Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.790
Filtrar
1.
J Neurosci Methods ; : 110239, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39102902

RESUMO

BACKGROUND: Mass spectrometry (MS)-based cerebrospinal fluid (CSF) proteomics is an important method for discovering biomarkers of neurodegenerative diseases. CSF serves as a reservoir for interstitial fluid (ISF), and extensive communication between the two fluid compartments helps to remove waste products from the brain. NEW METHOD: We performed proteomic analyses of both CSF and ISF fluid compartments using intracerebral microdialysis to validate and detect novel biomarkers of Alzheimer's disease (AD) in APPtg and C57Bl/6J control mice. RESULTS: We identified up to 625 proteins in ISF and 4,483 proteins in CSF samples. By comparing the biofluid profiles of APPtg and C57Bl/6J mice, we detected 37 and 108 significantly up- and downregulated candidates, respectively. In ISF, 7 highly regulated proteins, such as Gfap, Aldh1l1, Gstm1, and Txn, have already been implicated in AD progression, whereas in CSF, 9 out of 14 highly regulated proteins, such as Apba2, Syt12, Pgs1 and Vsnl1, have also been validated to be involved in AD pathogenesis. In addition, we also detected new interesting regulated proteins related to the control of synapses and neurotransmission (Kcna2, Cacng3, and Clcn6) whose roles as AD biomarkers should be further investigated. COMPARISON WITH EXISTING METHODS: This newly established combined protocol provides better insight into the mutual communication between ISF and CSF as an analysis of tissue or CSF compartments alone. CONCLUSIONS: The use of multiple fluid compartments, ISF and CSF, for the detection of their biological communication enables better detection of new promising AD biomarkers.

2.
Cancers (Basel) ; 16(15)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39123433

RESUMO

Aberrant metabolism is a hallmark of malignancies including gliomas. Intracranial microdialysis enables the longitudinal collection of extracellular metabolites within CNS tissues including gliomas and can be leveraged to evaluate changes in the CNS microenvironment over a period of days. However, delayed metabolic impacts of CNS injury from catheter placement could represent an important covariate for interpreting the pharmacodynamic impacts of candidate therapies. Intracranial microdialysis was performed in patient-derived glioma xenografts of glioma before and 72 h after systemic treatment with either temozolomide (TMZ) or a vehicle. Microdialysate from GBM164, an IDH-mutant glioma patient-derived xenograft, revealed a distinct metabolic signature relative to the brain that recapitulated the metabolic features observed in human glioma microdialysate. Unexpectedly, catheter insertion into the brains of non-tumor-bearing animals triggered metabolic changes that were significantly enriched for the extracellular metabolome of glioma itself. TMZ administration attenuated this resemblance. The human glioma microdialysate was significantly enriched for both the PDX versus brain signature in mice and the induced metabolome of catheter placement within the murine control brain. These data illustrate the feasibility of microdialysis to identify and monitor the extracellular metabolome of diseased versus relatively normal brains while highlighting the similarity between the extracellular metabolome of human gliomas and that of CNS injury.

3.
J Orthop Res ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39101353

RESUMO

Penicillin is available in both an oral (penicillin V) and intravenous formulation (penicillin G), theoretically allowing for a safe transition between the two. However, the use of oral penicillin remains a topic of debate due to low and variable bioavailability. This study aimed to assess the time for which the free penicillin concentration exceeded targeted minimum inhibitory concentrations for Staphylococcus aureus and Streptococcus species (0.125, 0.25, and 0.5 mg/L) in cancellous bone and subcutaneous tissue after intravenous penicillin and oral penicillin administration. 12 female pigs (68-75 kg) were assigned, according to local standard clinical regimes, to either intravenous penicillin (1.2 g) or oral penicillin (0.8 g) treatment every 6 h over an 18 h period. Microdialysis catheters were placed for sampling in tibial cancellous bone and adjacent subcutaneous tissue. Data was dynamic/continually collected in the first dosing interval (0-6 h), simulating a prophylactic situation, and the third dosing interval (12-18 h), simulating a therapeutic setting. Plasma samples were collected for reference. For all investigated targets, intravenous treatment resulted in a longer mean time above relevant minimum inhibitory concentrations in cancellous bone during the first dosing interval, and in both cancellous bone and subcutaneous tissue during the third dosing interval compared to oral treatment. With clinically relevant dosing, intravenous penicillin provides superior exposure compared to oral penicillin in both a prophylactic and therapeutic setting.

4.
J Neurotrauma ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38994598

RESUMO

Cholinergic disruptions underlie attentional deficits following traumatic brain injury (TBI). Yet, drugs specifically targeting acetylcholinesterase (AChE) inhibition have yielded mixed outcomes. Therefore, we hypothesized that galantamine (GAL), a dual-action competitive AChE inhibitor and α7 nicotinic acetylcholine receptor (nAChR) positive allosteric modulator, provided chronically after injury, will attenuate TBI-induced deficits of sustained attention and enhance ACh efflux in the medial prefrontal cortex (mPFC), as assessed by in vivo microdialysis. In Experiment 1, adult male rats (n = 10-15/group) trained in the 3-choice serial reaction time (3-CSRT) test were randomly assigned to controlled cortical impact (CCI) or sham surgery and administered GAL (0.5, 2.0, or 5.0 mg/kg; i.p.) or saline vehicle (VEH; 1 mL/kg; i.p) beginning 24-h post-surgery and once daily thereafter for 27 days. Measures of sustained attention and distractibility were assessed on post-operative days 21-25 in the 3-CSRT, following which cortical lesion volume and basal forebrain cholinergic cells were quantified on day 27. In Experiment 2, adult male rats (n = 3-4/group) received a CCI and 24 h later administered (i.p.) one of the three doses of GAL or VEH for 21 days to quantify the dose-dependent effect of GAL on in vivo ACh efflux in the mPFC. Two weeks after the CCI, a guide cannula was implanted in the right mPFC. On post-surgery day 21, baseline and post-injection dialysate samples were collected in a temporally matched manner with the cohort undergoing behavior. ACh levels were analyzed using reverse phase high-performance liquid chromatography (HPLC) coupled to an electrochemical detector. Cortical lesion volume was quantified on day 22. The data were subjected to ANOVA, with repeated measures where appropriate, followed by Newman-Keuls post hoc analyses. All TBI groups displayed impaired sustained attention versus the pooled SHAM controls (p's < 0.05). Moreover, the highest dose of GAL (5.0 mg/kg) exacerbated attentional deficits relative to VEH and the two lower doses of GAL (p's < 0.05). TBI significantly reduced cholinergic cells in the right basal forebrain, regardless of treatment condition, versus SHAM (p < 0.05). In vivo microdialysis revealed no differences in basal ACh in the mPFC; however, GAL (5.0 mg/kg) significantly increased ACh efflux 30 min following injection compared to the VEH and the other GAL (0.5 and 2.0 mg/kg) treated groups (p's < 0.05). In both experiments, there were no differences in cortical lesion volume across treatment groups (p's > 0.05). In summary, albeit the higher dose of GAL increased ACh release, it did not improve measures of sustained attention or histopathological markers, thereby partially supporting the hypothesis and providing the impetus for further investigations into alternative cholinergic pharmacotherapies such as nAChR positive allosteric modulators.

5.
J Pharm Sci ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39059554

RESUMO

Enabling drug formulations are often required to ensure sufficient absorption after oral administration of poorly soluble drugs. While these formulations typically increase the apparent solubility of the drug, it is widely acknowledged that only molecularly dissolved, i.e., free fraction of the drug, is prone for direct absorption, while colloid-associated drug does not permeate to the same extent. In the present study, we aimed at comparing the effect of molecularly and apparently (i.e., the sum of molecularly and colloid-associated drug) dissolved drug concentrations on the oral absorption of a poorly water-soluble drug compound, Alectinib. Mixtures of Alectinib and respectively 50 %, 25 %, 12.5 %, and 3 % sodium lauryl sulfate (SLS) relative to the dose were prepared and small-scale dissolution tests were performed under simulated fed and fasted state conditions. Both the molecularly and apparently dissolved drug concentrations were assessed in parallel using microdialysis and centrifugation/filtration sampling, respectively. The data served as the basis for an in vitro-in vivo correlation (IVIVC) and as input for a GastroPlusTM physiologically-based biopharmaceutics model (PBBM). It was shown that with increasing the content of SLS the apparently dissolved drug in FeSSIF and FaSSIF increased to a linear extent and thus, the predicted in vivo performance of the 50 % SLS formulation, based on apparently dissolved drug, would outperform all other formulations. Against common expectation, however, the free (molecularly dissolved) drug concentrations were found to vary with SLS concentrations as well, yet to a minor extent. A systematic comparison of solubilized and free drug dissolution patterns at different SLS contents of the formulations and prandial states allowed for interesting insights into the complex dissolution-/supersaturation-, micellization-, and precipitation-behavior of the formulations. When comparing the in vitro datasets with human pharmacokinetic data from a bioequivalence study, it was shown that the use of molecularly dissolved drug resulted in an improved IVIVC. By incorporating the in vitro dissolution datasets into the GastroPlusTM PBBM, the apparently dissolved drug concentrations resulted in both, a remarkable overprediction of plasma concentrations as well as a misprediction of the influence of SLS on systemic exposure. In contrast, by using the molecularly dissolved drug (i.e., free fraction) as the model input, the predicted plasma concentration-time profiles were in excellent agreement with observed data for all formulations under both fed and fasted conditions. By combining an advanced in vitro assessment with PBBM, the present study confirmed that only the molecularly dissolved drug, and not the colloid-associated drug, is available for direct absorption.

6.
Neuropharmacology ; 258: 110065, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004413

RESUMO

(R,S)-ketamine (ketamine) has rapid and sustained antidepressant (AD) efficacy at sub-anesthetic doses in depressed patients. A metabolite of ketamine, including (2R,6R)-hydroxynorketamine ((6)-HNKs) has been reported to exert antidepressant actions in rodent model of anxiety/depression. To further understand the specific role of ketamine's metabolism in the AD actions of the drug, we evaluated the effects of inhibiting hepatic cytochrome P450 enzymes on AD responses. We assessed whether pre-treatment with fluconazole (10 and 20 mg/kg, i. p.) 1 h prior to ketamine or HNKs (10 mg/kg, i. p.) administration would alter behavioral and neurochemical actions of the drugs in male BALB/cJ mice with a highly anxious phenotype. Extracellular microdialysate levels of glutamate and GABA (Gluext, GABAext) were also measured in the medial prefrontal cortex (mPFC). Pre-treatment with fluconazole altered the pharmacokinetic profile of ketamine, by increasing both plasma and brain levels of ketamine and (R,S)-norketamine, while robustly reducing those of (6)-HNKs. At 24 h post-injection (t24 h), fluconazole prevented the sustained AD-like response of ketamine responses in the forced swim test and splash test, as well as the enhanced cortical GABA levels produced by ketamine. A single (2R,6R)-HNK administration resulted in prevention of the effects of fluconazole on the antidepressant-like activity of ketamine in mice. Overall, these findings are consistent with an essential contribution of (6)-HNK to the sustained antidepressant-like effects of ketamine and suggest potential interactions between pharmacological CYPIs and ketamine during antidepressant treatment in patients.

7.
Sci Rep ; 14(1): 16337, 2024 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014025

RESUMO

It has been suggested that sodium-glucose cotransporter 2 (SGLT2) inhibitors have cardioprotective effects during myocardial ischemia/reperfusion (I/R) independent of glucose-lowering action. However, the effects of SGLT2 inhibitors on structural damage to cardiomyocytes in the ischemic region during I/R remain unknown. We applied a microdialysis technique to the heart of anesthetized rats and investigated the effects of an SGLT2 inhibitor, dapagliflozin, on myocardial interstitial myoglobin levels in the ischemic region during coronary occlusion followed by reperfusion. Dapagliflozin was administered systemically (40 µg/body iv) or locally via a dialysis probe (100 µM and 1 mM) 30 min before coronary occlusion. In the vehicle group, coronary occlusion increased the dialysate myoglobin concentration in the ischemic region. Reperfusion further increased the dialysate myoglobin concentration. Intravenous administration of dapagliflozin reduced dialysate myoglobin concentration during ischemia and at 0-15 min after reperfusion, but local administration (100 µM and 1 mM) did not. Therefore, acute systemic administration of dapagliflozin prior to ischemia has cardioprotective effects on structural damage during I/R.


Assuntos
Compostos Benzidrílicos , Glucosídeos , Traumatismo por Reperfusão Miocárdica , Miócitos Cardíacos , Mioglobina , Animais , Compostos Benzidrílicos/farmacologia , Mioglobina/metabolismo , Glucosídeos/farmacologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Ratos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Masculino , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Microdiálise
8.
Neurocrit Care ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39085507

RESUMO

BACKGROUND: Brain energy metabolism is often disturbed after acute brain injuries. Current neuromonitoring methods with cerebral microdialysis (CMD) are based on intermittent measurements (1-4 times/h), but such a low frequency could miss transient but important events. The solution may be the recently developed Loke microdialysis (MD), which provides high-frequency data of glucose and lactate. Before clinical implementation, the reliability and stability of Loke remain to be determined in vivo. The purpose of this study was to validate Loke MD in relation to the standard intermittent CMD method. METHODS: Four pigs aged 2-3 months were included. They received two adjacent CMD catheters, one for standard intermittent assessments and one for continuous (Loke MD) assessments of glucose and lactate. The standard CMD was measured every 15 min. Continuous Loke MD was sampled every 2-3 s and was averaged over corresponding 15-min intervals for the statistical comparisons with standard CMD. Intravenous glucose injections and intracranial hypertension by inflation of an intracranial epidural balloon were performed to induce variations in intracranial pressure, cerebral perfusion pressure, and systemic and cerebral glucose and lactate levels. RESULTS: In a linear mixed-effect model of standard CMD glucose (mM), there was a fixed effect value (± standard error [SE]) at 0.94 ± 0.07 (p < 0.001) for Loke MD glucose (mM), with an intercept at - 0.19 ± 0.15 (p = 0.20). The model showed a conditional R2 at 0.81 and a marginal R2 at 0.72. In a linear mixed-effect model of standard CMD lactate (mM), there was a fixed effect value (± SE) at 0.41 ± 0.16 (p = 0.01) for Loke MD lactate (mM), with an intercept at 0.33 ± 0.21 (p = 0.25). The model showed a conditional R2 at 0.47 and marginal R2 at 0.17. CONCLUSIONS: The established standard CMD glucose thresholds may be used as for Loke MD with some caution, but this should be avoided for lactate.

9.
World J Crit Care Med ; 13(2): 91397, 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38855276

RESUMO

Multimodal monitoring (MMM) in the intensive care unit (ICU) has become increasingly sophisticated with the integration of neurophysical principles. However, the challenge remains to select and interpret the most appropriate combination of neuromonitoring modalities to optimize patient outcomes. This manuscript reviewed current neuromonitoring tools, focusing on intracranial pressure, cerebral electrical activity, metabolism, and invasive and noninvasive autoregulation monitoring. In addition, the integration of advanced machine learning and data science tools within the ICU were discussed. Invasive monitoring includes analysis of intracranial pressure waveforms, jugular venous oximetry, monitoring of brain tissue oxygenation, thermal diffusion flowmetry, electrocorticography, depth electroencephalography, and cerebral microdialysis. Noninvasive measures include transcranial Doppler, tympanic membrane displacement, near-infrared spectroscopy, optic nerve sheath diameter, positron emission tomography, and systemic hemodynamic monitoring including heart rate variability analysis. The neurophysical basis and clinical relevance of each method within the ICU setting were examined. Machine learning algorithms have shown promise by helping to analyze and interpret data in real time from continuous MMM tools, helping clinicians make more accurate and timely decisions. These algorithms can integrate diverse data streams to generate predictive models for patient outcomes and optimize treatment strategies. MMM, grounded in neurophysics, offers a more nuanced understanding of cerebral physiology and disease in the ICU. Although each modality has its strengths and limitations, its integrated use, especially in combination with machine learning algorithms, can offer invaluable information for individualized patient care.

10.
J Pharm Biomed Anal ; 248: 116285, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38878452

RESUMO

Acetaminophen (APAP), or paracetamol, is one of the most widespread and commonly used non-prescription pain medication in the world, and is effective at managing wide range of pain, including headache, muscle ache, and minor arthritic pain. While the pharmacokinetics of APAP is generally understood, there is a lack of data for its transfer ratio especially into the knee. A novel multi-microdialysis model was developed to simultaneously sample from blood, forelimb extensor muscle, brain striatum, and the knee joint cavity in the same experimental subject to investigate the potential interaction between APAP and Achyranthes bidentata Blume (A. bidentata), another widely used traditional Chinese medicininal herb especially for pain in the lower extremity. Rats were pre-treated with A. bidentata extract (ABex), APAP was then administered (60 mg/kg, i.v.), dialysates then subsequently analyzed using HPLC-PDA. Our analysis demonstrated that APAP concentrations, achieved after its administration either alone or in combination with ABex (1 and 3 g/kg, q.d. gavage), could be modelled effectively with a one-compartment model. The distribution ratio (AUCorgan/AUCblood) of blood-to-muscle, blood-to-brain and blood-to-knee was 0.372 ± 0.053, 0.277 ± 0.095 and 0.191 ± 0.042, respectively after administration of APAP (60 mg/kg, i.v.). No significant difference was observed between the pharmacokinetics of APAP administered alone and in combination with ABex; and APAP concentration exceed the half maximal effective concentration (EC50) in all sampled organs for close to 3 hours with one single dose of drug administration, providing evidence for its broad-range analgesic effect.


Assuntos
Acetaminofen , Articulação do Joelho , Ratos Sprague-Dawley , Animais , Acetaminofen/farmacocinética , Acetaminofen/sangue , Ratos , Masculino , Articulação do Joelho/metabolismo , Extratos Vegetais/farmacocinética , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Analgésicos não Narcóticos/farmacocinética , Analgésicos não Narcóticos/sangue , Analgésicos não Narcóticos/administração & dosagem , Músculo Esquelético/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Interações Ervas-Drogas , Distribuição Tecidual , Medicamentos de Ervas Chinesas/farmacocinética , Medicamentos de Ervas Chinesas/administração & dosagem
11.
Neuropharmacology ; 257: 110047, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38889877

RESUMO

Sub-anesthetic ketamine treatment has been shown to be an effective therapy for treatment-resistant depression and chronic pain. Our group has previously shown that sub-anesthetic ketamine produces acute anti-parkinsonian, and acute anti-dyskinetic effects in preclinical models of Parkinson's disease (PD). Ketamine is a multifunctional drug and exerts effects through blockade of N-methyl-d-aspartate receptors but also through interaction with the opioid system. In this report, we provide detailed pharmacokinetic rodent data on ketamine and its main metabolites following an intraperitoneal injection, and second, we explore the pharmacodynamic properties of ketamine in a rodent PD model with respect to the opioid system, using naloxone, a pan-opioid receptor antagonist, in unilateral 6-hydroxydopamine-lesioned male rats, treated with 6 mg/kg levodopa (l-DOPA) to establish a model of l-DOPA-induced dyskinesia (LID). As previously reported, we showed that ketamine (20 mg/kg) is highly efficacious in reducing LID and now report that the magnitude of this effect is resistant to naloxone (3 and 5 mg/kg). The higher naloxone dose of 5 mg/kg, however, led to an extension of the time-course of the LID, indicating that opioid receptor activation, while not a prerequisite for the anti-dyskinetic effects of ketamine, still exerts an acute modulatory effect. In contrast to the mild modulatory effect on LID, we found that naloxone added to the anti-parkinsonian activity of ketamine, further reducing the akinetic phenotype. In conclusion, our data show opioid receptor blockade differentially modulates the acute anti-parkinsonian and anti-dyskinetic actions of ketamine, providing novel mechanistic information to support repurposing ketamine for individuals with LID.


