Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 591
Filtrar
1.
Med Mycol ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39043448

RESUMO

Microsporidia are obligate, intracellular, spore-forming eukaryotic fungi, infect humans and animals. In the treatment of disseminated microsporidiosis albendazole is the choice of drug. In recent years, antiparasitic activity of phosphodiesterase (PDE) enzyme inhibitors has been demonstrated against paracites and fungi, however, there is no information on microsporidia. Vinpocetine is currently used as a cerebral vasodilator drug and also as a dietary supplement to improve cognitive functions. Vinpocetine inhibits PDE1, so we aimed to investigate whether vinpocetine alone or in combination with albendazole has any effect on the spore load of Encephalitozoon intestinalis (E. intestinalis)-infected HEK293 cells. After determining the noncytotoxic concentrations of vinpocetine and albendazole on the host cell by MTT assay, HEK293 cells were infected with E. intestinalis spores. Then, two different concentrations of vinpocetine, albendazole, and combination of both drugs were applied to the cells with an interval of 72 hours for 15 days. Spore load of the cells was analysed by real time-PCR. After the last treatment, spore DNA load was significantly reduced only in the group treated with 14 ng/mL albendazole. It was not different from control in groups treated with 7 ng/mL albendazole and 4 - 20 µM vinpocetine. However, the combination of vinpocetine significantly increased the effect of albendazole at both concentrations. To our knowledge, this is the first study to investigate the microsporicidal activity of vinpocetine as well as its combinations with albendazole. However, further studies are needed to investigate the mechanism of action and also confirm in vivo conditions.


E. intestinalis, common cause of microsporidia-associated diseases in humans, Albendazole is used in the treatment of E. intestinalis infection, Vinpocetine inhibits PDE1 and voltage-gated Ca2+ channels, Vinpocetine significantly enhanced the effect of albendazole on E. intestinalis spore DNA load.

2.
Animals (Basel) ; 14(13)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38997986

RESUMO

Enterocytozoon bieneusi, an intracellular eukaryote closely related to fungi, is recognized as a significant pathogen affecting humans, particularly those with compromised immune systems. While its transmission routes are still not fully elucidated, fecal-oral transmission remains the primary one. With a wide host range, the zoonotic potential of E. bieneusi is a concern, albeit direct evidence of animal-to-human transmission remains scarce. Genotyping based on the internal transcribed spacer (ITS) region facilitates the delineation of genetic diversity, with potentially zoonotic genotypes predominantly associated with Groups 1 and 2. Despite the broad spectrum of susceptible animal hosts, research into microsporidian infection among zoo animals remains limited. This study aimed to evaluate the occurrence of E. bieneusi infection across diverse captive animals, focusing on zoo settings in Portugal. Fecal samples were collected from a variety of animals, and molecular detection of E. bieneusi was conducted using nested PCR targeting the ITS region. Of 127 fecal samples, 1.57% (95% CI: 0.19-5.57) tested positive for E. bieneusi, with non-human primates (NHP's) exhibiting an 18.18% (95% CI: 2.28-51.78) occurrence. Phylogenetic analysis revealed clustering within Group 2 genotypes, indicating potential zoonotic implications. This study highlights the need for further research to understand the epidemiology of E. bieneusi in zoo environments and its potential transmission pathways to humans.

3.
J Invertebr Pathol ; 206: 108168, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004165

RESUMO

Vespa orientalis is spreading across the Italian and European territories leading to new interactions among species, which could lead to the transmission of pathogens between species. Detection of honey bee viruses in V. orientalis has already been revealed in both adults and larvae, while no information is available regarding parasitic occurrence. Sixty adult hornets collected across apiaries in the South of Italy were subjected to cytological, histopathological and biomolecular examination to evaluate the occurrence of Nosema ceranae, Ascosphaera apis, Lotmaria passim, Crithidia mellificae, and Crithidia bombi. Cytological examination revealed the presence of Nosema spores in 38.33% of individuals while histopathological analysis showed the presence of L. passim-like elements in the rectum of two examined specimens and the presence of fungal hyphae in the small intestine of another hornet. Biomolecular investigation revealed that N. ceranae was the most prevalent pathogen (50.0%), followed by A. apis (6.66%), L. passim (6.66%) and C. bombi (6.0%).

4.
Front Vet Sci ; 11: 1429169, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39005720

RESUMO

Background: Pebrine, caused by microsporidium Nosema bombycis, is a devastating disease that causes serious economic damages to the sericulture industry. Studies on development of therapeutic and diagnostic options for managing pebrine in silkworms are very limited. Methionine aminopeptidase type 2 (MetAP2) of microsporidia is an essential gene for their survival and has been exploited as the cellular target of drugs such as fumagillin and its analogues in several microsporidia spp., including Nosema of honeybees. Methods: In the present study, using molecular and bioinformatics tools, we performed in-depth characterization and phylogenetic analyses of MetAP2 of Nosema bombycis isolated from Guangdong province of China. Results: The full length of MetAP2 gene sequence of Nosema bombycis (Guangdong isolate) was found to be 1278 base pairs (bp), including an open reading frame of 1,077 bp, encoding a total of 358 amino acids. The bioinformatics analyses predicted the presence of typical alpha-helix structural elements, and absence of transmembrane domains and signal peptides. Additionally, other characteristics of a stable protein were also predicted. The homology-based 3D models of MetAP2 of Nosema bombycis (Guangdong isolate) with high accuracy and reliability were developed. The MetAP2 protein was expressed and purified. The observed molecular weight of MetAP2 protein was found to be ~43-45 kDa. The phylogenetic analyses showed that MetAP2 gene and amino acids sequences of Nosema bombycis (Guangdong isolate) shared a close evolutionary relationship with Nosema spp. of wild silkworms, but it was divergent from microsporidian spp. of other insects, Aspergillus spp., Saccharomyces cerevisiae, and higher animals including humans. These analyses indicated that the conservation and evolutionary relationships of MetAP2 are closely linked to the species relationships. Conclusion: This study provides solid foundational information that could be helpful in optimization and development of diagnostic and treatment options for managing the threat of Nosema bombycis infection in sericulture industry of China.

5.
J Invertebr Pathol ; : 108167, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39033903

RESUMO

Honey bees utilize queen mandibular pheromone (QMP) for maintaining social hierarchy and colony development. In controlled cage studies, synthetic QMP is often introduced to mimic natural conditions. However, questions have arisen about the effects of QMP on nosema disease studies. This short report identifies significant early-stage suppression effects of QMP on Nosema (Vairimorpha) ceranae infections. QMP was found to significantly lower infection rates below the reported infectious dose for 50 % infectivity (ID50) and to slow disease development in a dose-independent manner. These effects diminished at doses exceeding ID100. We recommend that studies investigating treatment effects using caged bees avoid QMP to ensure unambiguous results. Additionally, employing multiple infectious doses with shorter incubation times would be useful for evaluating other treatments that may have subtle effects. Furthermore, our findings support previous field studies suggesting that queen replacement reduces nosema disease at levels similar to treatment with fumagillin.

6.
AMB Express ; 14(1): 82, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023846

RESUMO

Apis mellifera, crucial pollinators for both native and cultivated plants, also yield various products such as honey, wax, royal jelly, and propolis, extensively utilized in the food, pharmaceuticals, and cosmetics industries. Nosema ceranae, a prevalent microsporidian worldwide, stands as a significant pathogen for A. mellifera, showing resistance to conventional antibiotics. Consequently, the exploration of novel compounds for N. ceranae control becomes imperative. Dithiocarbimate derivatives emerge as promising antifungal candidates under evaluation for combating various pathogens, particularly those affecting plants. This study assessed the toxicity profile of six dithiocarbimate derivatives on A. mellifera worker survival and N. ceranae pathogen. Among these, four compounds exhibited minimal bee mortality and proceeded to further evaluation against N. ceranae. In vitro assays demonstrated their inhibitory effects on spore germination. Remarkably, the most potent compound suppressed N. ceranae spores by 62% at a concentration of 20 µmol L-1in vivo. Thus, these dithiocarbimate derivatives represent promising new antifungal agents for combatting nosemosis in honey bee populations.

7.
J Eukaryot Microbiol ; : e13029, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39030770

RESUMO

Microsporidia are prolific producers of effector molecules, encompassing both proteins and nonproteinaceous effectors, such as toxins, small RNAs, and small peptides. These secreted effectors play a pivotal role in the pathogenicity of microsporidia, enabling them to subvert the host's innate immunity and co-opt metabolic pathways to fuel their own growth and proliferation. However, the genomes of microsporidia, despite falling within the size range of bacteria, exhibit significant reductions in both structural and physiological features, thereby affecting the repertoire of secretory effectors to varying extents. This review focuses on recent advances in understanding how microsporidia modulate host cells through the secretion of effectors, highlighting current challenges and proposed solutions in deciphering the complexities of microsporidial secretory effectors.

8.
J Eukaryot Microbiol ; : e13036, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39036929

RESUMO

Methionine aminopeptidases (MetAPs) have emerged as a target for medicinal chemists in the quest for novel therapeutic agents for treating cancer, obesity, and other disorders. Methionine aminopeptidase is a metalloenzyme with two structurally distinct forms in humans, MetAP-1 and MetAP-2. The MetAP2 inhibitor fumagillin, which was used as an amebicide in the 1950s, has been used for the successful treatment of microsporidiosis in humans; however, it is no longer commercially available. Despite significant efforts and investments by many pharmaceutical companies, no new MetAP inhibitors have been approved for the clinic. Several lead compounds have been designed and synthesized by researchers as potential inhibitors of MetAP and evaluated for their potential activity in a wide range of diseases. MetAP inhibitors such as fumagillin, TNP-470, beloranib, and reversible inhibitors and their analogs guide new prospects for MetAP inhibitor development in the ongoing quest for new pharmacological indications. This perspective provides insights into recent advances related to MetAP, as a potential therapeutic target in drug discovery, bioactive small molecule MetAP2 inhibitors, and data on the role of MetAP-2 as a therapeutic target for microsporidiosis.

9.
Parasit Vectors ; 17(1): 294, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982472

RESUMO

BACKGROUND: Microsporidia MB (MB) is a naturally occurring symbiont of Anopheles and has recently been identified as having a potential to inhibit the transmission of Plasmodium in mosquitoes. MB intensity is high in mosquito gonads, with no fitness consequences for the mosquito, and is linked to horizontal (sexual) and vertical (transovarial) transmission from one mosquito to another. Maximising MB intensity and transmission is important for maintaining heavily infected mosquito colonies for experiments and ultimately for mosquito releases. We have investigated how diet affects the MB-Anopheles arabiensis symbiosis phenotypes, such as larval development and mortality, adult size and survival, as well as MB intensity in both larvae and adults. METHODS: F1 larvae of G0 females confirmed to be An. arabiensis and infected with MB were either combined (group lines [GLs]) or reared separately (isofemale lines [IMLs]) depending on the specific experiment. Four diet regimes (all mg/larva/day) were tested on F1 GLs: Tetramin 0.07, Tetramin 0.3, Gocat 0.3 and Cerelac 0.3. GLs reared on Tetramin 0.3 mg/larva/day were then fed either a 1% or 6% glucose diet to determine adult survival. Larvae of IMLs were fed Tetramin 0.07 mg and Tetramin 0.3 mg for larval experiments. The mosquitoes in the adult experiments with IMLs were reared on 1% or 6% glucose. RESULTS: Amongst the four larval diet regimes tested on An. arabiensis development in the presence of MB, the fastest larval development highest adult emergence, largest body size of mosquitoes, highest prevalence and highest density of MB occurred in those fed Tetramin 0.3 mg/larva/day. Although adult MB-positive mosquitoes fed on 6% glucose survived longer than MB-negative mosquitoes, there was no such effect for those fed on the 1% glucose diet. Development time, wing length and adult survival were not significantly different between MB-infected and uninfected An. arabiensis fed on the Tetramin 0.07 mg/larva/day diet, demonstrating that the MB-conferred fitness advantage was diet-dependent. CONCLUSIONS: Microsporidia MB does not adversely impact the development and fitness of An. arabiensis, even under limited dietary conditions. The diet regime of Tetramin 0.3 mg/larva/day + 6% glucose for adults is the superior diet for the mass rearing of MB-infected An. arabiensis mosquitoes. These results are important for rearing MB-infected An. arabiensis in the laboratory for experiments and the mass rearing required for field releases.


Assuntos
Anopheles , Dieta , Larva , Microsporídios , Animais , Anopheles/microbiologia , Anopheles/fisiologia , Anopheles/parasitologia , Feminino , Larva/microbiologia , Larva/crescimento & desenvolvimento , Microsporídios/fisiologia , Simbiose , Mosquitos Vetores/microbiologia , Mosquitos Vetores/fisiologia
10.
Pathogens ; 13(6)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38921741

RESUMO

The inland bearded dragon (Pogona vitticeps) is a lizard species commonly kept as a pet worldwide. Endoparasites are among the most important pathogens affecting bearded dragons. The aim of this study was to evaluate the endoparasites in captive P. vitticeps in Italy. Faecal samples from 30 P. vitticeps were analysed by fresh faecal smears, flotation tests, the Mini-FLOTAC technique, and a rapid immunoassay to detect Cryptosporidium spp. To search for microsporidia, PCR and sequencing were performed on the faecal samples. Data were statistically analysed. The overall positivity rate for endoparasites was 83.3% (25/30). The identified endoparasites were oxyurids (17/30, 56.7%), Isosospora amphiboluri (13/30, 43.3%), Encephalitozoon pogonae (4/18, 22.22%), and Cryptosporidium sp. (1/30, 3.33%). The positivity for protozoa was significantly higher in juveniles compared to adults. Moreover, the frequency of clinical signs was significantly higher in the positive animals. The results obtained here emphasize the importance of regular veterinary examinations of captive P. vitticeps, aimed at the diagnosis, treatment, and control of endoparasites. This study is one of the largest surveys on microsporidia infections in living bearded dragons, suggesting that E. pogonae may be widespread in this lizard.

11.
Med Vet Entomol ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864653

RESUMO

Some dipteran flies play an important role in the transmission of pathogens such as viruses, bacteria, fungi, protozoan and metazoan parasites in humans and other animals. Despite this importance, knowledge of the prevalence and molecular characteristics of some pathogens in flies is limited, and no data are available for Türkiye. In this study, we investigated the possible vector role of muscid fly species for the transmission of Enterocytozoon bieneusi Desportes (Chytridiopsida: Enterocytozoonidae), Encephalitozoon spp., Coxiella burnetii Derrick (Legionellales: Coxiellaceae) and Thelazia spp. using polymerase chain reaction (PCR) and sequence analysis. The flies were trapped in different animal-related places and surroundings from two different geographical regions of Türkiye including Central Anatolia and Middle Black Sea. According to the morphological keys, 850 (85%), 141 (14.1%) and 6 (0.6%) of the total of 1000 fly specimens identified as Musca domestica Linnaeus (Diptera: Muscidae), Stomoxys calcitrans Linnaeus (Diptera: Muscidae) and Musca autumnalis De Geer (Diptera: Muscidae), respectively. The other species including Haematobia irritans Linnaeus (Diptera: Muscidae), Muscina stabulans Fallén (Diptera: Muscidae) and Hydrotaea ignava Harris (Diptera: Muscidae) were each represented by a single specimen. Screening of the pathogens identified E. bieneusi only in M. domestica with a prevalence of 2.4%. Sequence analyses identified three known genotypes, Type IV, BEB6 and BEB8, and one novel genotype named AEUEb of E. bieneusi in M. domestica. Coxiella burnetii was detected in M. domestica and S. calcitrans with prevalences of 2.9% and 2.8%, respectively. The one specimen of H. ignava was also positive for C. burnetii. Encephalitozoon spp. and Thelazia spp. were not found in the examined specimens. Our results contribute to the current knowledge on the vector potential of muscid flies and their possible role in the transmission dynamics of certain pathogens, especially in regions where diseases are prevalent and affect public and animal health.

12.
J Biol Inorg Chem ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38918208

RESUMO

Encephalitozoon intestinalis is an opportunistic microsporidian parasite that primarily infects immunocompromised individuals, such as those with HIV/AIDS or undergoing organ transplantation. Leishmaniasis is responsible for parasitic infections, particularly in developing countries. The disease has not been effectively controlled due to the lack of an effective vaccine and affordable treatment options. Current treatment options for E. intestinalis infection and leishmaniasis are limited and often associated with adverse side effects. There is no previous study in the literature on the antimicrosporidial activities of Ag(I)-N-heterocyclic carbene compounds. In this study, the in vitro antimicrosporidial activities of previously synthesized Ag(I)-N-heterocyclic carbene complexes were evaluated using E. intestinalis spores cultured in human renal epithelial cell lines (HEK-293). Inhibition of microsporidian replication was determined by spore counting. In addition, the effects of the compounds on Leishmania major promastigotes were assessed by measuring metabolic activity or cell viability using a tetrazolium reaction. Statistical analysis was performed to determine significant differences between treated and control groups. Our results showed that the growth of E. intestinalis and L. major promastigotes was inhibited by the tested compounds in a concentration-dependent manner. A significant decrease in parasite viability was observed at the highest concentrations. These results suggest that the compounds have potential anti-microsporidial and anti-leishmanial activity. Further research is required to elucidate the underlying mechanisms of action and to evaluate the efficacy of the compounds in animal models or clinical trials.

13.
Transcription ; : 1-17, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722258

RESUMO

Genome compaction is a common evolutionary feature of parasites. The unicellular, obligate intracellular parasite Encephalitozoon cuniculi has one of smallest known eukaryotic genomes, and is nearly four times smaller than its distant fungi relative, the budding yeast Saccharomyces cerevisiae. Comparison of the proteins encoded by compacted genomes to those encoded by larger genomes can reveal the most highly conserved features of the encoded proteins. In this study, we identified the proteins comprising the RNA polymerases and their corresponding general transcription factors by using several bioinformatic approaches to compare the transcription machinery of E. cuniculi and S. cerevisiae. Surprisingly, our analyses revealed an overall reduction in the size of the proteins comprising transcription machinery of E. cuniculi, which includes the loss of entire regions or functional domains from proteins, as well as the loss of entire proteins and complexes. Unexpectedly, we found that the E. cuniculi ortholog of Rpc37 (a RNA Polymerase III subunit) more closely resembles the H. sapiens ortholog of Rpc37 than the S. cerevisiae ortholog of Rpc37, in both size and structure. Overall, our findings provide new insight into the minimal core eukaryotic transcription machinery and help define the most critical features of Pol components and general transcription factors.

14.
Curr Protoc ; 4(5): e1035, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38727641

RESUMO

Nematodes are naturally infected by the fungal-related pathogen microsporidia. These ubiquitous eukaryotic parasites are poorly understood, despite infecting most types of animals. Identifying novel species of microsporidia and studying them in an animal model can expedite our understanding of their infection biology and evolution. Nematodes present an excellent avenue for pursuing such work, as they are abundant in the environment and many species are easily culturable in the laboratory. The protocols presented here describe how to isolate bacterivorous nematodes from rotting substrates, screen them for microsporidia infection, and molecularly identify the nematode and microsporidia species. Additionally, we detail how to remove environmental contaminants and generate a spore preparation of microsporidia from infected samples. We also discuss potential pitfalls and provide suggestions on how to mitigate them. These protocols allow for the identification of novel microsporidia species, which can serve as an excellent starting point for genomic analysis, determination of host specificity, and infection characterization. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Gathering samples Support Protocol 1: Generating 10× and 40× Escherichia coli OP50 and seeding NGM plates Basic Protocol 2: Microsporidia screening, testing for Caenorhabditis elegans susceptibility, and sample freezing Basic Protocol 3: DNA extraction, PCR amplification, and sequencing to identify nematode and microsporidia species Basic Protocol 4: Removal of contaminating microbes and preparation of microsporidia spores Support Protocol 2: Bleach-synchronizing nematodes.


Assuntos
Microsporídios , Nematoides , Animais , Microsporídios/isolamento & purificação , Microsporídios/genética , Microsporídios/classificação , Microsporídios/patogenicidade , Nematoides/microbiologia , Nematoides/genética , Caenorhabditis elegans/microbiologia , DNA Fúngico/genética , Reação em Cadeia da Polimerase , Microsporidiose/microbiologia , Esporos Fúngicos/isolamento & purificação
15.
J Agric Food Chem ; 72(23): 13175-13185, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38817125

RESUMO

Gene editing techniques are widely and effectively used for the control of pathogens, but it is difficult to directly edit the genes of Microsporidia due to its unique spore wall structure. Innovative technologies and methods are urgently needed to break through this limitation of microsporidia therapies. Here, we establish a microsporidia-inducible gene editing system through core components of microsporidia secreted proteins, which could edit target genes after infection with microsporidia. We identified that Nosema bombycis NB29 is a secretory protein and found to interact with itself. The NB29-N3, which lacked the nuclear localization signal, was localized in the cytoplasm, and could be tracked into the nucleus after interacting with NB29-B. Furthermore, the gene editing system was constructed with the Cas9 protein expressed in fusion with the NB29-N3. The system could edit the exogenous gene EGFP and the endogenous gene BmRpn3 after overexpression of NB29 or infection with N. bombycis.


Assuntos
Sistemas CRISPR-Cas , Proteínas Fúngicas , Edição de Genes , Nosema , Nosema/genética , Animais , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Edição de Genes/métodos
16.
Microbiol Spectr ; 12(6): e0367123, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38690912

RESUMO

Lipid droplets (LDs) are dynamic organelles that participate in the regulation of lipid metabolism and cellular homeostasis inside of cells. LD-associated proteins, also known as perilipins (PLINs), are a family of proteins found on the surface of LDs that regulate lipid metabolism, immunity, and other functions. In silkworms, pébrine disease caused by infection by the microsporidian Nosema bombycis (Nb) is a severe threat to the sericultural industry. Although we found that Nb relies on lipids from silkworms to facilitate its proliferation, the relationship between PLINs and Nb proliferation remains unknown. Here, we found Nb infection caused the accumulation of LDs in the fat bodies of silkworm larvae. The characterized perilipin1 gene (plin1) promotes the accumulation of intracellular LDs and is involved in Nb proliferation. plin1 is similar to perilipin1 in humans and is conserved in all insects. The expression of plin1 was mostly enriched in the fat body rather than in other tissues. Knockdown of plin1 enhanced Nb proliferation, whereas overexpression of plin1 inhibited its proliferation. Furthermore, we confirmed that plin1 increased the expression of the Domeless and Hop in the JAK-STAT immune pathway and inhibited Nb proliferation. Taken together, our current findings demonstrate that plin1 inhibits Nb proliferation by promoting the JAK-STAT pathway through increased expression of Domeless and Hop. This study provides new insights into the complicated connections among microsporidia pathogens, LD surface proteins, and insect immunity.IMPORTANCELipid droplets (LDs) are lipid storage sites in cells and are present in almost all animals. Many studies have found that LDs may play a role in host resistance to pathogens and are closely related to innate immunity. The present study found that a surface protein of insect lipid droplets could not only regulate the morphological changes of lipid droplets but also inhibit the proliferation of a microsporidian pathogen Nosema bombycis (Nb) by activating the JAK-STAT signaling pathway. This is the first discovery of the relationship between microsporidian pathogen and insect lipid surface protein perilipin and insect immunity.


Assuntos
Bombyx , Proteínas de Insetos , Janus Quinases , Gotículas Lipídicas , Nosema , Perilipina-1 , Transdução de Sinais , Bombyx/microbiologia , Bombyx/metabolismo , Bombyx/genética , Animais , Nosema/metabolismo , Nosema/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Gotículas Lipídicas/metabolismo , Janus Quinases/metabolismo , Janus Quinases/genética , Perilipina-1/metabolismo , Perilipina-1/genética , Fatores de Transcrição STAT/metabolismo , Fatores de Transcrição STAT/genética , Corpo Adiposo/metabolismo , Larva/microbiologia , Larva/metabolismo , Metabolismo dos Lipídeos
17.
Microorganisms ; 12(5)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38792799

RESUMO

Multiple microbial detections in stool samples of indigenous individuals suffering from chronic gastroenteric disorder of a likely infectious origin, characterized by recurring diarrhea of variable intensity, in the rural north-east of Colombia are common findings, making the assignment of etiological relevance to individual pathogens challenging. In a population of 773 indigenous people from either the tribe Wiwa or Kogui, collider bias analysis was conducted comprising 32 assessed microorganisms including 10 bacteria (Aeromonas spp., Campylobacter spp., enteroaggregative Escherichia coli (EAEC), enteropathogenic Escherichia coli (EPEC), enterotoxigenic Escherichia coli (ETEC), Salmonella spp., Shiga toxin-producing Escherichia coli (STEC), Shigella spp./enteroinvasive Escherichia coli (EIEC), Tropheryma whipplei and Yersinia spp.), 11 protozoa (Blastocystis spp., Cryptosporidium spp., Cyclospora spp., Dientamoeba fragilis, Entamoeba coli, Entamoeba bangladeshi/dispar/histolytica/moshkovskii complex, Entamoeba histolytica, Endolimax nana, Giardia duodenalis, Iodamoeba buetschlii and Pentatrichomonas hominis), 8 helminths (Ascaris spp., Enterobius vermicularis, Hymenolepis spp., Necator americanus, Schistosoma spp., Strongyloides spp., Taenia spp. and Trichuris spp.), microsporidia (Encephalocytozoon spp.) and fungal elements (microscopically observed conidia and pseudoconidia). The main results indicated that negative associations potentially pointing towards collider bias were infrequent events (n = 14), while positive associations indicating increased likelihood of co-occurrence of microorganisms quantitatively dominated (n = 88). Microorganisms showing the most frequent negative associations were EPEC (n = 6) and Blastocystis spp. (n = 3), while positive associations were most common for Trichuris spp. (n = 16), Dientamoeba fragilis (n = 15), Shigella spp./EIEC (n = 12), Ascaris spp. (n = 11) and Blastocystis spp. (n = 10). Of note, positive associations quantitively dominated for Blastocystis spp. In conclusion, collider bias assessment did not allow clear-cut assignment of etiological relevance for detected enteric microorganisms within the assessed Colombian indigenous population. Instead, the results suggested complex microbial interactions with potential summative effects. Future studies applying alternative biostatistical approaches should be considered to further delineate respective interactions.

18.
J Eukaryot Microbiol ; : e13033, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38785208

RESUMO

Microsporidia and Apicomplexa are eukaryotic, single-celled, intracellular parasites with huge public health and economic importance. Typically, these parasites are studied separately, emphasizing their uniqueness and diversity. In this review, we explore the huge amount of genomic data that has recently become available for the two groups. We compare and contrast their genome evolution and discuss how their transitions to intracellular life may have shaped it. In particular, we explore genome reduction and compaction, genome expansion and ploidy, gene shuffling and rearrangements, and the evolution of centromeres and telomeres.

19.
Parasitol Res ; 123(5): 204, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709330

RESUMO

In recent years, there has been growing concern on the potential weakening of honey bees and their increased susceptibility to pathogens due to chronic exposure to xenobiotics. The present work aimed to study the effects on bees undergoing an infection by Nosema ceranae and being exposed to a frequently used in-hive acaricide, amitraz. To achieve this, newly emerged bees were individually infected with N. ceranae spores and/or received a sublethal concentration of amitraz in their diets under laboratory conditions. Mortality, food intake, total volume excrement, body appearance, and parasite development were registered. Bees exposed to both stressors jointly had higher mortality rates compared to bees exposed separately, with no difference in the parasite development. An increase in sugar syrup consumption was observed for all treated bees while infected bees fed with amitraz also showed a diminishment in pollen intake. These results coupled with an increase in the total number of excretion events, alterations in behavior and body surface on individuals that received amitraz could evidence the detrimental action of this molecule. To corroborate these findings under semi-field conditions, worker bees were artificially infected, marked, and released into colonies. Then, they were exposed to a commercial amitraz-based product by contact. The recovered bees showed no differences in the parasite development due to amitraz exposure. This study provides evidence to which extent a honey bee infected with N. ceranae could potentially be weakened by chronic exposure to amitraz treatment.


Assuntos
Nosema , Toluidinas , Animais , Abelhas/efeitos dos fármacos , Abelhas/microbiologia , Abelhas/parasitologia , Nosema/efeitos dos fármacos , Nosema/fisiologia , Acaricidas
20.
mBio ; 15(6): e0058224, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38651867

RESUMO

The impacts of microsporidia on host individuals are frequently subtle and can be context dependent. A key example of the latter comes from a recently discovered microsporidian symbiont of Daphnia, the net impact of which was found to shift from negative to positive based on environmental context. Given this, we hypothesized low baseline virulence of the microsporidian; here, we investigated the impact of infection on hosts in controlled conditions and the absence of other stressors. We also investigated its phylogenetic position, ecology, and host range. The genetic data indicate that the symbiont is Ordospora pajunii, a newly described microsporidian parasite of Daphnia. We show that O. pajunii infection damages the gut, causing infected epithelial cells to lose microvilli and then rupture. The prevalence of this microsporidian could be high (up to 100% in the lab and 77% of adults in the field). Its overall virulence was low in most cases, but some genotypes suffered reduced survival and/or reproduction. Susceptibility and virulence were strongly host-genotype dependent. We found that North American O. pajunii were able to infect multiple Daphnia species, including the European species Daphnia longispina, as well as Ceriodaphnia spp. Given the low, often undetectable virulence of this microsporidian and potentially far-reaching consequences of infections for the host when interacting with other pathogens or food, this Daphnia-O. pajunii symbiosis emerges as a valuable system for studying the mechanisms of context-dependent shifts between mutualism and parasitism, as well as for understanding how symbionts might alter host interactions with resources. IMPORTANCE: The net outcome of symbiosis depends on the costs and benefits to each partner. Those can be context dependent, driving the potential for an interaction to change between parasitism and mutualism. Understanding the baseline fitness impact in an interaction can help us understand those shifts; for an organism that is generally parasitic, it should be easier for it to become a mutualist if its baseline virulence is relatively low. Recently, a microsporidian was found to become beneficial to its Daphnia hosts in certain ecological contexts, but little was known about the symbiont (including its species identity). Here, we identify it as the microsporidium Ordospora pajunii. Despite the parasitic nature of microsporidia, we found O. pajunii to be, at most, mildly virulent; this helps explain why it can shift toward mutualism in certain ecological contexts and helps establish O. pajunii is a valuable model for investigating shifts along the mutualism-parasitism continuum.


Assuntos
Daphnia , Especificidade de Hospedeiro , Filogenia , Simbiose , Animais , Daphnia/microbiologia , Virulência , Microsporídios/genética , Microsporídios/patogenicidade , Microsporídios/fisiologia , Microsporídios/classificação , Microsporídios não Classificados/genética , Microsporídios não Classificados/patogenicidade , Microsporídios não Classificados/classificação , Microsporídios não Classificados/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA