Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.170
Filtrar
1.
Methods Mol Biol ; 2775: 375-384, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38758331

RESUMO

Advances in understanding cellular aging research have been possible due to the analysis of the replicative lifespan of yeast cells. Studying longevity in the pathogenic yeast Cryptococcus neoformans is essential because old yeast cells with age-related phenotypes accumulate during infection and are associated with increased virulence and antifungal tolerance. Microdissection and microfluidic devices are valuable tools for continuously tracking cells at the single-cell level. In this chapter, we describe the features of these two platforms and outline technical limitations and information to study aging mechanisms while assessing the lifespan of yeast cells.


Assuntos
Cryptococcus neoformans , Cryptococcus neoformans/fisiologia , Cryptococcus neoformans/crescimento & desenvolvimento , Microdissecção/métodos , Senescência Celular , Dispositivos Lab-On-A-Chip , Análise de Célula Única/métodos , Criptococose/microbiologia
2.
Animals (Basel) ; 14(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731294

RESUMO

Mycoplasma hyopneumoniae (Mhyo) is the causative agent of porcine enzootic pneumonia (EP), as well as one of the main pathogens involved in the porcine respiratory disease complex. The host-pathogen interaction between Mhyo and infected pigs is complex and not completely understood; however, improving the understanding of these intricacies is essential for the development of effective control strategies of EP. In order to improve our knowledge about this interaction, laser-capture microdissection was used to collect bronchi, bronchi-associated lymphoid tissue, and lung parenchyma from animals infected with different strains of Mhyo, and mRNA expression levels of different molecules involved in Mhyo infection (ICAM1, IL-8, IL-10, IL-23, IFN-α, IFN-γ, TGF-ß, and TNF-α) were analyzed by qPCR. In addition, the quantification of Mhyo load in the different lung compartments and the scoring of macroscopic and microscopic lung lesions were also performed. Strain-associated differences in virulence were observed, as well as the presence of significant differences in expression levels of cytokines among lung compartments. IL-8 and IL-10 presented the highest upregulation, with limited differences between strains and lung compartments. IFN-α was strongly downregulated in BALT, implying a relevant role for this cytokine in the immunomodulation associated with Mhyo infections. IL-23 was also upregulated in all lung compartments, suggesting the potential involvement of a Th17-mediated immune response in Mhyo infections. Our findings highlight the relevance of Th1 and Th2 immune response in cases of EP, shedding light on the gene expression levels of key cytokines in the lung of pigs at a microscopic level.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38710922

RESUMO

PURPOSE: To determine the feasibility of high-frequency ultrasound (HFUS) for assessing seminiferous tubules and to understand high-resolution B-mode images of the testes in cases of azoospermia. METHODS: We verified how the histopathological images of testicular biopsy specimens can be observed using HFUS images and measurement analysis of seminiferous tubules was performed to 28 testes of 14 cases with azoospermia who underwent preoperative ultrasound and microdissection testicular sperm extraction (micro-TESE). The population consisted of obstructive azoospermia (OA) and non-obstructive azoospermia (NOA), including Sertoli cell-only syndrome (SCOS), and the other pathologies. Statistical verification of differences in seminiferous tubule diameters among preoperative ultrasound examination, ultrasound examination of pathological specimens, and histopathological specimens. We also examined the imagingpathology correlation via a case series presentation, aiming to identify imaging markers of testicular pathology and determine the possibility of predicting each condition. RESULTS: A comparison between HFUS images and histopathology from the same biopsy specimens suggested that ultrasonography could be seen as stereoscopic images due to its significantly greater slice thickness. The diameters of tubules were generally larger in pathological tissues as compared to ultrasonographic findings in OA and SCOS, but not in the other conditions. Comparisons provided insights into the predictability of SCOS and revealed imaging findings such as gaps between tubules and decreased diameter reflective of testicular damage. CONCLUSION: Seminiferous tubules can be observed however the diameter of seminiferous tubules varies in imaging and histopathology depending on the pathology. Imaging findings that reflect testicular damage and the predictability of SCOS were revealed in this study, but further verification is required.

4.
Clin Proteomics ; 21(1): 32, 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38735925

RESUMO

BACKGROUND: Traumatic brain injury (TBI) often results in diverse molecular responses, challenging traditional proteomic studies that measure average changes at tissue levels and fail to capture the complexity and heterogeneity of the affected tissues. Spatial proteomics offers a solution by providing insights into sub-region-specific alterations within tissues. This study focuses on the hippocampal sub-regions, analyzing proteomic expression profiles in mice at the acute (1 day) and subacute (7 days) phases of post-TBI to understand subregion-specific vulnerabilities and long-term consequences. METHODS: Three mice brains were collected from each group, including Sham, 1-day post-TBI and 7-day post-TBI. Hippocampal subregions were extracted using Laser Microdissection (LMD) and subsequently analyzed by label-free quantitative proteomics. RESULTS: The spatial analysis reveals region-specific protein abundance changes, highlighting the elevation of FN1, LGALS3BP, HP, and MUG-1 in the stratum moleculare (SM), suggesting potential immune cell enrichment post-TBI. Notably, established markers of chronic traumatic encephalopathy, IGHM and B2M, exhibit specific upregulation in the dentate gyrus bottom (DG2) independent of direct mechanical injury. Metabolic pathway analysis identifies disturbances in glucose and lipid metabolism, coupled with activated cholesterol synthesis pathways enriched in SM at 7-Day post-TBI and subsequently in deeper DG1 and DG2 suggesting a role in neurogenesis and the onset of recovery. Coordinated activation of neuroglia and microtubule dynamics in DG2 suggest recovery mechanisms in less affected regions. Cluster analysis revealed spatial variations post-TBI, indicative of dysregulated neuronal plasticity and neurogenesis and further predisposition to neurological disorders. TBI-induced protein upregulation (MUG-1, PZP, GFAP, TJP, STAT-1, and CD44) across hippocampal sub-regions indicates shared molecular responses and links to neurological disorders. Spatial variations were demonstrated by proteins dysregulated in both or either of the time-points exclusively in each subregion (ELAVL2, CLIC1 in PL, CD44 and MUG-1 in SM, and SHOC2, LGALS3 in DG). CONCLUSIONS: Utilizing advanced spatial proteomics techniques, the study unveils the dynamic molecular responses in distinct hippocampal subregions post-TBI. It uncovers region-specific vulnerabilities and dysregulated neuronal processes, and potential recovery-related pathways that contribute to our understanding of TBI's neurological consequences and provides valuable insights for biomarker discovery and therapeutic targets.

5.
Breast Cancer Res ; 26(1): 76, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745208

RESUMO

BACKGROUND: Breast cancer (BC) is the most commonly diagnosed cancer and the leading cause of cancer death among women globally. Despite advances, there is considerable variation in clinical outcomes for patients with non-luminal A tumors, classified as difficult-to-treat breast cancers (DTBC). This study aims to delineate the proteogenomic landscape of DTBC tumors compared to luminal A (LumA) tumors. METHODS: We retrospectively collected a total of 117 untreated primary breast tumor specimens, focusing on DTBC subtypes. Breast tumors were processed by laser microdissection (LMD) to enrich tumor cells. DNA, RNA, and protein were simultaneously extracted from each tumor preparation, followed by whole genome sequencing, paired-end RNA sequencing, global proteomics and phosphoproteomics. Differential feature analysis, pathway analysis and survival analysis were performed to better understand DTBC and investigate biomarkers. RESULTS: We observed distinct variations in gene mutations, structural variations, and chromosomal alterations between DTBC and LumA breast tumors. DTBC tumors predominantly had more mutations in TP53, PLXNB3, Zinc finger genes, and fewer mutations in SDC2, CDH1, PIK3CA, SVIL, and PTEN. Notably, Cytoband 1q21, which contains numerous cell proliferation-related genes, was significantly amplified in the DTBC tumors. LMD successfully minimized stromal components and increased RNA-protein concordance, as evidenced by stromal score comparisons and proteomic analysis. Distinct DTBC and LumA-enriched clusters were observed by proteomic and phosphoproteomic clustering analysis, some with survival differences. Phosphoproteomics identified two distinct phosphoproteomic profiles for high relapse-risk and low relapse-risk basal-like tumors, involving several genes known to be associated with breast cancer oncogenesis and progression, including KIAA1522, DCK, FOXO3, MYO9B, ARID1A, EPRS, ZC3HAV1, and RBM14. Lastly, an integrated pathway analysis of multi-omics data highlighted a robust enrichment of proliferation pathways in DTBC tumors. CONCLUSIONS: This study provides an integrated proteogenomic characterization of DTBC vs LumA with tumor cells enriched through laser microdissection. We identified many common features of DTBC tumors and the phosphopeptides that could serve as potential biomarkers for high/low relapse-risk basal-like BC and possibly guide treatment selections.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama , Proteogenômica , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Biomarcadores Tumorais/genética , Proteogenômica/métodos , Mutação , Microdissecção e Captura a Laser , Pessoa de Meia-Idade , Estudos Retrospectivos , Idoso , Adulto , Proteômica/métodos , Prognóstico
6.
Reprod Med Biol ; 23(1): e12579, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38756694

RESUMO

Purpose: This study compared the clinical outcomes of men with Klinfelter syndrome based on karyotype. Methods: The authors analyzed the outcomes of microdissection testicular sperm extraction (micro-TESE) performed on 57 patients with Klinfelter syndrome (KS) at our clinic. Results: The average ages of the non-mosaic and mosaic KS groups were 32.2 ± 4.8 and 45.9 ± 13.1 years, respectively. The sperm retrieval rates of the non-mosaic and mosaic KS groups were 46.5% (20/43) and 50.0% (7/14), respectively. The fertilization rates after intracytoplasmic sperm injection did not significantly differ between the non-mosaic and mosaic KS groups. The mosaic KS group had higher cleavage and blastocyst development rates than the non-mosaic KS group (72.2% vs. 96.2% and 30.5% vs. 44.7%, respectively). The group using motile sperm had better outcomes than the group using immotile sperm. The embryo transfer outcomes of the non-mosaic and mosaic KS groups did not significantly differ (clinical pregnancy rate: 28.0% vs. 20.7%, miscarriage rate: 14.3% vs. 33.3%, production rate per transfer: 22.0% vs. 13.8%, and production rate per case: 58.8% vs. 57.1%). Conclusions: Compared with the non-mosaic KS group, the mosaic KS group had significantly better intracytoplasmic sperm injection outcomes because of the higher utilization rate of motile sperm.

7.
Plant Methods ; 20(1): 72, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760854

RESUMO

BACKGROUND: Single-cell analysis, a rapidly evolving field, encounters significant challenges in detecting individual cells within complex plant tissues, particularly oil cells (OCs). The intricate process of single-cell isolation, coupled with the inherent chemical volatility of oil cells, necessitates a comprehensive methodology. RESULTS: This study presents a method for obtaining intact OC from Asari Radix et Rhizoma (ARR), a traditional herbal medicine. The developed approach facilitates both qualitative and quantitative analysis of diverse OCs. To determine the most reliable approach, four practical methods-laser capture microdissection, micromanipulation capturing, micromanipulation piping, and cell picking-were systematically compared and evaluated, unequivocally establishing cell picking as the most effective method for OC isolation and chemical analysis. Microscopic observations showed that OCs predominantly distribute in the cortex of adventitious and fibrous roots, as well as the pith and cortex of the rhizome, with distinct morphologies-oblong in roots and circular in rhizomes. Sixty-three volatile constituents were identified in OCs, with eighteen compounds exhibiting significant differences. Safrole, methyleugenol, and asaricin emerged as the most abundant constituents in OCs. Notably, cis-4-thujanol and tetramethylpyrazine were exclusive to rhizome OCs, while isoeugenol methyl ether was specific to fibrous root OCs based on the detections. ARR roots and rhizomes displayed marked disparities in OC distribution, morphology, and constituents. CONCLUSION: The study highlights the efficacy of cell picking coupled with HS-SPME-GC-MS as a flexible, reliable, and sensitive method for OC isolation and chemical analysis, providing a robust methodology for future endeavors in single-cell analyses.

8.
J Proteome Res ; 23(5): 1801-1809, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38655769

RESUMO

Alcohol consumption perturbs the gut immune barrier and ultimately results in alcoholic liver diseases, but little is known about how immune-related cells in the gut are perturbed in this process. In this study, we employed laser capture microdissection and a label-free proteomics approach to investigate the consequences of alcohol exposure to the proteomes of crypts and villi in the proximal small intestine. Intestinal tissues from alcohol-fed and pair-fed mice were microdissected to selectively capture cells in the crypts and villi regions, followed by one-pot protein digestion and data-independent LC-MS/MS analysis. We successfully identified over 3000 proteins from each of the crypt or villi regions equivalent to ∼3000 cells. Analysis of alcohol-treated tissues indicated an enhanced alcohol metabolism and reduced levels of α-defensins in crypts, alongside increased lipid metabolism and apoptosis in villi. Immunofluorescence imaging further corroborated the proteomic findings. Our work provides a detailed profiling of the proteomic changes in the compartments of the mouse small intestine and aids in molecular-level understanding of alcohol-induced tissue damage.


Assuntos
Etanol , Intestino Delgado , Proteômica , Animais , Intestino Delgado/metabolismo , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/patologia , Proteômica/métodos , Camundongos , Etanol/toxicidade , Espectrometria de Massas em Tandem , Proteoma/metabolismo , Proteoma/análise , Proteoma/efeitos dos fármacos , Microdissecção e Captura a Laser , Cromatografia Líquida , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Camundongos Endogâmicos C57BL , Masculino , Apoptose/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos
9.
Reprod Biomed Online ; 49(1): 103910, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38652944

RESUMO

RESEARCH QUESTION: Can artificial intelligence (AI) improve the efficiency and efficacy of sperm searches in azoospermic samples? DESIGN: This two-phase proof-of-concept study began with a training phase using eight azoospermic patients (>10,000 sperm images) to provide a variety of surgically collected samples for sperm morphology and debris variation to train a convolutional neural network to identify spermatozoa. Second, side-by-side testing was undertaken on two cohorts of non-obstructive azoospermia patient samples: an embryologist versus the AI identifying all the spermatozoa in the still images (cohort 1, n = 4), and a side-by-side test with a simulated clinical deployment of the AI model with an intracytoplasmic sperm injection microscope and the embryologist performing a search with and without the aid of the AI (cohort 2, n = 4). RESULTS: In cohort 1, the AI model showed an improvement in the time taken to identify all the spermatozoa per field of view (0.02 ± 0.30  ×  10-5s versus 36.10 ± 1.18s, P < 0.0001) and improved recall (91.95 ± 0.81% versus 86.52 ± 1.34%, P < 0.001) compared with an embryologist. From a total of 2660 spermatozoa to find in all the samples combined, 1937 were found by an embryologist and 1997 were found by the AI in less than 1000th of the time. In cohort 2, the AI-aided embryologist took significantly less time per droplet (98.90 ± 3.19 s versus 168.7 ± 7.84 s, P < 0.0001) and found 1396 spermatozoa, while 1274 were found without AI, although no significant difference was observed. CONCLUSIONS: AI-powered image analysis has the potential for seamless integration into laboratory workflows, to reduce the time to identify and isolate spermatozoa from surgical sperm samples from hours to minutes, thus increasing success rates from these treatments.

10.
Development ; 151(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38451068

RESUMO

The first hematopoietic stem and progenitor cells (HSPCs) emerge in the Aorta-Gonad-Mesonephros (AGM) region of the mid-gestation mouse embryo. However, the precise nature of their supportive mesenchymal microenvironment remains largely unexplored. Here, we profiled transcriptomes of laser micro-dissected aortic tissues at three developmental stages and individual AGM cells. Computational analyses allowed the identification of several cell subpopulations within the E11.5 AGM mesenchyme, with the presence of a yet unidentified subpopulation characterized by the dual expression of genes implicated in adhesive or neuronal functions. We confirmed the identity of this cell subset as a neuro-mesenchymal population, through morphological and lineage tracing assays. Loss of function in the zebrafish confirmed that Decorin, a characteristic extracellular matrix component of the neuro-mesenchyme, is essential for HSPC development. We further demonstrated that this cell population is not merely derived from the neural crest, and hence, is a bona fide novel subpopulation of the AGM mesenchyme.


Assuntos
Células-Tronco Mesenquimais , Peixe-Zebra , Camundongos , Animais , Peixe-Zebra/genética , Células-Tronco Hematopoéticas/metabolismo , Hematopoese , Embrião de Mamíferos , Mesonefro , Gônadas
11.
Acta Neuropsychiatr ; : 1-7, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38528655

RESUMO

BACKGROUND: Cannabidiol (CBD) is one of the main cannabinoids present in Cannabis sativa female flowers. Previous investigation has already provided insights into the CBD molecular mechanism; however, there is no transcriptome data for CBD effects on hippocampal subfields. Here, we investigate transcriptomic changes in dorsal and ventral CA1 of adult mice hippocampus after 100 mg/kg of CBD administration (i.p.) for one or seven consecutive days. METHODS: C57BL/6JUnib mice were treated with either vehicle or CBD for 1 or 7 days. The collected brains were sectioned, and the hippocampal sub-regions were laser microdissected for RNA-Seq analysis. RESULTS: The transcriptome analysis following 7 days of CBD administration indicates the differential expression of 1559 genes in dCA1 and 2924 genes in vCA1. Furthermore, GO/KEGG analysis identified 88 significantly enriched biological process and 26 significantly enriched pathways for dCBD7, whereas vCBD7 revealed 128 enriched BPs and 24 pathways. CONCLUSION: This dataset indicates a widespread decrease of electron transport chain and ribosome biogenesis transcripts in CA1, while chromatin modifications and synapse organization transcripts were increased following CBD administration for 7 days.

12.
Cancer Cell ; 42(4): 662-681.e10, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38518775

RESUMO

Intratumor morphological heterogeneity of pancreatic ductal adenocarcinoma (PDAC) predicts clinical outcomes but is only partially understood at the molecular level. To elucidate the gene expression programs underpinning intratumor morphological variation in PDAC, we investigated and deconvoluted at single cell level the molecular profiles of histologically distinct clusters of PDAC cells. We identified three major morphological and functional variants that co-exist in varying proportions in all PDACs, display limited genetic diversity, and are associated with a distinct organization of the extracellular matrix: a glandular variant with classical ductal features; a transitional variant displaying abortive ductal structures and mixed endodermal and myofibroblast-like gene expression; and a poorly differentiated variant lacking ductal features and basement membrane, and showing neuronal lineage priming. Ex vivo and in vitro evidence supports the occurrence of dynamic transitions among these variants in part influenced by extracellular matrix composition and stiffness and associated with local, specifically neural, invasion.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Membrana Basal/metabolismo , Sistema Nervoso
13.
FEBS J ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38487972

RESUMO

Intestinal edema is a common manifestation of numerous gastrointestinal diseases and is characterized by the accumulation of fluid in the interstitial space of the intestinal wall. Technical advances in laser capture microdissection and low-biomass proteomics now allow us to specifically characterize the intestinal edema proteome. Using advanced proteomics, we identify peptides derived from antimicrobial factors with high signal intensity, but also highlight major contributions from the blood clotting system, extracellular matrix (ECM) and protease-protease inhibitor networks. The ECM is a complex fibrillar network of macromolecules that provides structural and mechanical support to the intestinal tissue. One abundant component of the ECM observed in Salmonella-driven intestinal edema is the glycoprotein fibronectin, recognized for its structure-function interplay regulated by mechanical forces. Using mechanosensitive staining of fibronectin fibers reveals that they are tensed in the edema, despite the high abundance of proteases able to cleave fibronectin. In contrast, fibronectin fibers increasingly relax in other cecal tissue areas as the infection progresses. Co-staining for fibrin(ogen) indicates the formation of a provisional matrix in the edema, similar to what is observed in response to skin injury, while collagen staining reveals a sparse and disrupted collagen fiber network. These observations plus the absence of low tensional fibronectin fibers and the additional finding of a high number of protease inhibitors in the edema proteome could indicate a critical role of stretched fibronectin fibers in maintaining tissue integrity in the severely inflamed cecum. Understanding these processes may also provide valuable functional diagnostic markers of intestinal disease progression in the future.

14.
Clin Proteomics ; 21(1): 24, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509475

RESUMO

Metastatic pancreatic adenocarcinoma (PDAC) is the third leading cause of cancer-related death in the United States, with a 5-year survival rate of only 11%, necessitating identification of novel treatment paradigms. Tumor tissue specimens from patients with PDAC, breast cancer, and other solid tumor malignancies were collected and tumor cells were enriched using laser microdissection (LMD). Reverse phase protein array (RPPA) analysis was performed on enriched tumor cell lysates to quantify a 32-protein/phosphoprotein biomarker panel comprising known anticancer drug targets and/or cancer-related total and phosphorylated proteins, including HER2Total, HER2Y1248, and HER3Y1289. RPPA analysis revealed significant levels of HER2Total in PDAC patients at abundances comparable to HER2-positive (IHC 3+) and HER2-low (IHC 1+ /2+ , FISH-) breast cancer tissues, for which HER2 screening is routinely performed. These data support a critical unmet need for routine clinical evaluation of HER2 expression in PDAC patients and examination of the utility of HER2-directed antibody-drug conjugates in these patients.

15.
Front Oncol ; 14: 1273780, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38450191

RESUMO

Background: Solid-predominant lung adenocarcinoma (SPA), which is one of the high-risk subtypes with poor prognosis and unsatisfactory response to chemotherapy and targeted therapy in lung adenocarcinoma, remains molecular profile unclarified. Weighted correlation network analysis (WGCNA) was used for data mining, especially for studying biological networks based on pairwise correlations between variables. This study aimed to identify disease-related protein co-expression networks associated with early-stage SPA. Methods: We assessed cancerous cells laser-microdissected from formalin-fixed paraffin-embedded (FFPE) tissues of a SPA group (n = 5), referencing a low-risk subtype, a lepidic predominant subtype group (LPA) (n = 4), and another high-risk subtype, micropapillary predominant subtype (MPA) group (n = 3) and performed mass spectrometry-based proteomic analysis. Disease-related co-expression networks associated with the SPA subtype were identified by WGCNA and their upstream regulators and causal networks were predicted by Ingenuity Pathway Analysis. Results: Among the forty WGCNA network modules identified, two network modules were found to be associated significantly with the SPA subtype. Canonical enriched pathways were highly associated with cellular growth, proliferation, and immune response. Upregulated HLA class I molecules HLA-G and HLA-B implicated high mutation burden and T cell activation in the SPA subtype. Upstream analysis implicated the involvement of highly activated oncogenic regulators, MYC, MLXIPL, MYCN, the redox master regulator NFE2L2, and the highly inhibited LARP1, leading to oncogenic IRES-dependent translation, and also regulators of the adaptive immune response, including highly activated IFNG, TCRD, CD3-TCR, CD8A, CD8B, CD3, CD80/CD86, and highly inhibited LILRB2. Interestingly, the immune checkpoint molecule HLA-G, which is the counterpart of LILRB2, was highly expressed characteristically in the SPA subtype and might be associated with antitumor immunity. Conclusion: Our findings provide a disease molecular profile based on protein co-expression networks identified for the high-risk solid predominant adenocarcinoma, which will help develop future therapeutic strategies.

16.
Front Oncol ; 14: 1328512, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38444675

RESUMO

Background: While many molecular assays can detect mutations at low tumor purity and variant allele frequencies, complex biomarkers such as tumor mutational burden (TMB), microsatellite instability (MSI), and genomic loss of heterozygosity (gLOH) require higher tumor purity for accurate measurement. Scalable, quality-controlled, tissue-conserving methods to increase tumor nuclei percentage (TN%) from tumor specimens are needed for complex biomarkers and hence necessary to maximize patient matching to approved therapies or clinical trial enrollment. We evaluated the clinical utility and performance of precision needle-punch enrichment (NPE) compared with traditional razor blade macroenrichment of tumor specimens on molecular testing success. Methods: Pathologist-directed NPE was performed manually on formalin-fixed, paraffin embedded (FFPE) blocks. Quality control of target capture region and quantity of residual tumor in each tissue block was determined via a post-enrichment histologic slide recut. Resultant tumor purity and biomarker status were determined by the computational analysis pipeline component of the FDA-approved next-generation sequencing (NGS) assay, FoundationOne®CDx. Following NPE implementation for real-world clinical samples, assay performance and biomarker (MSI, TMB, gLOH) detection were analyzed. Results: In real-world clinical samples, enrichment rate via NPE was increased to ~50% over a 2.5-year period, exceeding the prior use of razor blade macro-enrichment (<30% of cases) prior to NPE implementation due to proven efficacy in generating high quality molecular results from marginal samples and the ease of use for both pathologist and histotechnologists. NPE was associated with lower test failures, higher computational tumor purity, and higher rates of successful TMB, MSI and gLOH determination when stratified by pre-enriched (incipient) tumor nuclei percentage. In addition, challenging cases in which tumor content was initially insufficient for testing were salvaged for analysis of biomarker status, gene amplification/deletion, and confident mutant or wild-type gene status determination. Conclusions: Pathologist-directed precision enrichment from tissue blocks (aka NPE) increases tumor purity, and consequently, yields a greater number of successful tests and complex biomarker determinations. Moreover, this process is rapid, safe, inexpensive, scalable, and conserves patient surgical pathology material. NPE may constitute best practice with respect to enriching tumor cells from low-purity specimens for biomarker detection in molecular laboratories.

17.
Anal Bioanal Chem ; 416(9): 2359-2369, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38358530

RESUMO

Success of mass spectrometry characterization of the proteome of single cells allows us to gain a greater understanding than afforded by transcriptomics alone but requires clear understanding of the tradeoffs between analytical throughput and precision. Recent advances in mass spectrometry acquisition techniques, including updated instrumentation and sample preparation, have improved the quality of peptide signals obtained from single cell data. However, much of the proteome remains uncharacterized, and higher throughput techniques often come at the expense of reduced sensitivity and coverage, which diminish the ability to measure proteoform heterogeneity, including splice variants and post-translational modifications, in single cell data analysis. Here, we assess the growing body of ultrasensitive single-cell approaches and their tradeoffs as researchers try to balance throughput and precision in their experiments.


Assuntos
Proteoma , Proteômica , Proteoma/análise , Proteômica/métodos , Peptídeos , Espectrometria de Massas/métodos , Processamento de Proteína Pós-Traducional
18.
J Transl Med ; 22(1): 189, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383412

RESUMO

BACKGROUND: Combined small-cell lung carcinoma (cSCLC) represents a rare subtype of SCLC, the mechanisms governing the evolution of cancer genomes and their impact on the tumor immune microenvironment (TIME) within distinct components of cSCLC remain elusive. METHODS: Here, we conducted whole-exome and RNA sequencing on 32 samples from 16 cSCLC cases. RESULTS: We found striking similarities between two components of cSCLC-LCC/LCNEC (SCLC combined with large-cell carcinoma/neuroendocrine) in terms of tumor mutation burden (TMB), tumor neoantigen burden (TNB), clonality structure, chromosomal instability (CIN), and low levels of immune cell infiltration. In contrast, the two components of cSCLC-ADC/SCC (SCLC combined with adenocarcinoma/squamous-cell carcinoma) exhibited a high level of tumor heterogeneity. Our investigation revealed that cSCLC originated from a monoclonal source, with two potential transformation modes: from SCLC to SCC (mode 1) and from ADC to SCLC (mode 2). Therefore, cSCLC might represent an intermediate state, potentially evolving into another histological tumor morphology through interactions between tumor and TIME surrounding it. Intriguingly, RB1 inactivation emerged as a factor influencing TIME heterogeneity in cSCLC, possibly through neoantigen depletion. CONCLUSIONS: Together, these findings delved into the clonal origin and TIME heterogeneity of different components in cSCLC, shedding new light on the evolutionary processes underlying this enigmatic subtype.


Assuntos
Adenocarcinoma , Carcinoma de Células Grandes , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Microdissecção , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/patologia , Adenocarcinoma/genética , Carcinoma de Células Grandes/genética , Carcinoma de Células Grandes/patologia , Genômica , Microambiente Tumoral/genética
19.
Anal Bioanal Chem ; 416(7): 1745-1757, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38324070

RESUMO

Mass spectrometry (MS) and MS imaging (MSI) are used extensively for both the spatial and bulk characterization of samples in lipidomics and proteomics workflows. These datasets are typically generated independently due to different requirements for sample preparation. However, modern omics technologies now provide higher sample throughput and deeper molecular coverage, which, in combination with more sophisticated bioinformatic and statistical pipelines, make generating multiomics data from a single sample a reality. In this workflow, we use spatial lipidomics data generated by matrix-assisted laser desorption/ionization MSI (MALDI-MSI) on prostate cancer (PCa) radical prostatectomy cores to guide the definition of tumor and benign tissue regions for laser capture microdissection (LCM) and bottom-up proteomics all on the same sample and using the same mass spectrometer. Accurate region of interest (ROI) mapping was facilitated by the SCiLS region mapper software and dissected regions were analyzed using a dia-PASEF workflow. A total of 5525 unique protein groups were identified from all dissected regions. Lysophosphatidylcholine acyltransferase 1 (LPCAT1), a lipid remodelling enzyme, was significantly enriched in the dissected regions of cancerous epithelium (CE) compared to benign epithelium (BE). The increased abundance of this protein was reflected in the lipidomics data with an increased ion intensity ratio for pairs of phosphatidylcholines (PC) and lysophosphatidylcholines (LPC) in CE compared to BE.


Assuntos
Multiômica , Neoplasias da Próstata , Masculino , Humanos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Microdissecção e Captura a Laser , Fosfatidilcolinas/metabolismo
20.
Sci Rep ; 14(1): 4898, 2024 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418601

RESUMO

Chameleons are well-known lizards with unique morphology and physiology, but their sex determination has remained poorly studied. Madagascan chameleons of the genus Furcifer have cytogenetically distinct Z and W sex chromosomes and occasionally Z1Z1Z2Z2/Z1Z2W multiple neo-sex chromosomes. To identify the gene content of their sex chromosomes, we microdissected and sequenced the sex chromosomes of F. oustaleti (ZZ/ZW) and F. pardalis (Z1Z1Z2Z2/Z1Z2W). In addition, we sequenced the genomes of a male and a female of F. lateralis (ZZ/ZW) and F. pardalis and performed a comparative coverage analysis between the sexes. Despite the notable heteromorphy and distinctiveness in heterochromatin content, the Z and W sex chromosomes share approximately 90% of their gene content. This finding demonstrates poor correlation of the degree of differentiation of sex chromosomes at the cytogenetic and gene level. The test of homology based on the comparison of gene copy number variation revealed that female heterogamety with differentiated sex chromosomes remained stable in the genus Furcifer for at least 20 million years. These chameleons co-opted for the role of sex chromosomes the same genomic region as viviparous mammals, lacertids and geckos of the genus Paroedura, which makes these groups excellent model for studies of convergent and divergent evolution of sex chromosomes.


Assuntos
Variações do Número de Cópias de DNA , Lagartos , Animais , Feminino , Masculino , Cromossomos Sexuais/genética , Sequência de Bases , Lagartos/genética , Mamíferos/genética , Evolução Molecular , Processos de Determinação Sexual/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...