Assuntos
Antiparkinsonianos , Discinesia Induzida por Medicamentos , Ketamina , Levodopa , Antagonistas de Entorpecentes , Oxidopamina , Ketamina/farmacologia , Animais , Masculino , Discinesia Induzida por Medicamentos/tratamento farmacológico , Ratos , Levodopa/farmacologia , Antiparkinsonianos/farmacologia , Antagonistas de Entorpecentes/farmacologia , Oxidopamina/toxicidade , Naloxona/farmacologia , Ratos Sprague-Dawley , Modelos Animais de Doenças
12.
J Clin Med ; 13(12)2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38930053

RESUMO

Background: Cefazolin may minimize the risk of surgical site infection (SSI) following posterior spinal fusion (PSF) for adolescent idiopathic scoliosis (AIS). Cefazolin dosing recommendations vary and there is limited evidence for achieved tissue concentrations. Methods: We performed a randomized, controlled, prospective pharmacokinetic pilot study of 12 patients given cefazolin by either intermittent bolus (30 mg/kg every 3 h) or continuous infusion (30 mg/kg bolus followed by 10/mg/kg per hour) during PSF for AIS. Results: Patients were well matched for demographic and perioperative variables. While total drug exposure, measured as area-under-the-curve (AUC), was similar in plasma for bolus and infusion dosing, infusion dosing achieved greater cefazolin exposure in subcutaneous and muscle tissue. Using the pharmacodynamic metric of time spent above minimal inhibitory concentration (MIC), both bolus and infusion dosing performed well. However, when targeting a bactericidal concentration of 32 µg/mL, patients in the bolus group spent a median of 1/5 and 1/3 of the typical 6 h operative time below target in subcutaneous and muscle tissue, respectively. Conclusions: We conclude that intraoperative determination of cefazolin tissue concentrations is feasible and both bolus and infusion dosing of cefazolin achieve concentrations in excess of typical MICs. Infusion dosing appears to more consistently achieve bactericidal concentrations in subcutaneous and muscle tissues.

13.
Behav Brain Res ; 471: 115121, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38945302

RESUMO

Controlled nigrostriatal dopamine release supports effective limb use during locomotion coordination that becomes compromised after this pathway deteriorates in Parkinson's Disease (PD). How dopamine release relates to active ongoing behavior control remains unknown. Restoring proper release strategy appears important to successful PD treatment with transplanted dopamine-producing stem cells. This is suggested by apparently distinct behavioral support from tonic or phasic release and corresponding requirements of requisite afferent control exhibited by intact nigrostriatal neurons. Our laboratory previously demonstrated that transplanted dopaminergic cells can elicit skilled movement recovery known to depend on phasic dopamine release. However, efforts to measure this movement-related dopamine release yielded seemingly paradoxical, incongruent results. In response, here we explored whether those previous observations derived from rapid reuptake transport into either transplanted cells or residual, lesion-surviving terminals. We confirmed this using minimal reuptake blockade during intrastriatal microdialysis. After unilateral dopamine depletion, rats received transplants and were subjected to our swimming protocol. Among dopamine-depleted and transplanted rats, treatment supported restoration of limb movement symmetry. Interestingly, subsequent reuptake-restricted microdialysis confirmed distinct swimming-induced dopamine increases clearly occurred among these lesioned/transplanted subjects. Thus, phasic firing control appears to contribute to transplant-derived recovery in Parkinsonian animals.


Assuntos
Modelos Animais de Doenças , Dopamina , Microdiálise , Animais , Dopamina/metabolismo , Masculino , Ratos , Mesencéfalo/metabolismo , Oxidopamina/farmacologia , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/fisiologia , Corpo Estriado/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/terapia , Doença de Parkinson/fisiopatologia , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/fisiopatologia , Extremidades , Substância Negra/metabolismo , Ratos Sprague-Dawley
14.
Am J Physiol Heart Circ Physiol ; 327(2): H364-H369, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38847757

RESUMO

The transcriptional regulator nuclear factor-κB (NF-κB) is a mediator of endothelial dysfunction. Inhibiting NF-κB with salsalate is used to investigate inflammatory mechanisms contributing to accelerated cardiovascular disease risk. However, in the absence of disease, inhibition of NF-κB can impact redox mechanisms, resulting in paradoxically decreased endothelial function. This study aimed to measure microvascular endothelial function during inhibition of the transcriptional regulator NF-κB in reproductive-aged healthy women. In a randomized, single-blind, crossover, placebo-controlled design, nine healthy women were randomly assigned oral salsalate (1,500 mg, twice daily) or placebo treatments for 5 days. Subjects underwent graded perfusion with the endothelium-dependent agonist acetylcholine (ACh, 10-10 to 10-1 M, 33°C) alone and in combination with 15 mM NG-nitro-l-arginine methyl ester [l-NAME; nonselective nitric oxide (NO) synthase inhibitor] through intradermal microdialysis. Laser-Doppler flux was measured over each microdialysis site, and cutaneous vascular conductance (CVC) was calculated as flux divided by mean arterial pressure and normalized to site-specific maximum (CVC%max; 28 mM sodium nitroprusside + 43°C). The l-NAME sensitive component was calculated as the difference between the areas under the dose-response curves. During the placebo and salsalate treatments, the l-NAME sites were reduced compared with the control sites (both P < 0.0001). Across treatments, there was a significant difference between the control and l-NAME sites, where both sites shifted upward following salsalate treatment (both P < 0.0001), whereas the l-NAME-sensitive component was not different (P = 0.94). These data demonstrate that inhibition of the transcriptional regulator NF-κB improves cutaneous microvascular function in reproductive-aged healthy women through non-NO-dependent mechanisms.NEW & NOTEWORTHY The transcription factor nuclear factor-κB (NF-κB) regulates multiple aspects of innate and adaptive immunity by encoding for genes that participate in inflammation and impact endothelial function following NF-κB inhibition with salsalate treatment. Our results show that cutaneous microvascular function is increased through non-nitric oxide (NO)-dependent mechanisms following salsalate treatment in reproductive-aged healthy women.


Assuntos
Estudos Cross-Over , Microcirculação , NF-kappa B , Óxido Nítrico , Pele , Humanos , Feminino , Adulto , Pele/irrigação sanguínea , Pele/efeitos dos fármacos , Pele/metabolismo , NF-kappa B/metabolismo , Método Simples-Cego , Microcirculação/efeitos dos fármacos , Óxido Nítrico/metabolismo , NG-Nitroarginina Metil Éster/farmacologia , Vasodilatação/efeitos dos fármacos , Adulto Jovem , Acetilcolina/farmacologia , Voluntários Saudáveis , Vasodilatadores/farmacologia , Inibidores Enzimáticos/farmacologia , Salicilatos/farmacologia , Microvasos/efeitos dos fármacos , Microvasos/metabolismo , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Fluxo Sanguíneo Regional/efeitos dos fármacos
15.
Artigo em Inglês | MEDLINE | ID: mdl-38705909

RESUMO

Our previous studies have shown the therapeutic efficacy of brucine dissolving-microneedles (Bru-DMNs) in treating rheumatoid arthritis (RA). Bru delivered via the DMNs can bypass some of the issues related to oral and systemic delivery, including extensive enzymatic activity, liver metabolism and in the case of systemic delivery via hypodermic needles, pain resulting from injections and needle stick injury. However, the underlying mechanism of Bru-DMNs against RA has not been investigated in depth at the pharmacokinetic-pharmacodynamic (PK-PD) level. In this study, a microdialysis-based method combined with ultra-performance liquid chromatography-tandem mass spectrometry was developed for the simultaneous and continuous sampling and quantitative analysis of blood and joint cavities in fully awake RA rats. The acquired data were analyzed by the PK-PD analysis method. Bru delivered via microneedles showed enhanced distribution and prolonged retention in the joint cavity compared to its administration in blood. The correlation between the effect of Bru and its concentration at the action site was indirect. In this study, we explored the mechanism of Bru-DMNs against RA and established a visualization method to express the PK-PD relationship of Bru-DMNs against RA. This study provides insights into the mechanism of action of drugs with potential side effects administered transdermally for RA treatment.

16.
Front Endocrinol (Lausanne) ; 15: 1326179, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774229

RESUMO

Aims/hypothesis: The aim of this substudy (Eudra CT No:2019-001997-27)was to assess ATB availability in patients with infected diabetic foot ulcers(IDFUs)in the context of microcirculation and macrocirculation status. Methods: For this substudy, we enrolled 23 patients with IDFU. Patients were treated with boluses of amoxicillin/clavulanic acid(AMC)(12patients) or ceftazidime(CTZ)(11patients). After induction of a steady ATB state, microdialysis was performed near the IDFU. Tissue fluid samples from the foot and blood samples from peripheral blood were taken within 6 hours. ATB potential efficacy was assessed by evaluating the maximum serum and tissue ATB concentrations(Cmax and Cmax-tissue)and the percentage of time the unbound drug tissue concentration exceeds the minimum inhibitory concentration (MIC)(≥100% tissue and ≥50%/60% tissue fT>MIC). Vascular status was assessed by triplex ultrasound, ankle-brachial and toe-brachial index tests, occlusive plethysmography comprising two arterial flow phases, and transcutaneous oxygen pressure(TcPO2). Results: Following bolus administration, the Cmax of AMC was 91.8 ± 52.5 µgmL-1 and the Cmax-tissue of AMC was 7.25 ± 4.5 µgmL-1(P<0.001). The Cmax for CTZ was 186.8 ± 44.1 µgmL-1 and the Cmax-tissue of CTZ was 18.6 ± 7.4 µgmL-1(P<0.0001). Additionally, 67% of patients treated with AMC and 55% of those treated with CTZ achieved tissue fT>MIC levels exceeding 50% and 60%, respectively. We observed positive correlations between both Cmax-tissue and AUCtissue and arterial flow. Specifically, the correlation coefficient for the first phase was r=0.42; (P=0.045), and for the second phase, it was r=0.55(P=0.01)and r=0.5(P=0.021). Conclusions: Bactericidal activity proved satisfactory in only half to two-thirds of patients with IDFUs, an outcome that appears to correlate primarily with arterial flow.


Assuntos
Antibacterianos , Pé Diabético , Microcirculação , Humanos , Pé Diabético/tratamento farmacológico , Pé Diabético/metabolismo , Microcirculação/efeitos dos fármacos , Masculino , Feminino , Antibacterianos/farmacocinética , Antibacterianos/administração & dosagem , Antibacterianos/uso terapêutico , Pessoa de Meia-Idade , Idoso , Administração Intravenosa
17.
ACS Chem Neurosci ; 15(11): 2308-2321, 2024 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-38747405

RESUMO

Considerable research efforts have been directed toward the symptom relief of Parkinson's disease (PD) by attenuating dopamine (DA) depletion. One common feature of these existing therapies is their unavailability of preventing the neurodegenerative process of dopaminergic neurons. (+)-Borneol, a natural highly lipid-soluble bicyclic monoterpene, has been reported to regulate the levels of monoamine neurotransmitters in the central nervous system and exhibit neuroprotective effects. However, the effect of (+)-borneol on the dopaminergic neuronal loss of methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice is not defined. Herein, we first report that 30 mg/kg (+)-borneol significantly attenuated the motor deficits of PD mice, which benefits from markedly increasing the level of DA and decreasing the metabolic rate of DA in the striatum of conscious and freely moving mouse detected by ultraperformance liquid chromatography tandem mass spectrometry online combined with in vivo brain microdialysis sampling. It is worth noting that the enhanced level of DA by (+)-borneol was enabled by the reduction in loss of tyrosine hydroxylase-immunoreactive dopaminergic neurons in the substantia nigra and striatum and promotion of reserpine- or nomifensine-induced DA release in PD mice. Interestingly, (+)-borneol evidently inhibited the decreased expression levels of DA transporter (DAT) and vesicular monoamine transporter 2 (VMAT2) on the MPTP mouse model of PD. Moreover, (+)-borneol suppressed the neuroinflammation by inhibiting the production of IL-1ß, IL-6, and TNF-α and attenuated oxidative stress by decreasing the level of MDA and increasing the activities of SOD and GSH-px in PD mice. These findings demonstrate that (+)-borneol protects DA neurons by inhibiting neuroinflammation and oxidative stress. Further research work for the neuroprotection mechanism of (+)-borneol will focus on reactive oxygen species-mediated apoptosis. Therefore, (+)-borneol is a potential therapeutic candidate for retarding the neurodegenerative process of PD.


Assuntos
Canfanos , Dopamina , Neurônios Dopaminérgicos , Camundongos Endogâmicos C57BL , Microdiálise , Fármacos Neuroprotetores , Animais , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Masculino , Camundongos , Fármacos Neuroprotetores/farmacologia , Microdiálise/métodos , Canfanos/farmacologia , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Modelos Animais de Doenças , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo
18.
Brain Res ; 1838: 148998, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38754802

RESUMO

Altered extracellular amino acid concentrations following concussion or mild traumatic brain injury can result in delayed neuronal damage through overactivation of NMDA glutamatergic receptors. However, the consequences of repeated concussions prior to complete recovery are not well understood. In this study, we utilized in vivo cerebral microdialysis and a weight-drop model to investigate the acute neurochemical response to single and repeated concussions in adult rats that were fully conscious. A microdialysis probe was inserted into the hippocampus and remained in place during impact. Primary outcomes included concentrations of glutamate, GABA, taurine, glycine, glutamine, and serine, while secondary outcomes were righting times and excitotoxic indices. Compared to sham injury, the first concussion resulted in significant increases in glutamate, GABA, taurine, and glycine levels, longer righting times, and higher excitotoxic indices. Following the second concussion, righting times were significantly longer, suggesting cumulative effects of repeated concussion while only partial increases were observed in glutamate and taurine levels. GABA and glycine levels, and excitotoxic indices were comparable to sham injury. These findings suggest that single and repeated concussions may induce acute increases in several amino acids, while repeated concussions could exacerbate neurological symptoms despite less pronounced neurochemical changes.


Assuntos
Concussão Encefálica , Modelos Animais de Doenças , Microdiálise , Ratos Sprague-Dawley , Animais , Concussão Encefálica/metabolismo , Microdiálise/métodos , Masculino , Ratos , Hipocampo/metabolismo , Ácido gama-Aminobutírico/metabolismo , Taurina/metabolismo , Ácido Glutâmico/metabolismo , Glicina/metabolismo
19.
Brain Res ; 1839: 149040, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38815643

RESUMO

Traumatic brain injury (TBI) is a complex pathophysiological process that results in a variety of neurotransmitter, behavioral, and cognitive deficits. The locus coeruleus-norepinephrine (LC-NE) system is a critical regulator of arousal levels and higher executive processes affected by TBI including attention, working memory, and decision making. LC-NE axon injury and impaired signaling within the prefrontal cortex (PFC) is a potential contributor to the neuropsychiatric symptoms after single, moderate to severe TBI. The majority of TBIs are mild, yet long-term cognitive deficits and increased susceptibility for further injury can accumulate after each repetitive mild TBI. As a potential treatment for restoring cognitive function and daytime sleepiness after injury psychostimulants, including methylphenidate (MPH) that increase levels of NE within the PFC, are being prescribed "off-label". The impact of mild and repetitive mild TBI on the LC-NE system remains limited. Therefore, we determined the extent of LC-NE and arousal dysfunction and response to therapeutic doses of MPH in rats following experimentally induced single and repetitive mild TBI. Microdialysis measures of basal NE efflux from the medial PFC and arousal measures were significantly lower after repetitive mild TBI. Females showed higher baseline PFC-NE efflux than males following single and repetitive mild TBI. In response to MPH challenge, males exhibited a blunted PFC-NE response and persistent arousal levels following repetitive mild TBI. These results provide critical insight into the role of catecholamine system dysfunction associated with cognitive deficits following repeated injury, outcome differences between sex/gender, and lack of success of MPH as an adjunctive therapy to improve cognitive function following injury.


Assuntos
Concussão Encefálica , Estimulantes do Sistema Nervoso Central , Metilfenidato , Norepinefrina , Córtex Pré-Frontal , Ratos Sprague-Dawley , Animais , Masculino , Norepinefrina/metabolismo , Feminino , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/farmacologia , Metilfenidato/farmacologia , Concussão Encefálica/metabolismo , Concussão Encefálica/fisiopatologia , Concussão Encefálica/tratamento farmacológico , Ratos , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/fisiopatologia , Locus Cerúleo/efeitos dos fármacos , Locus Cerúleo/metabolismo , Nível de Alerta/efeitos dos fármacos , Nível de Alerta/fisiologia , Microdiálise/métodos
20.
J Dermatol Sci ; 114(3): 141-147, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38740531

RESUMO

BACKGROUND: Metabolites in biofluids can serve as biomarkers for diagnosing diseases and monitoring body conditions. Among the available biofluids, interstitial fluid (ISF) in the skin has garnered considerable attention owing to its advantages, which include inability to clot, easy access to the skin, and possibility of incorporating wearable devices. However, the scientific understanding of skin ISF composition is limited. OBJECTIVE: In this study, we aimed to compare metabolites between skin dialysate containing metabolites from the skin ISF and venous blood (plasma) samples, both collected under resting states. METHODS: We collected forearm skin dialysate using intradermal microdialysis alongside venous blood (plasma) samples from 12 healthy young adults. We analyzed these samples using capillary electrophoresis-fourier transform mass spectrometry-based metabolomics (CE-FTMS). RESULTS: Significant positive correlations were observed in 39 metabolites between the skin dialysate and plasma, including creatine (a mitochondrial disease biomarker), 1-methyladenosine (an early detection of cancer biomarker), and trimethylamine N-oxide (a posterior predictor of heart failure biomarker). Based on the Human Metabolome Technologies database, we identified 12 metabolites unique to forearm skin dialysate including nucleic acids, benzoate acids, fatty acids, amino acids, ascorbic acid, 3-methoxy-4-hydroxyphenylethyleneglycol (an Alzheimer's disease biomarker), and cysteic acid (an acute myocardial infarction biomarker). CONCLUSION: We show that some venous blood biomarkers may be predicted from skin dialysate or skin ISF, and that these fluids may serve as diagnostic and monitoring tools for health and clinical conditions.


Assuntos
Biomarcadores , Líquido Extracelular , Metaboloma , Metabolômica , Microdiálise , Pele , Humanos , Biomarcadores/sangue , Biomarcadores/metabolismo , Biomarcadores/análise , Líquido Extracelular/metabolismo , Líquido Extracelular/química , Pele/metabolismo , Masculino , Feminino , Metabolômica/métodos , Adulto , Microdiálise/métodos , Adulto Jovem , Eletroforese Capilar/métodos , Voluntários Saudáveis , Antebraço , Espectrometria de Massas/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA