Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 17.706
Filtrar
1.
J Environ Sci (China) ; 147: 62-73, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003077

RESUMO

Non-ferrous metal smelting poses significant risks to public health. Specifically, the copper smelting process releases arsenic, a semi-volatile metalloid, which poses an emerging exposure risk to both workers and nearby residents. To comprehensively understand the internal exposure risks of metal(loid)s from copper smelting, we explored eighteen metal(loid)s and arsenic metabolites in the urine of both occupational and non-occupational populations using inductively coupled plasma mass spectrometry with high-performance liquid chromatography and compared their health risks. Results showed that zinc and copper (485.38 and 14.00 µg/L), and arsenic, lead, cadmium, vanadium, tin and antimony (46.80, 6.82, 2.17, 0.40, 0.44 and 0.23 µg/L, respectively) in workers (n=179) were significantly higher compared to controls (n=168), while Zinc, tin and antimony (412.10, 0.51 and 0.15 µg/L, respectively) of residents were significantly higher than controls. Additionally, workers had a higher monomethyl arsenic percentage (MMA%), showing lower arsenic methylation capacity. Source appointment analysis identified arsenic, lead, cadmium, antimony, tin and thallium as co-exposure metal(loid)s from copper smelting, positively relating to the age of workers. The hazard index (HI) of workers exceeded 1.0, while residents and control were approximately at 1.0. Besides, all three populations had accumulated cancer risks exceeding 1.0 × 10-4, and arsenite (AsIII) was the main contributor to the variation of workers and residents. Furthermore, residents living closer to the smelting plant had higher health risks. This study reveals arsenic exposure metabolites and multiple metals as emerging contaminants for copper smelting exposure populations, providing valuable insights for pollution control in non-ferrous metal smelting.


Assuntos
Metalurgia , Exposição Ocupacional , Humanos , Exposição Ocupacional/análise , Exposição Ambiental/estatística & dados numéricos , Metais/urina , Metais/análise , Medição de Risco , Arsênio/análise , Monitoramento Ambiental , Adulto , Poluentes Ambientais/análise , Pessoa de Meia-Idade
2.
Food Chem ; 462: 140666, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39208728

RESUMO

To improve the adsorption affinity and selectivity of fipronils (FPNs), including fipronil, its metabolites and analogs, a magnetic covalent organic framework (Fe3O4@COF-F) with copious fluorine affinity sites was innovatively designed as an adsorbent of magnetic solid-phase extraction (MSPE). The enhanced surface area, pore size, crystallinity of Fe3O4@COF-F and its exponential adsorption capacities (187.3-231.5 mg g-1) towards fipronils were investigated. Combining MSPE with high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS), an analytical method was established for the selective determination of fipronils in milk and milk powder samples. This method achieved high sensitivity (LODs: 0.004-0.075 ng g-1), satisfactory repeatability and accuracy with spiked recoveries ranging from 89.9% to 100.3% (RSDs≤5.1%). Overall, the constructed Fe3O4@COF-F displayed great potential for the selective enrichment of fipronils, which could be ascribed to fluorine­fluorine interaction. This method proposed a feasible and promising strategy for the development of functionalized COF and broadened its application in fluorine containing hazards detection.


Assuntos
Flúor , Contaminação de Alimentos , Estruturas Metalorgânicas , Leite , Pirazóis , Extração em Fase Sólida , Espectrometria de Massas em Tandem , Pirazóis/química , Contaminação de Alimentos/análise , Flúor/química , Leite/química , Animais , Estruturas Metalorgânicas/química , Adsorção , Cromatografia Líquida de Alta Pressão , Inseticidas/química , Inseticidas/análise , Limite de Detecção
3.
Rev. biol. trop ; 72(1): e54500, ene.-dic. 2024. graf
Artigo em Espanhol | LILACS, SaludCR | ID: biblio-1559314

RESUMO

Resumen Introducción: La melina (Gmelina arborea), es una especie de gran interés por su madera y propiedades medicinales. En Costa Rica, existen clones genéticamente superiores que se propagan sin el conocimiento de la edad ontogénica y fisiológica de los materiales. Objetivo: Evaluar la relación del contenido de fenoles y ligninas en hojas, peciolos, tallos y raíces de plantas con diferentes edades. Métodos: Los contenidos de fenoles y ligninas totales se determinaron mediante el método colorimétrico de Folin-Ciocalteu y el método de extracción alcalina, respectivamente. Para la investigación se eligieron plantas in vitro "año cero" y árboles de año y medio, cuatro, siete y 20 años. El muestreo se realizó en marzo y abril del 2021. Resultados: Se demostró que todas las partes de la planta analizadas contienen compuestos fenólicos y ligninas, independientemente de su edad. No hubo una correlación positiva entre la edad con el contenido de fenoles y ligninas para ninguna condición de desarrollo, pues los valores más altos no se obtuvieron en los árboles más longevos. Los extractos de hojas de las plantas in vitro y los árboles de siete años mostraron, respectivamente, los contenidos más altos de fenoles y ligninas para todas las condiciones (P < 0.05). Los valores promedio más bajos de compuestos fenólicos para todas las condiciones se obtuvieron en los árboles de cuatro años. Respecto a las ligninas, el contenido más bajo se presentó en las raíces más longevas, aunque la tendencia no se mantuvo para el resto de las partes de la planta. Conclusiones: La investigación muestra los primeros resultados del contenido de compuestos fenólicos y ligninas presentes en diferentes tejidos de una especie forestal de edades diferentes. Por lo tanto, son los primeros valores de referencia acerca del compromiso bioquímico para la síntesis fenólica según la edad y el estado de desarrollo específico de una planta leñosa.


Abstract Introduction: Melina (Gmelina arborea) is a tree species of great interest for its wood and medicinal properties. In Costa Rica, there are genetically superior clones that are propagated without knowledge of the ontogenic and physiological age of the materials. Objective: To evaluate how age influences the content of phenols and lignins in leaves, petioles, stems, and roots of melina plants. Methods: The total phenolic and lignins contents were determined using Folin-Ciocalteu colorimetric method and alkaline extraction method, respectively. Plants of five different ages were chosen for the investigation (in vitro plants "year 0" and trees of a year and a half, four, seven and 20 years). Sampling was done in March and April 2021. Results: All parts of the plant analyzed contain phenolic compounds and lignins, regardless of their age. There was no positive correlation between age and phenol and lignin content for any development condition, since the highest values were not obtained in the oldest trees. Leaf extracts from in vitro plants and seven-year-old trees showed, respectively, the highest phenol and lignin contents for all conditions (P < 0.05). The lowest average values of phenolic compounds for all conditions were obtained in four-year-old trees. Regarding lignins, the lowest content occurred in the oldest roots, although the trend was not maintained for the rest of the plant parts. Conclusions: This study provides the first results of the content of phenolic compounds and lignins present in different tissues of a forest species of different ages. Therefore, they are the first reference values about the biochemical commitment for phenolic synthesis according to the age and the specific developmental stage of a woody plant.


Assuntos
Fenóis/análise , Árvores , Lignina/análise , Estudos de Amostragem , Lamiaceae , Compostos Fitoquímicos/análise
4.
Artigo em Inglês | MEDLINE | ID: mdl-39312118

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are one of the most common groups of pollutants that have toxic and carcinogenic effects. Black alder trees (Alnus glutinosa L.) have been used to remediate contaminated soils from industrial pollutants and heavy metals; however, their usefulness for PAH remediation is unclear. In this study, we examined the response of seedlings from four alder half-sib families (genetic groups sharing the same mother but different fathers) to exposure to four PAHs-phenanthrene, pyrene, naphthalene, and fluoranthene-each at three concentrations. Plant growth parameters were evaluated, and concentration of secondary metabolites and antioxidant activity were measured. The results of the morphological parameters showed that in general, higher PAH concentrations had a more negative effect on tree vitality than lower concentrations (shoot growth reduction by up to 76%). Each half-sib family also exhibited distinct responses in total phenol content (TPC) when exposed to varying concentrations of pollutants, with reductions in TPC ranging from 4 to 52% across different genetic lineages. Enzyme activity also varied between families, pollutants, and their concentrations; for example, while phenanthrene generally increased glutathione S-transferase (GST) activity in the 13-99-1K and 38-61-7K half-sib families, it unexpectedly decreased GST levels by 23% and 29% in the seedlings of the 26-133-6K and 41-65-7K families, respectively, emphasizing the nuanced and divergent enzymatic responses observed in this study. Further secondary metabolite and antioxidant activity analysis revealed distinct variations in the way PAHs impact the defense mechanism of alder seedlings from different genetic groups-prioritizing either enzymatic or non-enzymatic systems. To sum up, analyzing the varying effects of PAHs on distinct half-sib families of alders can prove advantageous in identifying the most efficient black alder genetic families for phytoremediation purposes.

5.
Zhongguo Zhong Yao Za Zhi ; 49(15): 4220-4229, 2024 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-39307752

RESUMO

Isochlorogenic acid A(ICA) is the main active component of several TCMs, such as Artemisiae Scopariae Herba. This study aims to identify the metabolites of orally administered ICA in rat plasma, urine, and feces, and to speculate on its potential metabolic pathways. Rats were administered ICA orally, and samples of plasma, urine, and feces were collected at different time points. High-performance liquid chromatography-quadrupole Exactive Orbitrap-mass spectrometry(HPLC-Q-Exactive Orbitrap-MS) was used in combination with reference standards, retention time comparison, fragmentation pattern analysis, and literature data to identify the metabolites in the biological samples. A total of 39 metabolites(M1-M39) of ICA were preliminarily identified from rat samples, including 31 from plasma(M1-M10, M12-M24, M26-M28, M30, M34-M35, M38-M39), 34 from urine(M1-M11, M13-M15, M19-M25, M27-M39), and 11 from feces(M2-M3, M6, M15, M21-M23, M32, M34, M36-M37). The main metabolic pathways included hydrolysis, glucuronidation, methylation, and sulfonation reactions. This study revealed the metabolic profile of ICA in rat plasma, urine, and feces, providing references for the in-depth elucidation of its pharmacologically active components.


Assuntos
Fezes , Espectrometria de Massas , Ratos Sprague-Dawley , Animais , Cromatografia Líquida de Alta Pressão/métodos , Ratos , Masculino , Fezes/química , Ácido Clorogênico/química , Ácido Clorogênico/urina , Ácido Clorogênico/análogos & derivados , Ácido Clorogênico/metabolismo , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/farmacocinética
6.
Zhongguo Zhong Yao Za Zhi ; 49(16): 4470-4476, 2024 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-39307783

RESUMO

The secondary metabolites of the endophytic fungus Talaromyces malicola hosted in the arthropod Armadillidium vulgare were separated by silica gel column chromatography, gel column chromatography, and semi-preparative high-performance liquid chromatography. Eleven compounds(1-11) were obtained from the ethyl acetate fraction of the fermentation broth of T. malicola, and their structures were identified by NMR, HR-ESI-MS, UV, IR, and ECD. The 11 compounds were talarosesquiterpene A(1),(3ß,5α,6α,15α,22E)-5,6-epoxyergosta-8(14),22-diene-3,7,15-triol(2), vermistatin(3), hydroxyvermistatin(4), bercheminol A(5), penicillide(6), lunatinin(7), penipurdin A(8), emodin(9), BE-25327(10), and(-)-regiolone(11). Compound 1 was a new diaporol-type sesquiterpene. Compounds 2, 4-5, and 7-11 were isolated from Talaromyces for the first time.


Assuntos
Endófitos , Metabolismo Secundário , Talaromyces , Talaromyces/metabolismo , Talaromyces/química , Animais , Endófitos/química , Endófitos/metabolismo , Estrutura Molecular , Cromatografia Líquida de Alta Pressão , Espectroscopia de Ressonância Magnética
7.
Zhongguo Zhong Yao Za Zhi ; 49(17): 4687-4694, 2024 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-39307806

RESUMO

This study focused on the bioactive secondary metabolites of an endophytic fungus Aspergillus sp. CCH-1E from Catharanthus roseus. The secondary metabolites from Aspergillus sp. CCH-1E were isolated by using various chromatographic methods [such as normal-phase and reversed-phase chromatography and high-performance liquid chromatography(HPLC)], and their structures were identified by various spectroscopic methods [e.g., ultraviolet(UV) spectroscopy, infrared(IR) spectroscopy, nuclear magnetic resonance(NMR) spectroscopy, and high-resolution electrospray ionization mass spectrometry(HR-ESI-MS)]. Twelve compounds were yielded and identified from Aspergillus sp. CCH-1E, which are chermesinone H(1), chermesinone I(2), chermesinone B(3), 8,11-didehydrochermesinone B(4), chermesinone C(5), chermesinone A(6), chevalone B(7), barbacenic acid(8), 3,6,8-trihydroxy-3,5,7-trimethyl-3,4-dihydroisocoumarin(9), 5-hydroxy-2-methoxy-7-methyl-1,4-naphthoquinone(10), 1-hydroxy-6,8-dimethoxy-3-methylanthracene-9,10-dione(11), and 7-drimen-9α,11,12-triol(12). Among them, compounds 1 and 2 are new compounds. The growth inhibition effects of all compounds were evaluated against non-small cell lung cancer cell lines A549 and NCI-H1650, as well as human cervical cancer cell line HeLa by using methylthiazolyldiphenyl-tetrazolium bromide(MTT). Compound 7 significantly inhibited the growth of three tumor cells with the IC_(50) values of 1.22-2.43 µmol·L~(-1), respectively. Compounds 1-6 showed moderate cell growth inhibition with the IC_(50) values of 16.24-35.28 µmol·L~(-1).


Assuntos
Aspergillus , Catharanthus , Metabolismo Secundário , Humanos , Aspergillus/química , Aspergillus/metabolismo , Catharanthus/microbiologia , Catharanthus/química , Linhagem Celular Tumoral , Estrutura Molecular , Endófitos/química , Proliferação de Células/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Cromatografia Líquida de Alta Pressão
8.
BMC Gastroenterol ; 24(1): 310, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39271994

RESUMO

BACKGROUND: Esophageal diseases (ED) are a kind of common diseases of upper digestive tract. Previous studies have proved that metabolic disorders are closely related to the occurrence and development of ED. However, there is a lack of evidence for causal relationships between metabolites and ED, as well as between metabolite ratios representing enzyme activities and ED. Herein, we explored the causality of genetically determined metabolites (GDMs) on ED through Mendelian Randomization (MR) study. METHODS: Two-sample Mendelian randomization analysis was used to assess the causal effects of genetically determined metabolites and metabolite ratios on ED. A genome-wide association analysis (GWAS) encompassing 850 individual metabolites along with 309 metabolite ratios served as the exposures. Meanwhile, the outcomes were defined by 10 types of ED phenotypes, including Congenital Malformations of Esophagus (CME), Esophageal Varices (EV), Esophageal Obstructions (EO), Esophageal Ulcers (EU), Esophageal Perforations (EP), Gastroesophageal Reflux Disease (GERD), Esophagitis, Barrett's Esophagus (BE), Benign Esophageal Tumors (BETs), and Malignant Esophageal Neoplasms (MENs). The standard inverse variance weighted (IVW) method was applied to estimate the causal relationship between exposure and outcome. Sensitivity analyses were carried out using multiple methods, including MR-Egger, Weighted Median, MR-PRESSO, Cochran's Q test, and leave-one-out analysis. P < 0.05 was conventionally considered statistically significant. After applying the Bonferroni correction for multiple testing, a threshold of P < 4.3E-05 (0.05/1159) was regarded as indicative of a statistically significant causal relationship. Furthermore, metabolic pathway analysis was performed using the web-based MetaboAnalyst 6.0 software. RESULTS: The findings revealed that initially, a total of 869 candidate causal association pairs ( P ivw < 0.05) were identified, involving 442 metabolites, 145 metabolite ratios and 10 types of ED. However, upon applying the Bonferroni correction for multiple testing, only 36 pairs remained significant, involving 28 metabolites (predominantly lipids and amino acids), 5 metabolite ratios and 6 types of ED. Sensitivity analyses and reverse MR were performed for these 36 causal association pairs, where the results showed that the pair of EV and 1-(1-enyl-palmitoyl)-2-linoleoyl-GPE (p-16:0/18:2) did not withstand the sensitivity tests, and Hexadecenedioate (C16:1-DC) was found to have a reverse causality with GERD. The final 34 robust causal pairs included 26 metabolites, 5 metabolite ratios and 5 types of ED. The involved 26 metabolites predominantly consisted of methylated nucleotides, glycine derivatives, sex hormones, phospholipids, bile acids, fatty acid dicarboxylic acid derivatives, and N-acetylated amino acids. Furthermore, through metabolic pathway analysis, we uncovered 8 significant pathways that played pivotal roles in five types of ED conditions. CONCLUSIONS: This study integrated genomics with metabolomics to assess causal relationships between ED and both metabolites and metabolite ratios, uncovering several key metabolic features in ED pathogenesis. These findings have potential as novel biomarkers for ED and provide insights into the disease's etiology and progression. However, further clinical and experimental validations are necessary.


Assuntos
Doenças do Esôfago , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Humanos , Doenças do Esôfago/genética , Doenças do Esôfago/metabolismo , Fenótipo , Polimorfismo de Nucleotídeo Único , Causalidade
9.
Animals (Basel) ; 14(17)2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-39272250

RESUMO

Sensitivity to freezing remains a critical issue in stallion semen cryopreservation procedures. To explore this topic in-depth, semen was collected from ten stallions, diluted with three different extenders, transported to the laboratory, and then centrifuged and frozen with four different extenders. We conducted analyses of sperm kinetics, mitochondrial membrane potential (MMP), and hydrogen peroxide content both before and after freezing. Additionally, we assessed antioxidant activity using the ABTS and FRAP methods and measured nitric oxide stable metabolites (NOx) in the blank extenders, seminal plasma, and extenders conditioned by spermatozoa before and after freezing. We found significant variability in the antioxidant activity and NOx content of the blank extenders and the seminal plasma. In the seminal plasma, ABTS-based antioxidant activity and NOx values were correlated with some sperm kinematic parameters and MMP in refrigerated semen, while no correlation was observed in frozen sperm parameters. Sperm function varied significantly between stallions but not between extenders, either before or after freezing. However, significant differences in antioxidant activities and NOx values were found among extenders conditioned following freezing. These results provide new insights into the factors contributing to the variability in individual stallions' tolerance to sperm freezing.

10.
Animals (Basel) ; 14(17)2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39272324

RESUMO

The giant freshwater prawn (GFP; Macrobrachium rosenbergii), a tropical species cultured worldwide, has high market demand and economic value. Male GFP growth varies considerably; however, the mechanisms underlying these growth differences remain unclear. In this study, we collected gut and hemolymphatic samples of large (ML), medium (MM), and small (MS) male GFPs and used the 16S rRNA sequencing and liquid chromatography-mass spectrometry-based metabolomic methods to explore gut microbiota and metabolites associated with GFP growth. The dominant bacteria were Firmicutes and Proteobacteria; higher growth rates correlated with a higher Firmicutes/Bacteroides ratio. Serum metabolite levels significantly differed between the ML and MS groups. We also combined transcriptomics with integrative multiomic techniques to further elucidate systematic molecular mechanisms in the GFPs. The results revealed that Faecalibacterium and Roseburia may improve gut health in GFP through butyrate release, affecting physiological homeostasis and leading to metabolic variations related to GFP growth differences. Notably, our results provide novel, fundamental insights into the molecular networks connecting various genes, metabolites, microbes, and phenotypes in GFPs, facilitating the elucidation of differential growth mechanisms in GFPs.

11.
Animals (Basel) ; 14(17)2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39272361

RESUMO

30 Nellore animals with an average weight of 407.25 ± 2.04 kg, were distributed in a completely randomized design across the following treatments: 1-Control (without inclusion of 3-NOP); 2-BV75 (inclusion of 3-NOP at 75 mg/kg DM); 3-BV100 (inclusion of 3-NOP at 100 mg/kg DM). No significant effects were observed between treatments on ingestive behavior. However, the notable effect on the BWfinal and ADG of animals supplemented with 3-NOP compared to the control group was measurable. Cattle beef receiving 3-NOP exhibited reduced methane emissions (p < 0.0001) for all variables analyzed, resulting in an average decrease of 38.2% in methane emissions compared to the control, along with increased hydrogen emissions (g/day) (p < 0.0001). While supplementation with BV100 demonstrated lower methane emission, the performance was lower than BV75 in DMI, BWfinal, ADG, and ADG carcasses. Partial separation of metabolomics observed between groups indicated changes in meat metabolism when comparing the control group with the 3-NOP group, identifying metabolites with a variable importance projection (VIP) score > 1. In conclusion, supplementation with 3-NOP effectively reduced methane emissions and did not negatively influence animal performance.

12.
Foods ; 13(17)2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39272415

RESUMO

Osteoporosis (OP) represents a global health challenge. Certain functional food has the potential to mitigate OP. Honeysuckle (Lonicera japonica) solution has medicinal effects, such as anti-inflammatory and immune enhancement, and can be used in functional foods such as health drinks and functional snacks. The composition of honeysuckle changed significantly after fermentation, and 376 metabolites were enriched. In this study, we used dexamethasone to induce OP in the rat model. Research has confirmed the ability of FS (fermented Lonicera japonica solution) to enhance bone mineral density (BMD), repair bone microarchitectural damage, and increase blood calcium levels. Markers such as tartrate-resistant acid phosphatase-5b (TRACP-5b) and pro-inflammatory cytokines (TNF-α and IL-6) were notably decreased, whereas osteocalcin (OCN) levels increased after FS treatment. FS intervention in OP rats restored the abundance of 6 bacterial genera and the contents of 17 serum metabolites. The results of the Spearman correlation analysis showed that FS may alleviate OP by restoring the abundance of 6 bacterial genera and the contents of 17 serum metabolites, reducing osteoclast differentiation, promoting osteoblast differentiation, and reducing the inflammatory response. This study revealed that Lactobacillus plantarum-fermented honeysuckle alleviated OP through intestinal bacteria and serum metabolites and provided a theoretical basis for the development of related functional foods.

13.
Cancers (Basel) ; 16(17)2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39272898

RESUMO

Cumulative evidence attests to the essential roles of commensal microbes in the physiology of hosts. Although the microbiome has been a major research subject since the time of Luis Pasteur and William Russell over 140 years ago, recent findings that certain intracellular bacteria contribute to the pathophysiology of healthy vs. diseased tissues have brought the field of the microbiome to a new era of investigation. Particularly, in the field of breast cancer research, breast-tumor-resident bacteria are now deemed to be essential players in tumor initiation and progression. This is a resurrection of Russel's bacterial cause of cancer theory, which was in fact abandoned over 100 years ago. This review will introduce some of the recent findings that exemplify the roles of breast-tumor-resident microbes in breast carcinogenesis and metastasis and provide mechanistic explanations for these phenomena. Such information would be able to justify the utility of breast-tumor-resident microbes as biomarkers for disease progression and therapeutic targets.

14.
Int J Mol Sci ; 25(17)2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39273211

RESUMO

Low temperature is a significant abiotic stress factor that not only impacts plant growth, development, yield, and quality but also constrains the geographical distribution of numerous wild plants. Kohlrabi (Brassica oleracea L. var. caulorapa L.) belongs to the Brassicaceae family and has a short growing period. In this study, a total of 196,642 unigenes were obtained from kohlrabi seedlings at low temperatures; of these, 52,836 unigenes were identified as differentially expressed genes. Transcription factor family members ARR-B, C3H, B3-ARF, etc. that had a high correlation with biochemical indicators related to low temperature were identified. A total of nineteen BocARR-B genes (named BocARR-B1-BocARR-B19) were obtained, and these genes were distributed unevenly across seven chromosomes. Nineteen BocARR-B genes searched four conserved motifs and were divided into three groups. The relative expression level analysis of 19 BocARR-B genes of kohlrabi showed obvious specificity in different tissues. This study lays a foundation and provides new insight to explain the low-temperature resistance mechanism and response pathways of kohlrabi. It also provides a theoretical basis for the functional analysis of 19 BocARR-B transcription factor gene family members.


Assuntos
Brassica , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Fatores de Transcrição , Transcriptoma , Brassica/genética , Brassica/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Temperatura Baixa , Perfilação da Expressão Gênica , Família Multigênica , Filogenia
15.
Environ Pollut ; 362: 124917, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39251123

RESUMO

This study investigated the efficacy of incorporating nitric oxide (NO; 10 µM) and ascorbic acid (Asc; 10 µM) into the culture medium to confer cadmium (Cd; 5 µM) tolerance in thyme (Zataria multiflora). The phytotoxicity of Cd resulted in a decrease in shoot biomass, which NO or Asc mitigated. Adding Asc and NO to the culture medium was associated with substantial DNA hypomethylation. The NO + Cd and Asc + Cd treatments were accompanied by an increase in the unmethylation percentages, about 3-fold higher than the control. The hemi-methylation percentages in the Asc-supplemented seedlings also displayed an upward trend. The transcriptional upregulation in the γ-terpinene synthase (TPS) gene resulted from the applied elicitors, especially NO. In response to the NO and Asc treatments, the transcription of two cytochrome P450 monooxygenase genes (CYP71D178 and CYP71D180) went up. Incorporating Asc or NO into the culture medium enhanced the concentrations of proline, carvacrol, and thymol metabolites. Employing NO or Asc mitigated the 43% decrease in protein content due to the Cd cytotoxicity. The NO and Asc applications improved the activity of the phenylalanine ammonia-lyase (PAL) enzyme. NO and Asc utilization increased the accumulation of flavonoids. NO and Asc also up-regulated the activities of two enzymatic antioxidants (catalase and peroxidase). Collectively, this study provided novel insight into how Asc or NO confers Cd tolerance by epigenetically remodeling DNA methylation, transcriptionally up-regulating terpenoid and phenylpropanoid metabolism, increasing proline concentration, and improving antioxidants.

16.
Appl Microbiol Biotechnol ; 108(1): 462, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39264460

RESUMO

Bioinformatic analysis revealed that the genomes of ubiquitous Penicillium spp. might carry dozens of biosynthetic gene clusters (BGCs), yet many clusters have remained uncharacterized. In this study, a detailed investigation of co-culture fermentation including the basidiomycete Armillaria mellea CPCC 400891 and the P. brasilianum CGMCC 3.4402 enabled the isolation of five new compounds including two bisabolene-type sesquiterpenes (arpenibisabolanes A and B), two carotane-type sesquiterpenes (arpenicarotanes A and B), and one polyketide (arpenichorismite A) along with seven known compounds. The assignments of their structures were deduced by the extensive analyses of detailed spectroscopic data, electronic circular dichroism spectra, together with delimitation of the biogenesis. Most new compounds were not detected in monocultures under the same fermentation conditions. Arpenibisabolane A represents the first example of a 6/5-fused bicyclic bisabolene. The bioassay of these five new compounds exhibited no cytotoxic activities in vitro against three human cancer cell lines (A549, MCF-7, and HepG2). Moreover, sequence alignments and bioinformatic analysis to other metabolic pathways, two BGCs including Pb-bis and Pb-car, responsible for generating sesquiterpenoids from co-culture were identified, respectively. Furthermore, based on the chemical structures and deduced gene functions of the two clusters, a hypothetic metabolic pathway for biosynthesizing induced sesquiterpenoids was proposed. These results demonstrated that the co-culture approach would facilitate bioprospecting for new metabolites even from the well-studied microbes. Our findings would provide opportunities for further understanding of the biosynthesis of intriguing sesquiterpenoids via metabolic engineering strategies. KEY POINTS: • Penicillium and Armillaria co-culture facilitates the production of diverse secondary metabolites • Arpenibisabolane A represents the first example of 6/5-fused bicyclic bisabolenes • A hypothetic metabolic pathway for biosynthesizing induced sesquiterpenoids was proposed.


Assuntos
Armillaria , Técnicas de Cocultura , Fermentação , Penicillium , Metabolismo Secundário , Sesquiterpenos , Armillaria/metabolismo , Armillaria/genética , Penicillium/metabolismo , Penicillium/genética , Penicillium/química , Sesquiterpenos/metabolismo , Sesquiterpenos/química , Humanos , Família Multigênica , Linhagem Celular Tumoral , Vias Biossintéticas/genética , Policetídeos/metabolismo , Policetídeos/química , Policetídeos/isolamento & purificação , Células Hep G2
17.
Environ Pollut ; 362: 124933, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39265770

RESUMO

Chronic UVB exposure poses a significant threat to both skin and visceral health. In recent years, the adverse role of chronic UVB exposure in liver health has been suggested but not fully elucidated. This study aims to comprehensively investigate the effects of chronic UVB exposure on liver health in male SKH-1 hairless mice and clarify potential mechanisms through multi-omics approaches. The findings suggested that 10-week chronic skin exposure to UVB not only triggers hepatic inflammation and oxidative stress but also, more importantly, results in lipid metabolism abnormalities in the liver. Hepatic transcriptomic analysis revealed significant alterations in various signaling pathways and physiological processes associated with inflammation, oxidative stress, and lipid metabolism. Further lipidomic analysis illustrated significant changes in the metabolism of glycerolipids, sphingolipids, and glycerophospholipids in the liver following chronic UVB exposure. The 16S rRNA sequencing analysis indicated that chronic UVB exposure disrupts the structure and function of the microbiota. In search of potential mechanisms used by the microbiome to regulate the hepatic disease morphology, we filtered mouse fecal supernatants and cultured the supernatants with HepG2 cells. Fecal supernatant from UVB-exposed mice induced increased secretion of the inflammatory cytokine IL-8, accumulation of MDA, reduced SOD activity, and decreased lipid content in normal hepatic cells. In summary, skin chronic exposure to UVB induces multiple liver injuries and gut microbiota dysbiosis in mice and gut microbiota metabolites may be one of the contributing factors to hepatic injury caused by chronic UVB exposure. These discoveries deepen the comprehension of the health risks associated with chronic UVB exposure.

18.
BMC Cancer ; 24(1): 1141, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39267014

RESUMO

BACKGROUND: Curcumin has been reported to have activity for prevention and therapy of CRC, yet its underlying mechanisms remain largely unknown. Recently, emerging evidence suggests that the gut microbiota and its metabolites contribute to the causation and progression of Colorectal cancer (CRC). In this study, we aimed to investigate if curcumin affects the tumorigenesis of CRC by modulating gut microbiota and its metabolites. METHODS: Forty male C57BL/6JGpt mice were randomly divided into four groups: negative control (NC), curcumin control, CRC model, and curcumin treatment (CRC-Cur) groups. CRC mouse model was induced by using azoxymethane (AOM) and dextran sodium sulfate (DSS), and the mice in CRC model and curcumin treatment groups received oral PBS or curcumin (150 mg/kg/day), respectively. Additionally, fecal samples were collected. 16 S rRNA sequencing and Liquid Chromatography Mass Spectrometry (LC-MS)-based untargeted metabolomics were used to observe the changes of intestinal flora and intestinal metabolites. RESULTS: Curcumin treatment restored colon length and structural morphology, and significantly inhibited tumor formation in AOM/DSS-induced CRC model mice. The 16S rRNA sequencing analysis indicated that the diversity and richness of core and total species of intestinal microflora in the CRC group were significantly lower than those in the NC group, which were substantially restored in the curcumin treatment group. Curcumin reduced harmful bacteria, including Ileibacterium, Monoglobus and Desulfovibrio, which were elevated in CRC model mice. Moreover, curcumin increased the abundance of Clostridia_UCG-014, Bifidobacterium and Lactobacillus, which were decreased in CRC model mice. In addition, 13 different metabolites were identified. Compared to the NC group, ethosuximide, xanthosine, and 17-beta-estradiol 3-sulfate-17-(beta-D-glucuronide) were elevated in the CRC model group, whereas curcumin treatment significantly reduced their levels. Conversely, glutamylleucine, gamma-Glutamylleucine, liquiritin, ubenimex, 5'-deoxy-5'-fluorouridine, 7,8-Dihydropteroic acid, neobyakangelicol, libenzapril, xenognosin A, and 7,4'-dihydroxy-8-methylflavan were decreased in the CRC group but notably upregulated by curcumin. Kyoto Encyclopedia of Genes and Genome (KEGG) pathway analysis revealed enrichment in seven pathways, including folate biosynthesis (P < 0.05). CONCLUSIONS: The gut microecological balance was disrupted in AOM/DSS-induced CRC mice, accompanied by metabolite dysbiosis. Curcumin restored the equilibrium of the microbiota and regulated metabolites, highly indicating that curcumin may alleviate the development of AOM/DSS induced colorectal cancer in mice by regulating intestinal flora homeostasis and intestinal metabolites.


Assuntos
Neoplasias Colorretais , Curcumina , Microbioma Gastrointestinal , Camundongos Endogâmicos C57BL , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Curcumina/farmacologia , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/induzido quimicamente , Camundongos , Masculino , Modelos Animais de Doenças , Azoximetano/toxicidade , Carcinogênese/efeitos dos fármacos , Sulfato de Dextrana/toxicidade , RNA Ribossômico 16S/genética , Metabolômica/métodos , Humanos
19.
Microbiome ; 12(1): 172, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39267132

RESUMO

BACKGROUND: The microbiota and metabolites in the gastrointestinal tracts of female animals at different reproductive periods are very important to the growth, development, and health of themselves and their offspring. However, the changes in the gastrointestinal microbiota and metabolites throughout reproductive period of different sheep breeds and their effects on the growth and development of offspring lambs are still unclear. Hence, this study presents an assessment of the reproductive hormone levels, immune levels, rumen microbiota, and metabolites in Hu sheep and Suffolk ewes at different reproductive periods and their effects on the growth and development of offspring lambs. RESULTS: Hu sheep and Suffolk during non-pregnancy, pregnancy, and lactation were used as the research objects to determine reproductive and immune indexes of ewes at different periods, analyze rumen microbiome and metabolome, and track the growth performance and development of offspring lambs. The results showed that the reproductive hormone and immune levels of Hu sheep and Suffolk underwent adaptive changes across different reproductive periods. Compared with non-pregnancy, the microbial energy metabolism and lipid metabolism function decreased during Hu sheep pregnancy, and energy metabolism function decreased during lactation. In Suffolk, energy metabolism, glycan biosynthesis, and metabolism function were enhanced during pregnancy, and the metabolism of cofactors and vitamins was enhanced during lactation. Prevotella increased in Suffolk during pregnancy and lactation (P < 0.05) and was positively correlated with the birth weight and body size of the lambs (P < 0.05). Moreover, the abundances of Butyrivibrio and Rikenellaceae_RC9_gut_group during pregnancy were positively correlated with the intestinal immunity of the offspring lambs (P < 0.05), thereby regulating the intestinal immunity level of the lambs. Metabolomic analysis revealed that the protein digestion, absorption, and amino acid metabolism of Hu sheep were enhanced during pregnancy, which provided amino acids for the growth and development of pregnant ewes and fetuses and was significantly correlated with the birth weight, body size, and intestinal immunity of lambs (P < 0.05). Simultaneously, there was an increase in acetate and propionate during the pregnancy and lactation period of both Hu sheep and Suffolk, providing energy for ewes during reproductive period. Moreover, the microbiota during the lactation period was significantly correlated with the milk quality and lambs daily gain (P < 0.05). CONCLUSIONS: This study revealed the characteristic succession changes in the rumen microbiota and its metabolites at different reproductive periods in sheep breeds and their regulation of reproductive hormone and immune levels and identified their potential effects on the growth and development of offspring lambs. The findings provide valuable insights into the health and feeding management of different sheep breeds during the reproductive stage. Video Abstract.


Assuntos
Microbioma Gastrointestinal , Lactação , Reprodução , Rúmen , Animais , Rúmen/microbiologia , Rúmen/metabolismo , Feminino , Ovinos/microbiologia , Gravidez , Bactérias/classificação , Bactérias/metabolismo , Metaboloma , Metabolismo Energético , Peso ao Nascer , Cruzamento
20.
Chin Med Sci J ; 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39275811

RESUMO

Objective To investigate the causal relationships between plasma metabolites and osteoporosis via Mendelian randomization (MR) analysis. Methods Bidirectional MR was used to analyze pooled data from different genome-wide association studies (GWAS) to investigate the causal relationships between plasma metabolites and osteoporosis. The causal effect of plasma metabolites on osteoporosis was estimated using the inverse variance weighted method, intersections of statistically significant metabolites obtained from different sources of osteoporosis-related GWAS aggregated data was determined, and then sensitivity analysis was performed on these metabolites. Heterogeneity between single nucleotide polymorphisms was evaluated by Cochran's Q test. Horizontal pleiotropy was assessed through the application of the MR-Egger intercept method and the MR-PRESSO method. The causal effect of osteoporosis on plasma metabolites was also evaluated using the inverse variance weighted method. Additionally, pathway analysis was conducted to identify potential metabolic pathways involved in the regulation of osteoporosis. Results After primary analysis and a series of sensitivity analyses, 77 and 61 plasma metabolites were identified as having a causal relationship with osteoporosis from the GWAS data in the GCST90038656 and GCST90044600 datasets , respectively. Five common metabolites were identified via intersection. X-13684 levels (GCST90038656: OR = 0.999, 95% CI, 0.998-1.000, P = 0.004; GCST90044600 (OR = 0.834, 95% CI, 0.700-0.993, P = 0.042), and the glucose-to-maltose ratio (GCST90038656: OR = 0.998, 95% CI, 0.997-1.000, P = 0.025; GCST90044600: OR = 0.752, 95% CI, 0.576-0.981, P = 0.036) were negatively associated with osteoporosis, whereas glycoursodeoxycholate levels (GCST90038656: OR = 1.002, 95% CI, 1.000-1.003, P = 0.032; GCST90044600: OR = 1.331, 95% CI, 1.036-1.709, P = 0.025) and arachidoylcarnitine (C20) levels (GCST90038656: OR = 1.001, 95% CI, 1.000-1.003, P = 0.039; GCST90044600: OR = 1.237; 95% CI, 1.008-1.518, P = 0.042) were positively associated with osteoporosis. The relationship between X-11299 levels and osteoporosis showed contradictory results (GCST90038656: OR= 0.998, 95% CI, 0.997-1.000, P = 0.026; GCST90044600: OR = 1.402, 95% CI, 1.071-1.834, P = 0.014). Pathway analysis indicated that glycine, serine, and threonine metabolism, valine, leucine, and isoleucine biosynthesis, galactose metabolism, arginine biosynthesis, and starch and sucrose metabolism pathways were participated in the development of osteoporosis. Conclusion We found a causal relationship between plasma metabolites and osteoporosis. These results offer novel perspectives that have implications for targeted interventions focused on metabolites in the management of osteoporosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA