Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38231016

RESUMO

The spacing between cells has a significant impact on cell-cell interactions, which are critical to the fate and function of both individual cells and multicellular organisms. However, accurately measuring the distance between cell membranes and the variations between different membranes has proven to be a challenging task. In this study, we employ metal-induced energy transfer (MIET) imaging/spectroscopy to determine and track the intermembrane distance and variations with nanometer precision. We have developed a DNA-based molecular adhesive called the DNA nanobrush, which serves as a cellular adhesive for connecting the plasma membranes of different cells. By manipulating the number of base pairs within the DNA nanobrush, we can modify various aspects of membrane-membrane interactions such as adhesive directionality, distance, and forces. We demonstrate that such nanometer-level changes can be detected with MIET imaging/spectroscopy. Moreover, we successfully employed MIET to measure distance variations between a cellular plasma membrane and a model membrane. This experiment not only showcases the effectiveness of MIET as a powerful tool for accurately quantifying membrane-membrane interactions but also validates the potential of DNA nanobrushes as cellular adhesives. This innovative method holds significant implications for advancing the study of multicellular interactions.

2.
ACS Nano ; 17(9): 8242-8251, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-36995274

RESUMO

Metal-induced energy transfer (MIET) imaging is an easy-to-implement super-resolution modality that achieves nanometer resolution along the optical axis of a microscope. Although its capability in numerous biological and biophysical studies has been demonstrated, its implementation for live-cell imaging with fluorescent proteins is still lacking. Here, we present its applicability and capabilities for live-cell imaging with fluorescent proteins in diverse cell types (adult human stem cells, human osteo-sarcoma cells, and Dictyostelium discoideum cells), and with various fluorescent proteins (GFP, mScarlet, RFP, YPet). We show that MIET imaging achieves nanometer axial mapping of living cellular and subcellular components across multiple time scales, from a few milliseconds to hours, with negligible phototoxic effects.


Assuntos
Dictyostelium , Humanos , Microscopia de Fluorescência/métodos , Transferência de Energia , Corantes Fluorescentes
3.
Biomater Adv ; 145: 213277, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36621197

RESUMO

Cells are not only anchored to the extracellular matrix via the focal adhesion complex, the focal adhesion complex also serves as a sensor for force transduction. How tension influences the structure of focal adhesions is not well understood. Here, we analyse the effect of tension on the location of key focal adhesion proteins, namely vinculin, paxillin and actin. We use micropatterning on gold surfaces to manipulate the cell shape, to create focal adhesions at specific cell areas, and to perform metal-induced energy transfer (MIET) measurements on the patterned cells. MIET resolves the different protein locations with respect to the gold surface with nanometer accuracy. Further, we use drugs influencing the cellular motor protein myosin or mechanosensitive ion channels to get deeper insight into focal adhesions at different tension states. We show here that in particular actin is affected by the rationally tuned force balance. Blocking mechanosensitive ion channels has a particularly high influence on the actin and focal adhesion architecture, resulting in larger focal adhesions with elevated paxillin and vinculin and strongly lowered actin stress fibres. Our results can be explained by a balance of adhesion tension with cellular tension together with ion channel-controlled focal adhesion homeostasis, where high cellular tension leads to an elevation of vinculin and actin, while high adhesion tension lowers these proteins.


Assuntos
Actinas , Adesões Focais , Adesões Focais/metabolismo , Actinas/metabolismo , Paxilina/metabolismo , Citoesqueleto/metabolismo , Vinculina/metabolismo , Forma Celular
4.
Nano Lett ; 22(15): 6454-6461, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35792810

RESUMO

A recent addition to the toolbox of super-resolution microscopy methods is fluorescence-lifetime single-molecule localization microscopy (FL-SMLM). The synergy of SMLM and fluorescence-lifetime imaging microscopy (FLIM) combines superior image resolution with lifetime information and can be realized using two complementary experimental approaches: confocal-laser scanning microscopy (CLSM) or wide-field microscopy. Here, we systematically and comprehensively compare these two novel FL-SMLM approaches in different spectral regions. For wide-field FL-SMLM, we use a commercial lifetime camera, and for CLSM-based FL-SMLM we employ a home-built system equipped with a rapid scan unit and a single-photon detector. We characterize the performances of the two systems in localizing single emitters in 3D by combining FL-SMLM with metal-induced energy transfer (MIET) for localization along the third dimension and in the lifetime-based multiplexed bioimaging using DNA-PAINT. Finally, we discuss advantages and disadvantages of wide-field and confocal FL-SMLM and provide practical advice on rational FL-SMLM experiment design.


Assuntos
DNA , Imagem Individual de Molécula , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Nanotecnologia , Imagem Individual de Molécula/métodos
5.
Cells ; 11(3)2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35159239

RESUMO

The actin cytoskeleton with its dynamic properties serves as the driving force for the movement and division of cells and gives the cell shape and structure. Disorders in the actin cytoskeleton occur in many diseases. Deeper understanding of its regulation is essential in order to better understand these biochemical processes. In our study, we use metal-induced energy transfer (MIET) as a tool to quantitatively examine the rarely considered third dimension of the actin cytoskeleton with nanometer accuracy. In particular, we investigate the influence of different drugs acting on the ROCK pathway on the three-dimensional actin organization. We find that cells treated with inhibitors have a lower actin height to the substrate while treatment with a stimulator for the ROCK pathway increases the actin height to the substrate, while the height of the membrane remains unchanged. This reveals the precise tuning of adhesion and cytoskeleton tension, which leads to a rich three-dimensional structural behaviour of the actin cytoskeleton. This finetuning is differentially affected by either inhibition or stimulation. The high axial resolution shows the importance of the precise finetuning of the actin cytoskeleton and the disturbed regulation of the ROCK pathway has a significant impact on the actin behavior in the z dimension.


Assuntos
Actinas , Quinases Associadas a rho , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Citoesqueleto/metabolismo , Transdução de Sinais , Quinases Associadas a rho/metabolismo
6.
Small ; 18(7): e2105497, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35174635

RESUMO

Nanometer-sectioning optical microscopy has become an indispensable tool in membrane-related biomedical studies. Finally, many nanometer-sectioning imaging schemes, such as variable-angle total internal reflection fluorescence microscopy, metal-induced energy transfer (MIET) imaging, and supercritical-angle fluorescence microscopy have been introduced. However, these methods can measure a single layer of molecules, and the measurement ranges are below 100 nm, which is not large enough to cover the thickness of lamellipodium. This paper proposes an optical imaging scheme that can identify the axial locations of two layers of molecules with an extended measurement range and a nanometer-scale precision by using MIET, axial focal plane scanning, and biexponential analysis in fluorescence lifetime imaging microscopy. The feasibility of the proposed method is demonstrated by measuring an artificial sample of a known structure and the lamellipodium of a human aortic endothelial cell whose thickness ranges from 100 to 450 nm with 18.3 nm precision.


Assuntos
Metais , Imagem Óptica , Transferência de Energia , Humanos , Microscopia de Fluorescência/métodos , Imagem Óptica/métodos
7.
Methods Mol Biol ; 2175: 33-45, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32681482

RESUMO

The nuclear envelope, comprising the inner and the outer nuclear membrane, separates the nucleus from the cytoplasm and plays a key role in cellular functions. Nuclear pore complexes (NPCs) are embedded in the nuclear envelope and control transport of macromolecules between the two compartments. Recently, it has been shown that the axial distance between the inner nuclear membrane and the cytoplasmic side of the NPC can be measured using dual-color metal-induced energy transfer (MIET). This chapter focuses on experimental aspects of this method and discusses the details of data analysis.


Assuntos
Imageamento Tridimensional/instrumentação , Imageamento Tridimensional/métodos , Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos , Membrana Nuclear/fisiologia , Poro Nuclear/fisiologia , Núcleo Celular/fisiologia , Proteínas de Ligação a DNA/fisiologia , Células HeLa , Humanos , Proteínas de Membrana/fisiologia , Chaperonas Moleculares/fisiologia , Complexo de Proteínas Formadoras de Poros Nucleares/fisiologia
8.
Front Immunol ; 11: 612542, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33505401

RESUMO

Cellular function is reliant on the dynamic interplay between the plasma membrane and the actin cytoskeleton. This critical relationship is of particular importance in immune cells, where both the cytoskeleton and the plasma membrane work in concert to organize and potentiate immune signaling events. Despite their importance, there remains a critical gap in understanding how these respective dynamics are coupled, and how this coupling in turn may influence immune cell function from the bottom up. In this review, we highlight recent optical technologies that could provide strategies to investigate the simultaneous dynamics of both the cytoskeleton and membrane as well as their interplay, focusing on current and future applications in immune cells. We provide a guide of the spatio-temporal scale of each technique as well as highlighting novel probes and labels that have the potential to provide insights into membrane and cytoskeletal dynamics. The quantitative biophysical tools presented here provide a new and exciting route to uncover the relationship between plasma membrane and cytoskeletal dynamics that underlies immune cell function.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Membrana Celular/metabolismo , Imunidade/imunologia , Tomografia Óptica/métodos , Citoesqueleto de Actina/imunologia , Actinas/imunologia , Membrana Celular/imunologia , Transdução de Sinais/imunologia , Transdução de Sinais/fisiologia
9.
Biochim Biophys Acta Mol Cell Res ; 1866(12): 118530, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31415840

RESUMO

Phasor-assisted Metal Induced Energy Transfer-Fluorescence Lifetime Imaging Microscopy (MIET-FLIM) nanoscopy is introduced as a powerful tool for functional cell biology research. Thin metal substrates can be used to obtain axial super-resolution via nanoscale distance-dependent MIET from fluorescent dyes towards a nearby metal layer, thereby creating fluorescence lifetime contrast between dyes located at different nanoscale distance from the metal. Such data can be used to achieve axially super-resolved microscopy images, a process known as MIET-FLIM nanoscopy. Suitability of the phasor approach in MIET-FLIM nanoscopy is first demonstrated using nanopatterned substrates, and furthermore applied to characterize the distance distribution of the epithelial basal membrane of a biological cell from the gold substrate. The phasor plot of an entire cell can be used to characterize the full Förster resonance energy transfer (FRET) trajectory as a large distance heterogeneity within the sensing range of about 100 nm from the metal surface is present due to the extended shape of cell with curvatures. In contrast, the different proteins of nuclear lamina show strong confinement close to the nuclear envelope in nanoscale. We find the lamin B layer resides in average at shorter distances from the gold surface compared to the lamin A/C layer located in more extended ranges. This and the observed heterogeneity of the protein layer thicknesses suggests that A- and B-type lamins form distinct networks in the nuclear lamina. Our results provide detailed insights for the study of the different roles of lamin proteins in chromatin tethering and nuclear mechanics.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Nanotecnologia , Lâmina Nuclear/química , Proteínas Nucleares/metabolismo , Células A549 , Ouro/química , Humanos , Nanopartículas Metálicas/química , Microscopia de Fluorescência , Lâmina Nuclear/metabolismo , Proteínas Nucleares/química , Imagem Óptica
10.
ACS Nano ; 11(12): 11839-11846, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-28921961

RESUMO

The nuclear envelope, comprising the inner and the outer nuclear membrane, separates the nucleus from the cytoplasm and plays a key role in cellular functions. Nuclear pore complexes (NPCs), which are embedded in the nuclear envelope, control transport of macromolecules between the two compartments. Here, using dual-color metal-induced energy transfer (MIET), we determine the axial distance between Lap2ß and Nup358 as markers for the inner nuclear membrane and the cytoplasmic side of the NPC, respectively. Using MIET imaging, we reconstruct the 3D profile of the nuclear envelope over the whole basal area, with an axial resolution of a few nanometers. This result demonstrates that optical microscopy can achieve nanometer axial resolution in biological samples and without recourse to complex interferometric approaches.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA