Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32.895
Filtrar
1.
Glob Heart ; 19(1): 48, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38765775

RESUMO

Background: There is growing evidence that concentrations of DNA methylation are associated with cardiovascular disease; however, it is unclear whether this association reflects a causal relationship. Methods: We utilized a two-sample Mendelian randomization (MR) approach to investigate whether DNA methylation can affect the risk of developing cardiovascular disease in human life. We primarily performed the inverse variance weighted (IVW) method to analyze the causal effect of DNA methylation on multiple cardiovascular diseases. Additionally, to ensure the robustness of our findings, we conducted several sensitivity analyses using alternative methodologies. These analysis methods included maximum likelihood, MR-Egger regression, weighted median method, and weighted model methods. Results: Inverse variance weighted estimates suggested that an SD increase in DNA methylation Hannum age acceleration exposure increased the risk of cardiac arrhythmias (OR = 1.03, 95% CI 1.00-1.05, p = 0.0290) and atrial fibrillation (OR = 1.03, 95% CI 1.00-1.05, p = 0.0022). We also found that an SD increase in DNA methylation PhenoAge acceleration exposure increased the risk of heart failure (OR = 1.01, 95% CI 1.00-1.03, p = 0.0362). Exposure to DNA methylation-estimated granulocyte proportions was found to increase the risk of hypertension (OR = 1.00, 95% CI 1.00-1.0001, p = 0.0291). Exposure to DNA methylation-estimated plasminogen activator inhibitor-1 levels was found to increase the risk of heart failure (OR = 1.00, 95% CI 1.00-1.00, p = 0.0215). Conclusion: This study reveals a causal relationship between DNA methylation and CVD. Exposed to high levels of DNA methylation Hannum age acceleration inhabitants with an increased risk of cardiac arrhythmias and atrial fibrillation. DNA methylation PhenoAge acceleration levels exposure levels were positively associated with the increased risk of developing heart failure. This has important implications for the prevention of cardiovascular diseases.


Assuntos
Doenças Cardiovasculares , Metilação de DNA , Análise da Randomização Mendeliana , Humanos , Análise da Randomização Mendeliana/métodos , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/epidemiologia , Fatores de Risco
2.
ACS Synth Biol ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758631

RESUMO

Microbial synthetic epigenetics offers significant opportunities for the design of synthetic biology tools by leveraging reversible gene control mechanisms without altering DNA sequences. However, limited understanding and a lack of technologies for thorough analysis of the mechanisms behind epigenetic modifications have hampered their utilization in biotechnological applications. In this review, we explore advancements in developing epigenetic-based synthetic gene regulatory tools at both transcriptional and post-transcriptional levels. Furthermore, we examine strategies developed to construct epigenetic-based circuits that provide controllable and stable gene regulation, aiming to boost the performance of microbial chassis cells. Finally, we discuss the current challenges and perspectives in the development of synthetic epigenetic tools.

3.
Am J Hum Genet ; 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38759652

RESUMO

Sperm production and function require the correct establishment of DNA methylation patterns in the germline. Here, we examined the genome-wide DNA methylation changes during human spermatogenesis and its alterations in disturbed spermatogenesis. We found that spermatogenesis is associated with remodeling of the methylome, comprising a global decline in DNA methylation in primary spermatocytes followed by selective remethylation, resulting in a spermatids/sperm-specific methylome. Hypomethylated regions in spermatids/sperm were enriched in specific transcription factor binding sites for DMRT and SOX family members and spermatid-specific genes. Intriguingly, while SINEs displayed differential methylation throughout spermatogenesis, LINEs appeared to be protected from changes in DNA methylation. In disturbed spermatogenesis, germ cells exhibited considerable DNA methylation changes, which were significantly enriched at transposable elements and genes involved in spermatogenesis. We detected hypomethylation in SVA and L1HS in disturbed spermatogenesis, suggesting an association between the abnormal programming of these regions and failure of germ cells progressing beyond meiosis.

4.
Clin Epigenetics ; 16(1): 68, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773655

RESUMO

BACKGROUND: Large B-cell lymphoma (LBCL) is the most common lymphoma and is known to be a biologically heterogeneous disease regarding genetic, phenotypic, and clinical features. Although the prognosis is good, one-third has a primary refractory or relapsing disease which underscores the importance of developing predictive biological markers capable of identifying high- and low-risk patients. DNA methylation (DNAm) and telomere maintenance alterations are hallmarks of cancer and aging. Both these alterations may contribute to the heterogeneity of the disease, and potentially influence the prognosis of LBCL. RESULTS: We studied the DNAm profiles (Infinium MethylationEPIC BeadChip) and relative telomere lengths (RTL) with qPCR of 93 LBCL cases: Diffuse large B-cell lymphoma not otherwise specified (DLBCL, n = 66), High-grade B-cell lymphoma (n = 7), Primary CNS lymphoma (n = 8), and transformation of indolent B-cell lymphoma (n = 12). There was a substantial methylation heterogeneity in DLBCL and other LBCL entities compared to normal cells and other B-cell neoplasms. LBCL cases had a particularly aberrant semimethylated pattern (0.15 ≤ ß ≤ 0.8) with large intertumor variation and overall low hypermethylation (ß > 0.8). DNAm patterns could not be used to distinguish between germinal center B-cell-like (GC) and non-GC DLBCL cases. In cases treated with R-CHOP-like regimens, a high percentage of global hypomethylation (ß < 0.15) was in multivariable analysis associated with worse disease-specific survival (DSS) (HR 6.920, 95% CI 1.499-31.943) and progression-free survival (PFS) (HR 4.923, 95% CI 1.286-18.849) in DLBCL and with worse DSS (HR 5.147, 95% CI 1.239-21.388) in LBCL. These cases with a high percentage of global hypomethylation also had a higher degree of CpG island methylation, including islands in promoter-associated regions, than the cases with less hypomethylation. Additionally, telomere length was heterogenous in LBCL, with a subset of the DLBCL-GC cases accounting for the longest RTL. Short RTL was independently associated with worse DSS (HR 6.011, 95% CI 1.319-27.397) and PFS (HR 4.689, 95% CI 1.102-19.963) in LBCL treated with R-CHOP-like regimens. CONCLUSION: We hypothesize that subclones with high global hypomethylation and hypermethylated CpG islands could have advantages in tumor progression, e.g. by inactivating tumor suppressor genes or promoting treatment resistance. Our findings suggest that cases with high global hypomethylation and thus poor prognosis could be candidates for alternative treatment regimens including hypomethylating drugs.


Assuntos
Metilação de DNA , Linfoma Difuso de Grandes Células B , Humanos , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/mortalidade , Metilação de DNA/genética , Feminino , Masculino , Prognóstico , Pessoa de Meia-Idade , Idoso , Adulto , Rituximab/uso terapêutico , Idoso de 80 Anos ou mais , Ciclofosfamida/uso terapêutico , Doxorrubicina/uso terapêutico , Vincristina/uso terapêutico , Prednisona/uso terapêutico , Telômero/genética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Encurtamento do Telômero/genética , Epigênese Genética/genética , Ilhas de CpG/genética
6.
Front Genet ; 15: 1354195, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774285

RESUMO

Background: Esophageal cancer (EC) is a prevalent malignancy characterized by a low 5-year survival rate, primarily attributed to delayed diagnosis and limited therapeutic options. Currently, early detection of EC heavily relies on endoscopy and pathological examination, which pose challenges due to their invasiveness and high costs, leading to low patient compliance. The detection of DNA methylation offers a non-endoscopic, cost-effective, and secure approach that holds promising prospects for early EC detection. Methods: To identify improved methylation markers for early EC detection, we conducted a comprehensive review of relevant literature, summarized the performance of DNA methylation markers based on different input samples and analytical methods in EC early detection and screening. Findings: This review reveals that blood cell free DNA methylation-based method is an effective non-invasive method for early detection of EC, although there is still a need to improve its sensitivity and specificity. Another highly sensitive and specific non-endoscopic approach for early detection of EC is the esophageal exfoliated cells based-DNA methylation analysis. However, while there are substantial studies in esophageal adenocarcinoma, further more validation is required in esophageal squamous cell carcinoma. Conclusion: In conclusion, DNA methylation detection holds significant potential as an early detection and screening technology for EC.

7.
Cell Mol Life Sci ; 81(1): 222, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767725

RESUMO

BACKGROUND: Epigenetic variation is mediated by epigenetic marks such as DNA methylation occurring in all cytosine contexts in plants. CG methylation plays a critical role in silencing transposable elements and regulating gene expression. The establishment of CG methylation occurs via the RNA-directed DNA methylation pathway and CG methylation maintenance relies on METHYLTRANSFERASE1, the homologue of the mammalian DNMT1. PURPOSE: Here, we examined the capacity to stably alter the tomato genome methylome by a bacterial CG-specific M.SssI methyltransferase expressed through the LhG4/pOP transactivation system. RESULTS: Methylome analysis of M.SssI expressing plants revealed that their euchromatic genome regions are specifically hypermethylated in the CG context, and so are most of their genes. However, changes in gene expression were observed only with a set of genes exhibiting a greater susceptibility to CG hypermethylation near their transcription start site. Unlike gene rich genomic regions, our analysis revealed that heterochromatic regions are slightly hypomethylated at CGs only. Notably, some M.SssI-induced hypermethylation persisted even without the methylase or transgenes, indicating inheritable epigenetic modification. CONCLUSION: Collectively our findings suggest that heterologous expression of M.SssI can create new inherited epigenetic variations and changes in the methylation profiles on a genome wide scale. This open avenues for the conception of epigenetic recombinant inbred line populations with the potential to unveil agriculturally valuable tomato epialleles.


Assuntos
Metilação de DNA , Epigênese Genética , Epigenoma , Genoma de Planta , Solanum lycopersicum , Solanum lycopersicum/genética , Metilação de DNA/genética , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética
8.
Genet Med ; : 101167, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38770750

RESUMO

PURPOSE: Rare genetic variants in the PURA gene cause PURA-related neurodevelopmental disorder (PURA-NDD), characterized by neonatal abnormalities and developmental delay. Using genome-wide DNA methylation analysis on patients with PURA variants, we aim to establish PURA-NDD-specific methylation profile and provide further insights on the molecular basis of the PURA-NDD. METHODS: 23 individuals (including 12 unpublished) carrying PURA variants were enrolled. We conducted the Illumina Infinium EPIC microarray analysis in 17 PURA-NDD individuals. In vitro experiments were performed to examine how PURA variants affect Pur-α expression. RESULTS: Additional phenotypes in 12 newly identified patients were described in this study. Genome-wide DNA methylation analysis unveiled distinctive methylation profiles to PURA-NDD, and the established classifier can reclassify PURA variants of uncertain significance. Patients bearing PURA hapoloinsufficient and missense variants have comparable DNA methylation profiles, and cells expressing these PURA variants showed consistent Pur-α downregulation suggesting a haploinsufficiency mechanism. CONCLUSION: Patients with PURA-NDD exhibit a specific epi-signature, which has potential to aid identification and diagnosis of PURA-NDD patients and offer implications for further functional investigations.

9.
Clin Epigenetics ; 16(1): 61, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715048

RESUMO

BACKGROUND: Diabetes in pregnancy is associated with increased risk of long-term metabolic disease in the offspring, potentially mediated by in utero epigenetic variation. Previously, we identified multiple differentially methylated single CpG sites in offspring of women with gestational diabetes mellitus (GDM), but whether stretches of differentially methylated regions (DMRs) can also be identified in adolescent GDM offspring is unknown. Here, we investigate which DNA regions in adolescent offspring are differentially methylated in blood by exposure to diabetes in pregnancy. The secondary aim was to characterize the RNA expression of the identified DMR, which contained the nc886 non-coding RNA. METHODS: To identify DMRs, we employed the bump hunter method in samples from young (9-16 yr, n = 92) offspring of women with GDM (O-GDM) and control offspring (n = 94). Validation by pyrosequencing was performed in an adult offspring cohort (age 28-33 years) consisting of O-GDM (n = 82), offspring exposed to maternal type 1 diabetes (O-T1D, n = 67) and control offspring (O-BP, n = 57). RNA-expression was measured using RT-qPCR in subcutaneous adipose tissue and skeletal muscle. RESULTS: One significant DMR represented by 10 CpGs with a bimodal methylation pattern was identified, located in the nc886/VTRNA2-1 non-coding RNA gene. Low methylation status across all CpGs of the nc886 in the young offspring was associated with maternal GDM. While low methylation degree in adult offspring in blood, adipose tissue, and skeletal muscle was not associated with maternal GDM, adipose tissue nc886 expression was increased in O-GDM compared to O-BP, but not in O-T1D. In addition, adipose tissue nc886 expression levels were positively associated with maternal pre-pregnancy BMI (p = 0.006), but not with the offspring's own adiposity. CONCLUSIONS: Our results highlight that nc886 is a metastable epiallele, whose methylation in young offspring is negatively correlated with maternal obesity and GDM status. The physiological effect of nc886 may be more important in adipose tissue than in skeletal muscle. Further research should aim to investigate how nc886 regulation in adipose tissue by exposure to GDM may contribute to development of metabolic disease.


Assuntos
Tecido Adiposo , Metilação de DNA , Diabetes Gestacional , Epigênese Genética , Músculo Esquelético , Efeitos Tardios da Exposição Pré-Natal , Humanos , Gravidez , Feminino , Diabetes Gestacional/genética , Epigênese Genética/genética , Adulto , Metilação de DNA/genética , Músculo Esquelético/metabolismo , Adolescente , Tecido Adiposo/metabolismo , Masculino , Efeitos Tardios da Exposição Pré-Natal/genética , Criança , Diabetes Mellitus Tipo 1/genética , RNA não Traduzido/genética , RNA não Traduzido/sangue , RNA Longo não Codificante/genética , Ilhas de CpG/genética
10.
Clin Epigenetics ; 16(1): 62, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715103

RESUMO

BACKGROUND: Temple syndrome (TS14) is a rare imprinting disorder caused by maternal UPD14, imprinting defects or paternal microdeletions which lead to an increase in the maternal expressed genes and a silencing the paternally expressed genes in the 14q32 imprinted domain. Classical TS14 phenotypic features include pre- and postnatal short stature, small hands and feet, muscular hypotonia, motor delay, feeding difficulties, weight gain, premature puberty along and precocious puberty. METHODS: An exon array comparative genomic hybridization was performed on a patient affected by psychomotor and language delay, muscular hypotonia, relative macrocephaly, and small hand and feet at two years old. At 6 years of age, the proband presented with precocious thelarche. Genes dosage and methylation within the 14q32 region were analyzed by MS-MLPA. Bisulfite PCR and pyrosequencing were employed to quantification methylation at the four known imprinted differentially methylated regions (DMR) within the 14q32 domain: DLK1 DMR, IG-DMR, MEG3 DMR and MEG8 DMR. RESULTS: The patient had inherited a 69 Kb deletion, encompassing the entire DLK1 gene, on the paternal allele. Relative hypermethylation of the two maternally methylated intervals, DLK1 and MEG8 DMRs, was observed along with normal methylation level at IG-DMR and MEG3 DMR, resulting in a phenotype consistent with TS14. Additional family members with the deletion showed modest methylation changes at both the DLK1 and MEG8 DMRs consistent with parental transmission. CONCLUSION: We describe a girl with clinical presentation suggestive of Temple syndrome resulting from a small paternal 14q32 deletion that led to DLK1 whole-gene deletion, as well as hypermethylation of the maternally methylated DLK1-DMR.


Assuntos
Proteínas de Ligação ao Cálcio , Cromossomos Humanos Par 14 , Metilação de DNA , Impressão Genômica , Peptídeos e Proteínas de Sinalização Intercelular , Humanos , Proteínas de Ligação ao Cálcio/genética , Metilação de DNA/genética , Cromossomos Humanos Par 14/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Impressão Genômica/genética , Proteínas de Membrana/genética , Criança , Masculino , Hibridização Genômica Comparativa/métodos , Feminino , Deleção Cromossômica , Pré-Escolar , Fenótipo , Anormalidades Múltiplas/genética , Transtornos da Impressão Genômica , Hipotonia Muscular , Fácies
11.
Acta Crystallogr E Crystallogr Commun ; 80(Pt 5): 543-549, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38721416

RESUMO

Two 2,4,6-tri-methyl-aniline-based trifuloro-methane-sulfonate (tri-fluoro-methane-sulfonate) salts were synthesized and characterized by single-crystal X-ray diffraction. N,2,4,6-Tetra-methyl-anilinium tri-fluoro-methane-sulfonate, [C10H14NH2 +][CF3O3S-] (1), was synthesized via methyl-ation of 2,4,6-tri-methyl-aniline. N-Iso-propyl-idene-N,2,4,6-tetra-methyl-anilinium tri-fluoro-meth-ane-sulfonate, [C13H20N+][CF3O3S-] (2), was synthesized in a two-step reaction where the imine, N-iso-propyl-idene-2,4,6-tri-methyl-aniline, was first prepared via a dehydration reaction to form the Schiff base, followed by methyl-ation using methyl tri-fluoro-methane-sulfonate to form the iminium ion. In compound 1, both hydrogen bonding and π-π inter-actions form the main inter-molecular inter-actions. The primary inter-action is a strong N-H⋯O hydrogen bond with the oxygen atoms of the tri-fluoro-methane-sulfonate anions bonded to the hydrogen atoms of the ammonium nitro-gen atom to generate a one-dimensional chain. The [C10H14NH2 +] cations form dimers where the benzene rings form a π-π inter-action with a parallel-displaced geometry. The separation distance between the calculated centroids of the benzene rings is 3.9129 (8) Å, and the inter-planar spacing and ring slippage between the dimers are 3.5156 (5) and 1.718 Å, respectively. For 2, the [C13H20N+] cations also form dimers as in 1, but with the benzene rings highly slipped. The distance between the calculated centroids of the benzene rings is 4.8937 (8) Å, and inter-planar spacing and ring slippage are 3.3646 (5) and 3.553 Å, respectively. The major inter-molecular inter-actions in 2 are instead a series of weaker C-H⋯O hydrogen bonds [C⋯O distances of 3.1723 (17), 3.3789 (18), and 3.3789 (18) Å], an inter-action virtually absent in the structure of 1. Fluorine atoms are not involved in strong directional inter-actions in either structure.

12.
Int J Ophthalmol ; 17(3): 537-544, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38721498

RESUMO

AIM: To identify the differential methylation sites (DMS) and their according genes associated with diabetic retinopathy (DR) development in type 1 diabetes (T1DM) children. METHODS: This study consists of two surveys. A total of 40 T1DM children was included in the first survey. Because no participant has DR, retina thinning was used as a surrogate indicator for DR. The lowest 25% participants with the thinnest macular retinal thickness were included into the case group, and the others were controls. The DNA methylation status was assessed by the Illumina methylation 850K array BeadChip assay, and compared between the case and control groups. Four DMS with a potential role in diabetes were identified. The second survey included 27 T1DM children, among which four had DR. The methylation patterns of the four DMS identified by 850K were compared between participants with and without DR by pyrosequencing. RESULTS: In the first survey, the 850K array revealed 751 sites significantly and differentially methylated in the case group comparing with the controls (|Δß|>0.1 and Adj.P<0.05), and 328 of these were identified with a significance of Adj.P<0.01. Among these, 319 CpG sites were hypermethylated and 432 were hypomethylated in the case group relative to the controls. Pyrosequencing revealed that the transcription elongation regulator 1 like (TCERG1L, cg07684215) gene was hypermethylated in the four T1DM children with DR (P=0.018), which was consistent with the result from the first survey. The methylation status of the other three DMS (cg26389052, cg25192647, and cg05413694) showed no difference (all P>0.05) between participants with and without DR. CONCLUSION: The hypermethylation of the TCERG1L gene is a risk factor for DR development in Chinese children with T1DM.

13.
J Pediatr Genet ; 13(2): 127-132, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38721577

RESUMO

The genetic influences on human growth are being increasingly deciphered. Silver-Russell and Beckwith-Wiedemann syndromes (SRS; BWS) are two relatively common genetic syndromes with under- and overgrowth-related issues being the reason for referral. Aberration in genomic imprinting is the underlying genetic pathomechanism behind these syndromes. Herein, we described a series of children with these two growth disorders and give an orientation to the reader of the concept of imprinting as well as the genetic testing strategy and counseling to be offered in these syndromes.

14.
Neuro Oncol ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38721826

RESUMO

BACKGROUND: The high fatality rate of glioblastoma (GBM) is attributed to glioblastoma stem cells (GSCs), which exhibit heterogeneity and therapeutic resistance. Metabolic plasticity of mitochondria is the hallmark of GSCs. Targeting mitochondrial biogenesis of GSCs is crucial for improving clinical prognosis in GBM patients. METHODS: SMYD2-induced PGC1α methylation and followed nuclear export is confirmed by co-immunoprecipitation, cellular fractionation, and immunofluorescence. The effects of SMYD2/PGC1α/CRM1 axis on GSCs mitochondrial biogenesis is validated by OCR, ECAR and intracranial glioma model. RESULTS: PGC1α methylation causes disabled mitochondrial function to maintain the stemness, thereby enhancing radio-resistance of GSCs. SMYD2 drives PGC1α K224 methylation (K224me), which is essential for promoting the stem-like characteristics of GSCs. PGC1α K224me is preferred binding with CRM1, accelerating PGC1α nuclear export and subsequent dysfunction. Targeting PGC1α methylation exhibits significant radiotherapeutic efficacy and prolongs patient survival. CONCLUSIONS: These findings unveil a novel regulatory pathway involving mitochondria that governs stemness in GSCs, thereby emphasizing promising therapeutic strategies targeting PGC1α and mitochondria for the treatment of GBM.

15.
Future Oncol ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722139

RESUMO

Exhaustive efforts have been dedicated to uncovering genomic aberrations linked to cancer susceptibility. Noncoding sequence variants and epigenetic alterations significantly influence gene regulation and could contribute to cancer development. However, exploring noncoding regions in hereditary cancer susceptibility demands cutting-edge methodologies for functionally characterizing genomic discoveries. Additionally, comprehending the impact on cancer development of variants in noncoding DNA and the epigenome necessitates integrating diverse data through bioinformatic analyses. As novel technologies and analytical methods continue to advance, this realm of research is rapidly gaining traction. Within this mini-review, we delve into future research domains concerning aberrations in noncoding DNA regions, such as pseudoexons, promoter variants and cis-epimutations.

16.
Cardiovasc Res ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722818

RESUMO

AIM: Abdominal aortic aneurysm (AAA) is a common, serious vascular disease with no effective pharmacological treatment. The nucleoside adenosine plays an important role in modulating vascular homeostasis, which prompted us to determine whether adenosine kinase (ADK), an adenosine metabolizing enzyme, modulates AAA formation via control of intracellular adenosine level, and to investigate the underlying mechanisms. METHODS AND RESULTS: We used a combination of genetic and pharmacological approaches in murine models of AAA induced by calcium chloride (CaCl2) application or angiotensin II (Ang II) infusion to study the role of ADK in the development of AAA. In vitro functional assays were performed by knocking down ADK with adenovirus-short hairpin RNA in human vascular smooth muscle cells (VSMCs), and the molecular mechanisms underlying ADK function were investigated using RNA-sequencing, isotope tracing and chromatin immunoprecipitation quantitative polymerase chain reaction (ChIP-qPCR). Heterozygous deficiency of Adk protected mice from CaCl2- and Ang II-induced AAA formation. Moreover, specific knockout of Adk in VSMCs prevented Ang II-induced AAA formation, as evidenced by reduced aortic extracellular elastin fragmentation, neovascularization and aortic inflammation. Mechanistically, ADK knockdown in VSMCs markedly suppressed the expression of inflammatory genes associated with AAA formation, and these effects were independent of adenosine receptors. Metabolic flux and ChIP-qPCR results showed that ADK knockdown in VSMCs decreased S-adenosylmethionine (SAM)-dependent transmethylation, thereby reducing H3K4me3 binding to the promoter regions of the genes that are associated with inflammation, angiogenesis and extracellular elastin fragmentation. Furthermore, the ADK inhibitor ABT702 protected mice from CaCl2-induced aortic inflammation, extracellular elastin fragmentation and AAA formation. CONCLUSION: Our findings reveal a novel role for ADK inhibition in attenuating AAA via epigenetic modulation of key inflammatory genes linked to AAA pathogenesis.

17.
Artigo em Inglês | MEDLINE | ID: mdl-38726609

RESUMO

Objective: Hepatocellular carcinoma (HCC) is a highly lethal cancer with significant mortality, primarily attributed to metastasis. Although Protocadherin Gamma Subfamily A, 9 (PCDHGA9) has been identified as a tumor suppressor gene in cancer metastasis, its role in HCC remains ambiguous. This study aims to clarify the role of PCDHGA9 in HCC by examining its expression, clinical significance, and molecular activities. Methods: Tissue microarray immunofluorescence analysis evaluated the expression of PCDHGA9 and its clinical relevance. In vitro experiments involved manipulating PCDHGA9 levels in SK-HEP-1 cells to assess migration through wound-healing and transwell assays. In vivo, shPCDHGA9 cell injections were utilized to observe effects on tumor growth and metastasis. Protein analysis and Western Blot validated epithelial-mesenchymal transition (EMT)-related proteins. Subsequent to TGF-ß treatment, cell proliferation and apoptosis were quantified using Cell counting kit-8 and flow cytometry, respectively, followed by investigation of TGF-ß effects on PCDHGA9 N6-methyladenosine (m6A) modification via Methylated RNA immunoprecipitation, RT-qPCR, and Western blot analysis. Results: Downregulation of PCDHGA9 expression in HCC tissues is correlated with poor prognosis. In vitro experiments demonstrated that modulating PCDHGA9 expression influenced HCC cell migration. In vivo, PCDHGA9 knockdown is correlated with increased metastasis. Furthermore, TGF-ß stimulation promoted cell proliferation and inhibited apoptosis. Mechanistically, TGF-ß-mediated m6A modification led to PCDHGA9 decay, promoting EMT in HCC cells. Conclusion: PCDHGA9 serves as a potential tumor suppressor in HCC by inhibiting EMT. During this process, TGF-ß is observed to exert regulatory control over m6A modifications of PCDHGA9.

18.
Cancer Cell Int ; 24(1): 169, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734646

RESUMO

Forkhead box E1 (FOXE1), also known as thyroid transcription factor 2 (TTF-2), belongs to a large family of forkhead transcription factors. It plays important roles in embryogenesis, cell growth, and differentiation. Cancer-specific FOXE1 hypermethylation events have been identified in several cancers. However, the expression and function of FOXE1 in the tumorigenesis of colorectal cancer remain still unknown. In this study, we examined FOXE1 expression and methylation in normal colon mucosa, colorectal cancer (CRC) cell lines, and primary tumors by immunohistochemistry, semi-quantitative RT-PCR, methylation-specific PCR, and bisulfite genomic sequencing. We found that FOXE1 was frequently methylated and silenced in CRC cell lines and was downregulated in CRC tissues compared with paired adjacent non-tumor tissues. Meanwhile, low FOXE1 expression was significantly correlated with lymph node metastasis and advanced TNM stages, indicating its potential as a tumor marker. Subsequently, we established colon cancer cell lines with stable FOXE1 expression to observe the biological effect on colorectal cancer, including cell growth, migration, actin cytoskeleton, and growth of human colorectal xenografts in nude mice. Ectopic expression of FOXE1 could suppress tumor cell growth and migration and affect the organization of the actin cytoskeleton together with suppressing tumorigenicity in vivo. FOXE1 methylation was frequently seen in association with a complete absence of or downregulated gene expression, and FOXE1 plays a suppressive role in the development and progression of colorectal cancer.

19.
Front Immunol ; 15: 1333923, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38736884

RESUMO

Backgroud: Although recent studies have reported the regulation of the immune response in hepatocellular carcinoma (HCC) through DNA methylation, the comprehensive impact methylation modifications on tumor microenvironment characteristics and immunotherapy efficacy has not been fully elucidated. Methods: In this research, we conducted a comprehensive assessment of the patterns of DNA methylation regulators and the profiles of the tumor microenvironment (TME) in HCC, focusing on 21 specific DNA methylation regulators. We subsequently developed a unique scoring system, a DNA methylation score (DMscore), to assess the individual DNA methylation modifications among the three distinct methylation patterns for differentially expressed genes (DEGs). Results: Three distinct methylation modification patterns were identified with distinct TME infiltration characteristics. We demonstrated that the DMscore could predict patient subtype, TME infiltration, and patient prognosis. A low DMscore, characterized by an elevated tumor mutation burden (TMB), hepatitis B virus (HBV)/hepatitis C virus (HCV) infection, and immune activation, indicates an inflamed tumor microenvironment phenotype with a 5-year survival rate of 7.8%. Moreover, a low DMscore appeared to increase the efficacy of immunotherapy in the anti-CTLA-4/PD-1/PD-L1 cohort. Conclusions: In brief, this research has enhanced our understanding of the correlation between modifications in DNA methylation patterns and the profile of the tumor microenvironment in individuals diagnosed with HCC. The DMscore may serve as an alternative biomarker for survival and efficacy of immunotherapy in patients with HCC.


Assuntos
Biomarcadores Tumorais , Carcinoma Hepatocelular , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , Microambiente Tumoral , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Humanos , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/mortalidade , Biomarcadores Tumorais/genética , Prognóstico , Perfilação da Expressão Gênica
20.
Heliyon ; 10(9): e29914, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38737285

RESUMO

This study was based on the use of whole-genome DNA methylation sequencing technology to identify DNA methylation biomarkers in tumor tissue that can predict the prognosis of patients with pancreatic cancer (PCa). TCGA database was used to download PCa-related DNA methylation and transcriptome atlas data. Methylation driver genes (MDGs) were obtained using the MethylMix package. Candidate genes in the MDGs were screened for prognostic relevance to PCa patients by univariate Cox analysis, and a prognostic risk score model was constructed based on the key MDGs. ROC curve analysis was performed to assess the accuracy of the prognostic risk score model. The effects of PIK3C2B knockdown on malignant phenotypes of PCa cells were investigated in vitro. A total of 2737 differentially expressed genes were identified, with 649 upregulated and 2088 downregulated, using 178 PCa samples and 171 normal samples. MethylMix was employed to identify 71 methylation-driven genes (47 hypermethylated and 24 hypomethylated) from 185 TCGA PCa samples. Cox regression analyses identified eight key MDGs (LEF1, ZIC3, VAV3, TBC1D4, FABP4, MAP3K5, PIK3C2B, IGF1R) associated with prognosis in PCa. Seven of them were hypermethylated, while PIK3C2B was hypomethylated. A prognostic risk prediction model was constructed based on the eight key MDGs, which was found to accurately predict the prognosis of PCa patients. In addition, the malignant phenotypes of PANC-1 cells were decreased after the knockdown of PIK3C2B. Therefore, the prognostic risk prediction model based on the eight key MDGs could accurately predict the prognosis of PCa patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...