Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.934
Filtrar
1.
Am J Biol Anthropol ; : e24952, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775381

RESUMO

Computed tomography (CT) and microcomputed tomography (µCT) require calibration against density phantoms scanned with specimens or during routine internal calibration for assessment of mineral concentration (MC) and density. In clinical studies involving bone, alternative calibration methods using bodily tissues and fluids ("phantomless" calibration) have been suggested. However, such tissues are seldom available in archeological and osteological research. This study investigates the potential of dental tissue as internal reference for calibration of µCT scans, facilitating the analysis of bone MC. We analyzed 70 molars from 24 extant primate species, including eight human teeth, each scanned with density phantoms for calibration. Our findings indicate that sampling specific regions of molars (lateral aspects of the mesial cusps) yields low variation in enamel and dentine MC values, averaging 1.27 g/cm3 (±0.03) for dentine and 2.25 g/cm3 (±0.03) for enamel. No significant differences were observed across molar types or among scanning procedures, including scanner model, resolution, and filters. An ad hoc test on 12 mandibles revealed low variance in MC between the conventional phantom and dental tissue calibration methods; all 36 measurements (low, medium, and high MC for each mandible) were within 0.05 g/cm3 of each other -81% were within 0.03 g/cm3 and 94% within 0.04 g/cm3. Based on these results, we propose a new "phantomless" calibration technique using these mean enamel and dentine MC values. The presented phantomless calibration method could aid in the assessment of bone pathology and enhance the scope of studies investigating bone structure and physical property variations in archeological, osteological, and laboratory-based research.

2.
J Fish Biol ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38712539

RESUMO

The hemicultrine fishes are a group of small-sized cyprinids, widely distributed but endemic to East Asian rivers and lakes. Till now, the taxonomic boundaries and relationships within this group remain poorly explored. In the present study, we study the phylogeny of this group, providing suggestions for classification of the hemicultrine group. Using two mitochondrial and three nuclear genes, and samples representing all genera, our results showed that the group consists of seven major lineages, of which four (Hemiculterella, Hainania, Pseudolaubuca, and Anabarilius) were monophyletic and three (Hemiculter, Toxabramis, and Pseudohemiculter) were not. Based on the phylogenetic tree, we redefined the genera. We revive the genus Siniichthys, which has three species, Siniichthys bleekeri, Siniichthys lucidus, and S. varpachovskii, that were previously treated as members of the genus Hemiculter but showed distant relationships to the genus Hemiculter in our phylogenetic tree. With the new results, a diagnostic key for clades of the hemicultrine group is provided. Furthermore, we provide more detailed information on diagnostic features of the recently described species Hemiculter yungaoi (Vasil'eva et al., 2022). This work will facilitate future systematic studies, pave the way for evolutionary studies, and provide valuable information for the urgent conservation of hemicultrine fishes.

3.
Front Mol Neurosci ; 17: 1384764, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38742227

RESUMO

Inner ear malformations are predominantly attributed to developmental arrest during the embryonic stage of membranous labyrinth development. Due to the inherent difficulty in clinically assessing the status of the membranous labyrinth, these malformations are diagnosed with radiographic imaging, based on the morphological characteristics of the bony labyrinth. While extensive research has elucidated the intricacies of membranous labyrinth development in mouse models, comprehensive investigations into the developmental trajectory of the bony labyrinth, especially about its calcification process, have been notably lacking. One of the most prominent types of inner ear malformations is known as incomplete partition (IP), characterized by nearly normal external cochlear appearance but pronounced irregularities in the morphology of the modiolus and inter-scalar septa. IP type II (IP-II), also known as Mondini dysplasia, is generally accompanied by an enlargement of the vestibular aqueduct and is primarily attributed to mutations in the SLC26A4 gene. In the case of IP-II, the modiolus and inter-scalar septa of the cochlear apex are underdeveloped or missing, resulting in the manifestation of a cystic structure on radiographic imaging. In this overview, we not only explore the normal development of the bony labyrinth in mice but also present our observations on otolith mineralization. Furthermore, we investigated the specifics of bony labyrinth and otolith mineralization in Slc26a4-deficient mice, which served as an animal model for IP-II. We ensured that these findings promise to provide valuable insights for the establishment of therapeutic interventions, optimal timing, targeted sites, and preventive measures when considering the management of this condition.

4.
Ann Surg Oncol ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743283

RESUMO

BACKGROUND AND OBJECTIVES: Curettage is the removal of a tumor from the bone while preserving the surrounding healthy cortical bone, and is associated with higher rates of local recurrence. To lower these rates, curettage should be combined with local adjuvants, although their use is associated with damage to nearby healthy bone. OBJECTIVE: The purpose of this analysis is to determine the effect of local adjuvants on cortical porcine bone by using micro-computed tomography (micro-CT) along with histological and mechanical examination. METHODS: Local adjuvants were applied to porcine specimens under defined conditions. To assess changes in bone mineral density (BMD), a micro-CT scan was used. The pixel gray values of the volume of interest (VOI) were evaluated per specimen and converted to BMD values. The Vickers hardness test was employed to assess bone hardness (HV). The depth of necrosis was measured histologically using hematoxylin and eosin-stained tissue sections. RESULTS: A noticeable change in BMD was observed on the argon beam coagulation (ABC) sample. Comparable hardness values were measured on samples following electrocautery and ABC, and lowering of bone hardness was obtained in the case of liquid nitrogen. Extensive induced depth of necrosis was registered in the specimen treated with liquid nitrogen. CONCLUSION: This study determined the effect of local adjuvants on cortical bone by using micro-CT along with histological and mechanical examination. Phenolization and liquid nitrogen application caused a decrease in bone hardness. The bone density was affected in the range of single-digit percentage values. Liquid nitrogen induced extensive depth of necrosis with a wide variance of values.

5.
Arch Oral Biol ; 164: 105983, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38718467

RESUMO

OBJECTIVES: This study aimed to investigate the relationship between the aspect ratios of mandibular molar roots at the apical 3-mm level and their root canal complexity. DESIGN: This study used micro-CT imaging to analyze 163 two-rooted mandibular molars. The aspect ratios of the roots at the apical 3-mm level were categorized as "< 2.75" or "≥ 2.75" (mesial) and "< 1.75" or "≥ 1.75" (distal). A two-dimensional (2D) analysis focused on four apical axial cross-section levels to determine the presence of main and accessory canals and isthmus. Additionally, a three-dimensional (3D) assessment of the apical 4-mm of both roots examined main and accessory canals, apical foramina, apical deltas, and middle mesial canals. RESULTS: Mesial roots with aspect ratios ≥ 2.75 showed a higher number of main canals at all levels compared to those with aspect ratios < 2.75 at the 3-mm level. Additionally, the ≥ 2.75 group exhibited more accessory canals and a higher average number of accessory canals. The 3D assessment confirmed significantly more accessory canals and apical foramina in the ≥ 2.75 group. The prevalence of roots with apical deltas was nearly double in the ≥ 2.75 group, and middle mesial canals were exclusively found in this group. In the distal root, the ≥ 1.75 group showed a significantly higher number of main canals at all axial levels. No significant differences were observed between groups in terms of accessory canals, apical foramina, or deltas. CONCLUSIONS: A higher root aspect ratio is related to higher anatomical complexity.

6.
Aust Endod J ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38715465

RESUMO

This study assessed canal preparation effects on disinfection and dentin preservation. Thirty mandibular incisors were paired into two experimental groups (n = 10). Following contamination, the initial microbial sample was collected. Instruments 30/0.03 (Group 1) and 30/0.05 (Group 2) were employed and a second sample was obtained. Canals were enlarged using instruments 40/0.03 and 40/0.05, respectively, and a third sample was collected. Final irrigation was performed, and sample S4 obtained. A final scan evaluated volume, surface area, unprepared areas, removed dentin and dentin thickness. Data were analysed using Student t-test, Mann-Whitney, Kruskal-Wallis and Dunn tests. A significant difference was observed between S1 and other time points (p < 0.05). Comparison between groups showed no differences in bacterial loads and in the percentage of microbial reduction (p > 0.05). Group 2 exhibited greater reduction in dentin thickness than group 1 in the mesial aspect of the root (p < 0.05). Instrument 30/0.03 might provide effective disinfection and safety during mandibular incisors canal preparation.

7.
Int J Pharm ; : 124220, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38734274

RESUMO

Porous Microneedles (PMNs) have been widely used in drug delivery and medical diagnosis owing to their abundant interconnected pores. However, the mechanical strength, the use of organic solvent, and drug loading capacity have long been challenging. Herein, a novel strategy of PMNs fabrication based on the Ice Templating Method is proposed that is suitable for insoluble, soluble, and nanosystem drug loading. The preparation process simplifies the traditional microneedle preparation process with a shorter preparation time. It endows the highly tunable porous morphology, enhanced mechanical strength, and rapid dissolution performance. Micro-CT three-dimensional reconstruction was used to better quantify the internal structures of PMNs, and we further established the equivalent pore network model to statistically analyze the internal pore structure parameters of PMNs. In particular, the mechanical strength is mainly negatively correlated with the surface porosity, while the dissolution velocity is mainly positively correlated with the permeability coefficient by the correlation heatmap. The poorly water-soluble Asiatic acid was encapsulated in PMNs in nanostructured lipid carriers, showing prominent hypertrophic scar healing trends. This work offers a quick and easy way of preparation that may be used to expand PMNs function and be introduced in industrial manufacturing development.

8.
J Dent ; : 105057, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38729290

RESUMO

OBJECTIVES: This study focuses on artificial intelligence (AI)-assisted analysis of alveolar bone for periodontitis in a mouse model with the aim to create an automatic deep-learning segmentation model that enables researchers to easily examine alveolar bone from micro-computed tomography (µCT) data without needing prior machine learning knowledge. METHODS: Ligature-induced experimental periodontitis was produced by placing a small-diameter silk sling ligature around the left maxillary second molar. At 4, 7, 9, or 14 days, the maxillary bone was harvested and processed with a µCT scanner (µCT-45, Scanco). Using Dragonfly (v2021.3), we developed a 3D deep learning model based on the U-Net AI deep learning engine for segmenting materials in complex images to measure alveolar bone volume (BV) and bone mineral density (BMD) while excluding the teeth from the measurements. RESULTS: This model generates 3D segmentation output for a selected region of interest with over 98% accuracy on different formats of µCT data. BV on the ligature side gradually decreased from 0.87 mm3 to 0.50 mm3 on day 9 and then increased to 0.63 mm3 on day 14. The ligature side lost 4.6% of BMD on day 4, 9.6% on day 7, 17.7% on day 9, and 21.1% on day 14. CONCLUSIONS: This study developed an AI model that can be downloaded and easily applied, allowing researchers to assess metrics including BV, BMD, and trabecular bone thickness, while excluding teeth from the measurements of mouse alveolar bone. CLINICAL SIGNIFICANCE: This work offers an innovative, user-friendly automatic segmentation model that is fast, accurate, and reliable, demonstrating new potential uses of artificial intelligence (AI) in dentistry with great potential in diagnosing, treating, and prognosis of oral diseases.

9.
BMC Med Imaging ; 24(1): 101, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693510

RESUMO

Bone strength depends on both mineral content and bone structure. Measurements of bone microstructure on specimens can be performed by micro-CT. In vivo measurements are reliably performed by high-resolution peripheral computed tomography (HR-pQCT) using dedicated software. In previous studies from our research group, trabecular bone properties on CT data of defatted specimens from many different CT devices have been analyzed using an Automated Region Growing (ARG) algorithm-based code, showing strong correlations to micro-CT.The aim of the study was to validate the possibility of segmenting and measuring trabecular bone structure from clinical CT data of fresh-frozen human wrist specimens. Data from micro-CT was used as reference. The hypothesis was that the ARG-based in-house built software could be used for such measurements.HR-pQCT image data at two resolutions (61 and 82 µm isotropic voxels) from 23 fresh-frozen human forearms were analyzed. Correlations to micro-CT were strong, varying from 0.72 to 0.99 for all parameters except trabecular termini and nodes. The bone volume fraction had correlations varying from 0.95 to 0.98 but was overestimated compared to micro-CT, especially at the lower resolution. Trabecular separation and spacing were the most stable parameters with correlations at 0.80-0.97 and mean values in the same range as micro-CT.Results from this in vitro study show that an ARG-based software could be used for segmenting and measuring 3D trabecular bone structure from clinical CT data of fresh-frozen human wrist specimens using micro-CT data as reference. Over-and underestimation of several of the bone structure parameters must however be taken into account.


Assuntos
Algoritmos , Osso Esponjoso , Microtomografia por Raio-X , Humanos , Osso Esponjoso/diagnóstico por imagem , Idoso , Masculino , Feminino , Pessoa de Meia-Idade , Punho/diagnóstico por imagem , Software , Idoso de 80 Anos ou mais
10.
JBMR Plus ; 8(1): ziad004, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38690127

RESUMO

Craniofacial and dentoalveolar abnormalities are present in all types of osteogenesis imperfecta (OI). Mouse models of the disorder are critical to understand these abnormalities and underlying OI pathogenesis. Previous studies on severely affected OI mice report a broad spectrum of craniofacial phenotypes, exhibiting some similarities to the human disorder. The Brtl/+ and G610c/+ are moderately severe and mild-type IV OI, respectively. Little is known about the aging effects on the craniofacial bones of these models and their homology to human OI. This study aimed to analyze the Brtl/+ and G610c/+ craniofacial morphometries during aging to establish suitability for further OI craniofacial bone intervention studies. We performed morphological measurements on the micro-CT-scanned heads of 3-wk-old, 3-mo-old, and 6-mo-old female Brtl/+ and G610c/+ mice. We observed that Brtl/+ skulls are shorter in length than WT (P < .05), whereas G610c/+ skulls are similar in length to their WT counterparts. The Brtl/+ mice exhibit alveolar bone with a porotic-like appearance that is not observed in G610c/+. As they age, Brtl/+ mice show severe bone resorption in both the maxilla and mandible (P < .05). By contrast, G610c/+ mice experience mandibular resorption consistently across all ages, but maxillary resorption is only evident at 6 mo (P < .05). Western blot shows high osteoclastic activities in the Brtl/+ maxilla. Both models exhibit delayed pre-functional eruptions of the third molars (P < .05), which are similar to those observed in some bisphosphonate-treated OI subjects. Our study shows that the Brtl/+ and G610c/+ mice display clear features found in type IV OI patients; both show age-related changes in the craniofacial growth phenotype. Therefore, understanding the craniofacial features of these models and how they age will allow us to select the most accurate mouse model, mouse age, and bone structure for the specific craniofacial bone treatment of differing OI groups.

11.
BMC Vet Res ; 20(1): 189, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734649

RESUMO

BACKGROUND: Hydrops fetalis (HF) is fluid accumulation in fetus body cavities and subcutaneous tissue. The condition has been described in various farm and companion animal species, including dogs. Most of cases result from a heart defect. Exact nature of this defect is rarely clarified. CASE PRESENTATION: A newborn, male French bulldog puppy with severe HF underwent a full anatomopathological examination to diagnose the primary cause of HF. Based on the anatomopathological examination, fetal ultrasound, and micro-computed tomography, transposition of the great arteries with hypoplasia of the ascending aorta, aortic arch interruption, ostium secundum atrial septal defect, severe tricuspid valve dysplasia, as well as hypoplasia of pulmonary vessels and lungs were diagnosed. CONCLUSIONS: This is the first report of HF caused by severe, complex congenital heart defects with concurrent pulmonary vessel and lung hypoplasia.


Assuntos
Doenças do Cão , Cardiopatias Congênitas , Hidropisia Fetal , Pulmão , Microtomografia por Raio-X , Animais , Hidropisia Fetal/veterinária , Hidropisia Fetal/diagnóstico por imagem , Masculino , Pulmão/diagnóstico por imagem , Pulmão/irrigação sanguínea , Pulmão/patologia , Pulmão/anormalidades , Doenças do Cão/diagnóstico por imagem , Doenças do Cão/congênito , Doenças do Cão/patologia , Cães , Cardiopatias Congênitas/veterinária , Cardiopatias Congênitas/diagnóstico por imagem , Cardiopatias Congênitas/complicações , Microtomografia por Raio-X/veterinária , Animais Recém-Nascidos
12.
Bone Rep ; 21: 101773, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38778833

RESUMO

Despite the dominant role of bone mass in osteoporotic fractures, aging bone tissue properties must be thoroughly understood to improve osteoporosis management. In this context, collagen content and integrity are considered important factors, although limited research has been conducted on the tensile behavior of demineralized compact bone in relation to its porosity and elastic properties in the native mineralized state. Therefore, this study aims (i) at examining the age-dependency of mineralized bone and collagen micromechanical properties; (ii) to test whether, and if so to which extent, collagen properties contribute to mineralized bone mechanical properties. Two cylindrical cortical bone samples from fresh frozen human anatomic donor material were extracted from 80 proximal diaphyseal sections from a cohort of 24 female and 19 male donors (57 to 96 years at death). One sample per section was tested in uniaxial tension under hydrated conditions. First, the native sample was tested elastically (0.25 % strain), and after demineralization, up to failure. Morphology and composition of the second specimen was assessed using micro-computed tomography, Raman spectroscopy, and gravimetric methods. Simple and multiple linear regression were employed to relate morphological, compositional, and mechanical variables with age and sex. Macro-tensile properties revealed that only elastic modulus of native samples was age dependent whereas apparent elastic modulus was sex dependent (p < 0.01). Compositional and morphological analysis detected a weak but significant age and sex dependency of relative mineral weight (r = -0.24, p < 0.05) and collagen disorder ratio (I∼1670/I∼1640, r = 0.25, p < 0.05) and a strong sex dependency of bone volume fraction while generally showing consistent results in mineral content assessment. Young's modulus of demineralized bone was significantly related to tissue mineral density and Young's modulus of native bone. The results indicate that mechanical properties of the organic phase, that include collagen and non-collagenous proteins, are independent of donor age. The observed reduction in relative mineral weight and corresponding overall stiffer response of the collagen network may be caused by a reduced number of mineral-collagen connections and a lack of extrafibrillar and intrafibrillar mineralization that induces a loss of waviness and a collagen fiber pre-stretch.

13.
Saudi Dent J ; 36(4): 568-573, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38690376

RESUMO

Introduction: The anatomical configuration classified as Vertucci's type III is described as the second most prevalent in mandibular incisors. Methods: Thirty-six Vertucci's type III mandibular incisors were evaluated by micro-computed tomography (micro-CT) and divided into 3 groups (n = 12) according to the root canal preparation protocol (HyFlex CM [HCM], HyFlex EDM [HEDM], and Sequence Rotary File [SRF]). The teeth were scanned before and after performing 0.25 mm and 0.40 mm apical diameter preparations. The canal volume, dentin thickness, percentage of accumulated debris and untouched canal areas, transportation, and centering ability were measured. The data were statistically analyzed by ANOVA, Tukey, Kruskal-Wallis, and Dunn tests (P < 0.05). Results: The volume increase was more evident in the apical third. After 0.40 mm preparation, the SRF system provided a higher reduction (P < 0.05) in dentin thickness on the buccal surface 1 mm from the apex. There was higher canal transportation in the bucco-lingual direction. The 0.40 mm apical preparation reduced the percentage of untouched canal areas. The apical third had the highest percentage of untouched canal areas. The cervical third had the lowest volume of accumulated debris. Conclusions: Increasing the apical preparation to a diameter of 0.40 mm with the HCM, HEDM, and SRF systems in Vertucci's type III root canals of mandibular incisors proved to be safe and effective, reducing untouched canal areas. Clinical relevance: Root flattening can be intense to the point of generating a root canal bifurcation. Despite the decrease in the root canal diameter, a greater enlargement of the apical region is necessary and safe.

14.
Equine Vet J ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720453

RESUMO

BACKGROUND: Stifle osteoarthritis (OA) lesions are most common in the medial femorotibial (MFT) compartment. Their characterisation and mapping will inform equine veterinarians towards an accurate diagnosis of OA. OBJECTIVES: Investigate and map micro-CT (µCT) changes in the hyaline articular cartilage (HAC) in the medial femoral condyle (MFC) and medial tibial plateau (MTP). STUDY DESIGN: Ex vivo cadaveric. METHODS: Stifles (n = 7 OA and 17 control [CO]) were retrieved from a tissue bank. The MFC and MFT were imaged with µCT. Regions of interest (ROIs) were cranial (MFCcr; MTPcr) and caudal (MFCca; MTPca) sites. In each ROI, µCT images were scored for HAC fibrillation, surface mineralisation and for the presence of high-density mineralised protrusions (HDMP). The lesions were mapped, and site-matched histology was performed. RESULTS: The microstructure of healthy and abnormal HAC was discernible on µCT images and confirmed with histology. HAC fibrillation was more prevalent (p = 0.019) in the MFCcr of the OA group (n = 7/7, 100%) when compared with the CO group (n = 7/17, 41%). Score 1 HAC surface mineralisation was more prevalent (p = 0.038) in the OA MFCca (n = 4/7, 57%) when compared with the CO group (n = 2/17, 12%). HDMP were heterogenous and hyperdense mineralised material protruding into the HAC and were more frequent (p = 0.033) in MFCs (n = 12/24, 50%) compared with MTPs (n = 5/24, 20%). Score 3 HDMPs were also more prevalent (p = 0.003) in the MFCcr (n = 7/24, 29%) compared with MFCca (n = 0/24, 0%) and in MFCs (n = 7/24, 29%) compared with MTPs (n = 3/24, 12.5%) (p = 0.046). MAIN LIMITATIONS: Clinical history was not available for all specimens. CONCLUSIONS: Equine HDMP and HAC surface mineralisation are imaged for the first time in the MFT joint. HAC fibrillation and erosion and HDMP are more frequent in the cranial aspect of the MFC. µCT images of OA in equine stifle joints provide a novel perspective of lesions and improve understanding of OA.

15.
Int Dent J ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38692963

RESUMO

INTRODUCTION AND AIMS: Altering the position and orientation of the root canal access cavity passway, or modifying the reduction of dentin volume, can influence the strength of dentition. This study aimed to compare the effects of different access cavities on the biomechanical performances of maxillary central incisors with a finite element analysis. METHODS: Based on the micro-computed tomography (CT) scan of a maxillary central incisor, the finite element models of the intact tooth and teeth with 4 access cavity designs: conservative incisal access cavity, incisal access cavity, conservative access cavity, and traditional access cavity were generated. Simulated occlusal forces were applied at the incisal edge of the incisor in the finite element analysis procedure. RESULTS: The maximum von Mises stress and maximum principal stress in the cervical area are highest in the traditional access cavity group, followed by the conservative access cavity group, incisal access cavity group, and conservative incisal access cavity group. CONCLUSION: The conservative access cavities minimise the extent of dentin removal from the cervical region, protecting the mechanical behaviour of the incisor. Moving the access cavity entry point to the incisal edge also improves the fracture resistance of the incisor. CLINICAL RELEVANCE: This study's findings would help clinicians select the most appropriate endodontics access cavity method when performing the root canal on maxillary central incisors.

16.
Heliyon ; 10(9): e30651, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38765063

RESUMO

Silicosis is a progressive pulmonary fibrosis disease caused by long-term inhalation of silica. The early diagnosis and timely implementation of intervention measures are crucial in preventing silicosis deterioration further. However, the lack of screening and diagnostic measures for early-stage silicosis remains a significant challenge. In this study, silicosis models of varying severity were established through a single exposure to silica with different doses (2.5mg/mice or 5mg/mice) and durations (4 weeks or 12 weeks). The diagnostic performance of computed tomography (CT) quantitative analysis was assessed using lung density biomarkers and the lung density distribution histogram, with a particular focus on non-aerated lung volume. Subsequently, we developed and evaluated a stacking learning model for early diagnosis of silicosis after extracting and selecting features from CT images. The CT quantitative analysis reveals that while the lung densitometric biomarkers and lung density distribution histogram, as traditional indicators, effectively differentiate severe fibrosis models, they are unable to distinguish early-stage silicosis. Furthermore, these findings remained consistent even when employing non-aerated areas, which is a more sensitive indicator. By establishing a radiomics stacking learning model based on non-aerated areas, we can achieve remarkable diagnostic performance to distinguish early-stage silicosis, which can provide a valuable tool for clinical assistant diagnosis. This study reveals the potential of using non-aerated lung areas as a region of interest in stacking learning for early diagnosis of silicosis, providing new insights into early detection of this disease.

17.
Am J Physiol Lung Cell Mol Physiol ; 326(6): L736-L753, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38651940

RESUMO

Systemic sclerosis (SSc) with interstitial lung disease (SSc-ILD) lacks curative pharmacological treatments, thus necessitating effective animal models for candidate drug discovery. Existing bleomycin (BLM)-induced SSc-ILD mouse models feature spatially limited pulmonary fibrosis, spontaneously resolving after 28 days. Here, we present an alternative BLM administration approach in female C57BL/6 mice, combining oropharyngeal aspiration (OA) and subcutaneous mini-pump delivery (pump) of BLM to induce a sustained and more persistent fibrosis, while retaining stable skin fibrosis. A dose-finding study was performed with BLM administered as 10 µg (OA) +80 mg/kg (pump) (10 + 80), 10 + 100, and 15 + 100. Forty-two days after OA, micro-computed tomography (micro-CT) imaging and histomorphometric analyses showed that the 10 + 100 and 15 + 100 treatments induced significant alterations in lung micro-CT-derived readouts, Ashcroft score, and more severe fibrosis grades compared with saline controls. In addition, a marked reduction in hypodermal thickness was observed in the 15 + 100 group. A time-course characterization of the BLM 15 + 100 treatment at days 28, 35, and 42, including longitudinal micro-CT imaging, revealed progressing alterations in lung parameters. Lung histology highlighted a sustained fibrosis accompanied by a reduction in hypodermis thickness throughout the explored time-window, with a time-dependent increase in fibrotic biomarkers detected by immunofluorescence analysis. BLM-induced alterations were partly mitigated by Nintedanib treatment. Our optimized BLM delivery approach leads to extensive and persistent lung fibrotic lesions coupled with cutaneous fibrotic alterations: it thus represents a significant advance compared with current preclinical models of BLM-induced SSc-ILD.NEW & NOTEWORTHY This study introduces an innovative approach to enhance the overall performance of the mouse bleomycin (BLM)-induced model for systemic sclerosis with interstitial lung disease (SSc-ILD). By combining oropharyngeal aspiration and subcutaneous mini-pump delivery of BLM, our improved model leads to sustained lung fibrosis and stable skin fibrosis in female C57BL/6 mice. The optimized 15 + 100 treatment results in extensive and persistent lung fibrotic lesions and thus represents a significant improvement over existing preclinical models of BLM-induced SSc-ILD.


Assuntos
Bleomicina , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Fibrose Pulmonar , Animais , Bleomicina/administração & dosagem , Bleomicina/toxicidade , Feminino , Fibrose Pulmonar/patologia , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Camundongos , Escleroderma Sistêmico/patologia , Escleroderma Sistêmico/tratamento farmacológico , Escleroderma Sistêmico/complicações , Microtomografia por Raio-X , Pele/patologia , Pele/efeitos dos fármacos , Pulmão/patologia , Pulmão/efeitos dos fármacos , Pulmão/diagnóstico por imagem , Orofaringe/patologia , Orofaringe/efeitos dos fármacos , Orofaringe/diagnóstico por imagem , Doenças Pulmonares Intersticiais/patologia , Doenças Pulmonares Intersticiais/tratamento farmacológico , Doenças Pulmonares Intersticiais/induzido quimicamente , Doenças Pulmonares Intersticiais/diagnóstico por imagem
18.
Phys Med Biol ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38670143

RESUMO

OBJECTIVE: Photon-counting micro-computed tomography (micro-CT) is a major advance in small animal preclinical imaging. Small molecule- and nanoparticle-based contrast agents have been widely used to enable the differentiation of liver tumors from surrounding tissues using photon-counting micro-CT. However, there is a notable gap in the application of these market-available agents to the imaging of breast and ovarian tumors using photon-counting micro-CT. Herein, we have used photon-counting micro-CT to determine the effectiveness of these contrast agents in differentiating ovarian and breast tumor xenografts in live, intact mice. Approach. Nude mice carrying different types of breast and ovarian tumor xenografts (AU565, MDA-MB-231 and SKOV-3 human cancer cells) were injected with ISOVUE-370 (a small molecule-based agent) or Exitrone Nano 12000 (a nanoparticle-based agent) and subjected to photon-counting micro-CT. To improve tumor visualization using photon-counting micro-CT, we developed a novel color visualization method, which changes color tones to highlight contrast media distribution, offering a robust alternative to traditional material decomposition methods with less computational demand. Main results. Our in vivo experiments confirm the effectiveness of this color visualization approach, showing distinct enhancement characteristics for each contrast agent. Qualitative and quantitative analyses suggest that Exitrone Nano 12000 provides superior vasculature enhancement and better quantitative consistency across scans, while ISOVUE-370 delivers a more comprehensive tumor enhancement but with significant variance between scans due to its short blood half-time. Further, a paired t-test on mean and standard deviation values within tumor volumes showed significant differences between the AU565 and SKOV-3 tumor models with the nanoparticle-based contrast agent (p-values < 0.02), attributable to their distinct vascularity, as confirmed by immunohistochemical analysis. Significance. These findings underscore the utility of photon-counting micro-CT in non-invasively assessing the morphology and anatomy of different tumor xenografts, which is crucial for tumor characterization and longitudinal monitoring of tumor progression and response to treatments. .

19.
J Hum Evol ; 190: 103499, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38569444

RESUMO

Research suggests that recent modern humans have gracile skeletons in having low trabecular bone volume fraction (BV/TV) and that gracilization of the skeleton occurred in the last 10,000 years. This has been attributed to a reduction in physical activity in the Holocene. However, there has been no thorough sampling of BV/TV in Pleistocene humans due to limited access to high resolution images of fossil specimens. Therefore, our study investigates the gracilization of BV/TV in Late Pleistocene humans and recent (Holocene) modern humans to improve our understanding of the emergence of gracility. We used microcomputed tomography to measure BV/TV in the femora, humeri and metacarpals of a sample of Late Pleistocene humans from Dolní Vestonice (Czech Republic, ∼26 ka, n = 6) and Ohalo II (Israel, ∼19 ka, n = 1), and a sample of recent humans including farming groups (n = 39) and hunter-gatherers (n = 6). We predicted that 1) Late Pleistocene humans would exhibit greater femoral and humeral head BV/TV compared with recent humans and 2) among recent humans, metacarpal head BV/TV would be greater in hunter-gatherers compared with farmers. Late Pleistocene humans had higher BV/TV compared with recent humans in both the femur and humerus, supporting our first prediction, and consistent with previous findings that Late Pleistocene humans are robust as compared to recent humans. However, among recent humans, there was no significant difference in BV/TV in the metacarpals between the two subsistence groups. The results highlight the similarity in BV/TV in the hand of two human groups from different geographic locales and subsistence patterns and raise questions about assumptions of activity levels in archaeological populations and their relationships to trabecular BV/TV.


Assuntos
Osso Esponjoso , Hominidae , Animais , Humanos , Microtomografia por Raio-X , Fêmur , Extremidade Inferior
20.
J Anat ; 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38613221

RESUMO

The salt marsh harvest mouse (Reithrodontomys raviventris) is an endangered species, endemic to the San Francisco Bay Estuary, that co-occurs with the more broadly distributed species, the western harvest mouse (Reithrodontomys megalotis). Despite their considerable external morphological similarities, the northern subspecies of salt marsh harvest mice have relatively longer and thicker tails than do western harvest mice, which may be related to their abilities to climb emergent marsh vegetation to avoid tidal inundation. We used micro-CT to compare post-cranial skeletal anatomy between the salt marsh and western harvest mouse, to examine whether the salt marsh harvest mouse's restriction to brackish marshes is associated with skeletal adaptations for scansorial locomotion. We found that salt marsh harvest mice exhibited a deeper 3rd caudal vertebra, a more caudally located longest tail vertebra, craniocaudally longer tail vertebrae, and a longer digit III proximal phalanx than western harvest mice. These phalangeal and vertebral characteristics are known to decrease body rotations during climbing, increase contact with substrates, and decrease fall susceptibility in arboreal mammals, suggesting that the salt marsh harvest mouse may be morphologically specialized for scansorial locomotion, adaptive for its dynamic wetland environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...