Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 354: 141718, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38490607

RESUMO

Metalimnetic oxygen minimum (MOM) occurs in reservoirs or lakes due to stratification and algal blooms, which has low dissolved oxygen (DO) levels and leads to the deterioration of water quality. The transformation mechanism and the impact on the water quality of intracellular organic matter (IOM) derived from algae are poorly understood under MOM conditions. In this study, IOM extracted by Microcystis aeruginosa was divided into five components according to molecular weight (MW), and the changes of characteristics and correlated disinfection by-products formation potential (DBPFP) were analyzed and compared under MOM conditions. The removal efficiency of dissolved organic carbon (DOC) in the <5 kDa fraction (66.6%) was higher than that in the >100 kDa fraction (41.8%) after a 14-day incubation under MOM conditions. The same tendency also occurred in Fmax and DBPFP. The decrease in Fmax was mainly due to the decline in tryptophan-like and tyrosine-like for all IOM fractions. The diversity of microorganisms degrading the MW > 100 kDa fraction was lower than others. Besides low MW fractions, these findings indicated that more attention should be paid to high MW fractions which were resistant to biodegradation under MOM conditions during water treatment.


Assuntos
Microcystis , Poluentes Químicos da Água , Purificação da Água , Desinfecção , Oxigênio , Peso Molecular , Halogenação , Poluentes Químicos da Água/análise
2.
J Hazard Mater ; 445: 130591, 2023 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-37055995

RESUMO

The metalimnetic oxygen minimum (MOM) is a common anaerobic phenomenon that occur between 5.00 and 40.00 m of reservoirs. Amino acids (AAs) are widely found in water, but their change in MOM remain unclear. In this study, four AAs with different side chain groups were selected to explore the change of their samples and related disinfection by-products formation potential (DBPFPs) under MOM condition. The results showed that the final degradation rate of dissolved organic carbon and dissolved organic nitrogen of four AAs samples were 11.71%-59.87% and 26.50%-100.00% under MOM condition. Aspartic acid samples were the easiest to be degraded, whereas glycine samples were the opposite. While the total fluorescence intensity increased by 6.30%-113.40% for the appearance of tryptophan-like substance. The total DBPFPs of glutamic acid, arginine and aspartic acid samples were finally decreased by 4.73%, 8.00% and 98.88% (glycine sample increased by 2.30 times). Compared with the surface condition, the degradation of AAs samples and the change of DBPFPs were significantly inhibited under MOM condition. In addition, the diversities of bacterial communities were significantly reduced under MOM condition, which was very unfavorable to the degradation of AAs samples, and in turn affected the control of DBPs and deteriorated the water quality.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Aminoácidos , Ácido Aspártico , Oxigênio , Desinfecção , Glicina , Poluentes Químicos da Água/química
3.
Water Res ; 226: 119216, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36257160

RESUMO

Most of the reservoirs or lakes will form a metalimnetic oxygen minimum (MOM) with the characterization of a substantial fraction of dissolved oxygen (DO) depleted below the epilimnion. The effect of intracellular organic matter (IOM) of algal cells transformed under MOM conditions is completely different from that of the original IOM on water quality. In this study, the IOM changes of Microcystic aeruginosa under different MOM conditions and its related disinfection by-products formation potentials (DBPFPs) were investigated by changing the pressure and DO concentration of MOM. Total Fmax increased slightly and then decreased under different pressure conditions, finally decreasing by no more than 22.0%. Under aerobic condition, dissolved organic carbon (DOC) and total Fmax decreased significantly, and decreased by 60.4% and 38.8% within the first 2 days. The results of specific UV absorbance (SUVA) and UV250/UV365 indicated that aromatic compounds and average molecular weight of IOM were gradually increased under different MOM conditions. The total DBPFPs increased firstly and then decreased under different pressure conditions, and finally decreased by 26.2%-33.1%. The decrease of total DBPFPs was significantly higher under aerobic condition than that under anoxic condition, which finally decreased by 64.5%. Redundancy analysis showed that the fluorescence parameter (protein-like and humic-like fluorescence) could be expected as an index to predict the DBPFPs. Moreover, the results revealed that with the decrease of DO, the activity and diversity of natural microbial consortium decreased, which prevented the further degradation and utilization of organic matter by natural microbial consortium. Therefore, lower DO was a key player for the deterioration of water quality under MOM conditions.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Desinfecção/métodos , Oxigênio/análise , Compostos Orgânicos , Qualidade da Água , Poluentes Químicos da Água/análise
4.
Sci Total Environ ; 838(Pt 3): 156541, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35679920

RESUMO

Dissolved oxygen (DO) dynamics of a temperate drinking water reservoir in the Harz Mountains (Germany) were investigated over a time period of 18 months. Via depth profiles in a fortnightly sampling resolution we were able to trace DO and temperature dynamics including the formation and breakdown of a Metalimnetic Oxygen Minimum (MOM) by means of DO concentration, saturation patterns and stable isotope ratios of dissolved oxygen (expressed as δ18ODO). Over the evaluation period, 19.4 % of the samples collected had δ18ODO values compatible with atmospheric equilibration (+24.6 ‰ ± 0.4 ‰). With values smaller and larger than this threshold, the remaining δ18ODO values showed that 40.8 % of our samples were dominated by photosynthesis and 39.8 % by respiration. From December to April the reservoir was mixed and DO consumption by respiration exceeded production via photosynthesis. During stratification period, quantification of respiration/photosynthesis rates (R/P) confirmed the epilimnion as a photosynthetic (i.e. net-autotrophic) environment while the hypolimnion was heterotrophic and dominated by respiration at various degrees. Samples of the MOM zone showed the highest R/P ratios and had among the most positive δ18ODO signals caused by respiration. This study showed that combinations of DO concentrations and their isotope ratios are promising to quantify critical zones of respiration and photosynthesis in aquatic environments.


Assuntos
Água Potável , Oxigênio , Isótopos de Carbono/análise , Isótopos , Oxigênio/análise , Consumo de Oxigênio , Isótopos de Oxigênio/análise , Temperatura
5.
Artigo em Inglês | MEDLINE | ID: mdl-30893863

RESUMO

Dissolved oxygen (DO) is a crucial indicator of water quality. DO usually shows a monotonic decrease along water depth during thermal stratification in reservoir, whereas metalimnetic oxygen minimum (MOM) is observed in some cases. Although MOM phenomena have been reported in different areas, the characteristics of different reservoirs are greatly different, and few comprehensive studies have been published regarding MOM in Chinese drinking water source reservoirs. The DO distribution along water depth was determined and the detailed reasons were clarified by two-years of field monitoring. In addition the effect of water lifting aerators (WLAs) on DO improvement was investigated in the Lijiahe Reservoir in Northwest China. A typical S-type DO distribution with two anaerobic water layers, below the epilimnion (10⁻25 m water depth) and above the sediment (bottom water), was observed derived from the decomposition of dead algae or organic matter and the restriction of DO vertical exchange. Moreover, after WLAs' operation since 10 June 2018, the water body was completely mixed and DO was rich and uniform along water depth by eliminating the water stratification and inhibiting algae growth. The deep understanding of the DO distribution in a deep canyon-shaped reservoir and the technical support for reservoir restoration are meaningful for optimizing reservoir management.


Assuntos
Eutrofização , Oxigênio/química , Qualidade da Água , Abastecimento de Água , Água/química , China , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA