays and extracellular pH (pHe) measurements were conducted over 96 hours. Macrophages were exposed to the tumor-conditioned medium (TCM) from the cancer cells, and polarization was assessed using arginase and nitrite assays. GC-MS-based metabolic profiling quantified TCM meta-bolites and correlated them with M2 polarization. The results showed that pHe in TCMs decreased more under hypoxia than normoxia (p < 0.0001), independent of glucose levels. The arginase assay showed hypoxia significantly induced the M2 polarization of macrophages (control group: p = 0.0120,0.1%VX2-TCM group: p = 0.0149, 0.1%HepG2-TCM group: p < 0.0001, 0.1%VX2-TCMHG group: p = 0.0001, and 0.1%HepG2-TCMHG group: p < 0.0001). TCMs also induced M2 polarization under normoxic conditions, but the strongest M2 polarization occurred when both tumor cells and macrophages were incubated under hypoxia with high glucose levels. Metabolomics revealed that several metabolites, particularly lactate, were correlated with hypoxia and M2 polarization. Under normoxia, elevated 2-amino-butanoic acid (2A-BA) strongly correlated with M2 polarization. These findings suggest that targeting tumor hypoxia could mitigate immune evasion in liver tumors. Lactate drives acidity in hypoxic tumors, while 2A-BA could be a therapeutic target for overcoming immunosuppression in normoxic conditions.


Assuntos
Neoplasias Hepáticas , Macrófagos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Humanos , Macrófagos/metabolismo , Macrófagos/imunologia , Células Hep G2 , Hipóxia Celular , Glucose/metabolismo , Meios de Cultivo Condicionados/farmacologia , Linhagem Celular Tumoral , Concentração de Íons de Hidrogênio , Arginase/metabolismo , Sobrevivência Celular
16.
BMC Genomics ; 25(1): 765, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107708

RESUMO

Macrobrachium nipponense is an important commercial freshwater species in China. However, the ability of alkali tolerance of M. nipponense is insufficient to culture in the major saline-alkali water source in China. Thus, it is urgently needed to perform the genetic improvement of alkali tolerance in this species. In the present study, we aimed to analyse the effects of alkali treatment on gills in this species after 96 h alkalinity exposure under the alkali concentrations of 0 mmol/L, 4 mmol/L, 8 mmol/L, and 12 mmol/L through performing the histological observations, measurement of antioxidant enzymes, metabolic profiling analysis, and transcriptome profiling analysis. The results of the present study revealed that alkali treatment stimulated the contents of malondialdehyde, glutathione, glutathione peroxidase in gills, indicating these antioxidant enzymes plays essential roles in the protection of body from the damage, caused by the alkali treatment. In addition, high concentration of alkali treatment (> 8 mmol/L) resulted in the damage of gill membrane and haemolymph vessel, affecting the normal respiratory function of gill. Metabolic profiling analysis revealed that Metabolic pathways, Biosynthesis of secondary metabolites, Biosynthesis of plant secondary metabolites, Microbial metabolism in diverse environments, Biosynthesis of amino acids were identified as the main enriched metabolic pathways of differentially expressed metabolites, which are consistent with the previous publications, treated by the various environmental factors. Transcriptome profiling analyses revealed that the alkali concentration of 12 mmol/L has more regulatory effects on the changes of gene expression than the other alkali concentrations. KEGG analysis revealed that Phagosome, Lysosome, Glycolysis/Gluconeogenesis, Purine Metabolism, Amino sugar and nucleotide sugar metabolism, and Endocytosis were identified as the main enriched metabolic pathways in the present study, predicting these metabolic pathways may be involved in the adaption of alkali treatment in M. nipponense. Phagosome, Lysosome, Purine Metabolism, and Endocytosis are immune-related metabolic pathways, while Glycolysis/Gluconeogenesis, and Amino sugar and nucleotide sugar metabolism are energy metabolism-related metabolic pathways. Quantitative PCR analyses of differentially expressed genes (DEGs) verified the accuracy of the RNA-Seq. Alkali treatment significantly stimulated the expressions of DEGs from the metabolic pathways of Phagosome and Lysosome, suggesting Phagosome and Lysosome play essential roles in the regulation of alkali tolerance in this species, as well as the genes from these metabolic pathways. The present study identified the effects of alkali treatment on gills, providing valuable evidences for the genetic improvement of alkali tolerance in M. nipponense.


Assuntos
Álcalis , Brânquias , Palaemonidae , Animais , Brânquias/metabolismo , Brânquias/efeitos dos fármacos , Palaemonidae/genética , Palaemonidae/efeitos dos fármacos , Palaemonidae/metabolismo , Perfilação da Expressão Gênica , Transcriptoma/efeitos dos fármacos , Redes e Vias Metabólicas/efeitos dos fármacos
17.
Front Biosci (Landmark Ed) ; 29(8): 306, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39206923

RESUMO

BACKGROUND: Aging is a progressive process characterized by weakness in brain function. Although metabolomics studies on the brain related with aging have been conducted, it is not yet fully understood. A systematic metabolomics study was performed to search for biomarkers and monitor altered metabolism in various brain tissues of the cortex, cerebellum, hypothalamus, and hippocampus of young (8 months old) and old rats (22 months old). METHODS: Simultaneous profiling analysis of amino acids (AAs), organic acids (OAs), and fatty acids (FAs) in the brain tissues of young and old rats were performed by gas chromatography-tandem mass spectrometry. RESULTS: Under optimal conditions, AA, OA, and FA profiling methods showed good linearity (r ≥0.995) with limit of detection of ≤30 and 73.2 ng and limit of quantification of ≤90.1 and 219.5 ng, respectively. Repeatability varied from 0.4 to 10.4 and 0.8 to 14.8% relative standard deviation and accuracy varied from -11.3 to 10.3 and -12.8 to 14.1% relative error, respectively. In the profiling analysis, total 32, 43, 45, and 30 metabolites were determined in cortex, cerebellum, hypothalamus, and hippocampus, respectively. In statistical analysis, eight AAs (alanine, valine, leucine, isoleucine, threonine, serine, proline, and phenylalanine) in the cortex and four metabolites (alanine, phenylalanine, 3-hydoxypropionic acid, and eicosadienoic acid) in the cerebellum were significantly evaluated (Q-value <0.05, variable importance in projection scores ≥1.0). In all brain tissues, the score plots of orthogonal partial least square discriminant analysis were clearly separated between the young and old groups. CONCLUSIONS: Metabolomics results indicate that mechanistic targets of rapamycin complex 1, branched chain-amino acid, and energy metabolism are related to inflammation and mitochondrial dysfunction in the brain during aging. Thus, these results may explain the characteristic metabolism of brain aging.


Assuntos
Envelhecimento , Aminoácidos , Cerebelo , Ácidos Graxos , Hipocampo , Hipotálamo , Metabolômica , Animais , Aminoácidos/metabolismo , Metabolômica/métodos , Ácidos Graxos/metabolismo , Hipocampo/metabolismo , Hipotálamo/metabolismo , Masculino , Cerebelo/metabolismo , Envelhecimento/metabolismo , Ratos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Encéfalo/metabolismo , Ratos Sprague-Dawley , Córtex Cerebral/metabolismo , Metaboloma
18.
BMC Plant Biol ; 24(1): 806, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39187756

RESUMO

BACKGROUND: Scopoletin and umbelliferone belong to coumarins, which are plant specialized metabolites with potent and wide biological activities, the accumulation of which is induced by various environmental stresses. Coumarins have been detected in various plant species, including medicinal plants and the model organism Arabidopsis thaliana. In recent years, key role of coumarins in maintaining iron (Fe) homeostasis in plants has been demonstrated, as well as their significant impact on the rhizosphere microbiome through exudates secreted into the soil environment. Several mechanisms underlying these processes require clarification. Previously, we demonstrated that Arabidopsis is an excellent model for studying genetic variation and molecular basis of coumarin accumulation in plants. RESULTS: Here, through targeted metabolic profiling and gene expression analysis, the gene-metabolite network of scopoletin and umbelliferone accumulation was examined in more detail in selected Arabidopsis accessions (Col-0, Est-1, Tsu-1) undergoing different culture conditions and characterized by variation in coumarin content. The highest accumulation of coumarins was detected in roots grown in vitro liquid culture. The expression of 10 phenylpropanoid genes (4CL1, 4CL2, 4CL3, CCoAOMT1, C3'H, HCT, F6'H1, F6'H2,CCR1 and CCR2) was assessed by qPCR in three genetic backgrounds, cultured in vitro and in soil, and in two types of tissues (leaves and roots). We not only detected the expected variability in gene expression and coumarin accumulation among Arabidopsis accessions, but also found interesting polymorphisms in the coding sequences of the selected genes through in silico analysis and resequencing. CONCLUSIONS: To the best of our knowledge, this is the first study comparing accumulation of simple coumarins and expression of phenylpropanoid-related genes in Arabidopsis accessions grown in soil and in liquid cultures. The large variations we detected in the content of coumarins and gene expression are genetically determined, but also tissue and culture dependent. It is particularly important considering that growing plants in liquid media is a widely used technology that provides a large amount of root tissue suitable for metabolomics. Research on differential accumulation of coumarins and related gene expression will be useful in future studies aimed at better understanding the physiological role of coumarins in roots and the surrounding environments.


Assuntos
Arabidopsis , Escopoletina , Umbeliferonas , Arabidopsis/genética , Arabidopsis/metabolismo , Escopoletina/metabolismo , Umbeliferonas/metabolismo , Glicosídeos/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
19.
Biology (Basel) ; 13(8)2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39194519

RESUMO

Liposomes and niosomes can be considered excellent drug delivery systems due to their ability to load all compounds, whether hydrophobic or hydrophilic. In addition, they can reduce the toxicity of the loaded drug without reducing its effectiveness. Synechocystis sp. is a unicellular, freshwater cyanobacteria strain that contains many bioactive compounds that qualify its use in industrial, pharmaceutical, and many other fields. This study investigated the potential of nano-liposomes (L) and nano-niosomes (N) for delivering Synechocystis sp. extract against cancer cell lines. Four different types of nanoparticles were prepared using a dry powder formulation and ethanol extract of Synechocystis sp. in both nanovesicles (N1 and N2, respectively) and liposomes (L1 and L2, respectively). Analysis of the formed vesicles using zeta analysis, SEM morphological analysis, and visual examination confirmed their stability and efficiency. L1 and L2 in this investigation had effective diameters of 419 and 847 nm, respectively, with PDI values of 0.24 and 0.27. Furthermore, the zeta potentials were found to range from -31.6 mV to -43.7 mV. Regarding N1 and N2, their effective diameters were 541 nm and 1051 nm, respectively, with PDI values of 0.31 and 0.35, and zeta potentials reported from -31.6 mV to -22.2 mV, respectively. Metabolic profiling tentatively identified 22 metabolites (1-22) from the ethanolic extract. Its effect against representative human cancers was studied in vitro, specifically against colon (Caco2), ovarian (OVCAR4), and breast (MCF7) cancer cell lines. The results showed the potential activities of the prepared N1, N2, L1, and L2 against the three cell lines, where L1 had cytotoxicity IC50 values of 19.56, 33.52, and 9.24 µg/mL compared to 26.27, 56.23, and 19.61 µg/mL for L2 against Caco2, OVCAR4, and MCF7, respectively. On the other hand, N1 exhibited IC50 values of 9.09, 11.42, and 2.38 µg/mL, while N2 showed values of 15.57, 18.17, and 35.31 µg/mL against Caco2, OVCAR4, and MCF7, respectively. Meanwhile, the formulations showed little effect on normal cell lines (FHC, OCE1, and MCF10a). All of the compounds were evaluated in silico against the epidermal growth factor receptor tyrosine kinase (EGFR). The molecular docking results showed that compound 21 (1-hexadecanoyl-2-(9Z-hexadecenoyl)-3-(6'-sulfo-alpha-D-quinovosyl)-sn-glycerol), followed by compounds 6 (Sulfoquinovosyl monoacylgycerol), 7 (3-Hydroxymyristic acid), 8 (Glycolipid PF2), 12 (Palmitoleic acid), and 19 (Glyceryl monostearate), showed the highest binding affinities. These compounds formed good hydrogen bond interactions with the key amino acid Lys721 as the co-crystallized ligand. These results suggest that nano-liposomes and nano-niosomes loaded with Synechocystis sp. extract hold promise for future cancer treatment development. Further research should focus on clinical trials, stability assessments, and pharmacological profiles to translate this approach into effective anticancer drugs.

20.
World J Microbiol Biotechnol ; 40(9): 260, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967730

RESUMO

This study aimed to isolate and characterize a native strain of Beauveria bassiana, coded as Bv065, showcasing its potential as a biological control agent targeting the palm weevil Dynamis borassi. Originating from a naturally infected D. borassi specimen collected in southwestern Colombia, the fungus underwent molecular identification and was identified as B. bassiana, exhibiting high sequence similarity with known reference strains. The physiological characterization revealed that Bv065 thrived within a temperature range of 25 to 30 °C and a pH range of 6 to 9. Moreover, the key carbon sources that allow optimal growth of the strain were identified through metabolic profiling, including sucrose, D-mannose, and γ-amino-butyric acid. These findings offer strategic insights for scalability and formulation methodologies. Additionally, enzymatic analyses unveiled robust protease activity within Bv065, crucial for catalysing insect cuticle degradation and facilitating host penetration, thus accentuating its entomopathogenic potential. Subsequent evaluations exposed Bv065's pathogenicity against D. borassi, causing significant mortality within nine days of exposure, albeit exhibiting limited effectiveness against Rhynchophorus palmarum. This study underscores the importance of understanding optimal growth conditions and metabolic preferences of B. bassiana strains for developing effective biopesticides. The findings suggest Bv065 as a promising candidate for integrated pest management strategies in neotropical regions, particularly for controlling palm weevil infestations in coconut and peach palm cultivation. Future research avenues include refining mass production methodologies, formulating novel delivery systems, and conducting comprehensive field efficacy trials to unlock the full potential of Bv065 in fostering sustainable pest management practices. Overall, this study contributes to the growing body of knowledge on entomopathogenic fungi and their pivotal role in biological control, offering nuanced perspectives on eco-friendly alternatives to conventional insecticidal interventions.


Assuntos
Beauveria , Controle Biológico de Vetores , Gorgulhos , Beauveria/fisiologia , Beauveria/patogenicidade , Animais , Gorgulhos/microbiologia , Controle Biológico de Vetores/métodos , Colômbia , Filogenia , Temperatura , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA