Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 414
Filtrar
1.
Med Microbiol Immunol ; 213(1): 6, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722338

RESUMO

To date, there is no licensed vaccine for Middle East respiratory syndrome coronavirus (MERS-CoV). Therefore, MERS-CoV is one of the diseases targeted by the Coalition for Epidemic Preparedness Innovations (CEPI) vaccine development programs and has been classified as a priority disease by the World Health Organization (WHO). An important measure of vaccine immunogenicity and antibody functionality is the detection of virus-neutralizing antibodies. We have developed and optimized a microneutralization assay (MNA) using authentic MERS-CoV and standardized automatic counting of virus foci. Compared to our standard virus neutralization assay, the MNA showed improved sensitivity when analyzing 30 human sera with good correlation of results (Spearman's correlation coefficient r = 0.8917, p value < 0.0001). It is important to use standardized materials, such as the WHO international standard (IS) for anti-MERS-CoV immunoglobulin G, to compare the results from clinical trials worldwide. Therefore, in addition to the neutralizing titers (NT50 = 1384, NT80 = 384), we determined the IC50 and IC80 of WHO IS in our MNA to be 0.67 IU/ml and 2.6 IU/ml, respectively. Overall, the established MNA is well suited to reliably quantify vaccine-induced neutralizing antibodies with high sensitivity.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Coronavírus da Síndrome Respiratória do Oriente Médio , Testes de Neutralização , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Humanos , Testes de Neutralização/métodos , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/diagnóstico , Animais , Concentração Inibidora 50 , Sensibilidade e Especificidade
2.
Emerg Infect Dis ; 30(3): 581-585, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38407189

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) is endemic in dromedaries in Africa, but camel-to-human transmission is limited. Sustained 12-month sampling of dromedaries in a Kenya abattoir hub showed biphasic MERS-CoV incidence; peak detections occurred in October 2022 and February 2023. Dromedary-exposed abattoir workers (7/48) had serologic signs of previous MERS-CoV exposure.


Assuntos
Camelus , Coronavírus da Síndrome Respiratória do Oriente Médio , Humanos , Animais , Quênia/epidemiologia , Incidência , Matadouros
3.
Microbes Infect ; 26(3): 105252, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37981029

RESUMO

Severe Middle East respiratory syndrome (MERS) is characterized by massive infiltration of immune cells in lungs. MERS-coronavirus (MERS-CoV) replicates in vitro in human macrophages, inducing high pro-inflammatory responses. In contrast, camelids, the main reservoir for MERS-CoV, are asymptomatic carriers. Although limited infiltration of leukocytes has been observed in the lower respiratory tract of camelids, their role during infection remains unknown. Here we studied whether llama alveolar macrophages (LAMs) are susceptible to MERS-CoV infection and can elicit pro-inflammatory responses. MERS-CoV did not replicate in LAMs; however, they effectively capture and degrade viral particles. Moreover, transcriptomic analyses showed that LAMs do not induce pro-inflammatory cytokines upon MERS-CoV sensing.


Assuntos
Camelídeos Americanos , Infecções por Coronavirus , Coronavírus da Síndrome Respiratória do Oriente Médio , Animais , Humanos , Citocinas/metabolismo , Macrófagos Alveolares , Camelídeos Americanos/metabolismo , Replicação Viral
4.
Einstein (Säo Paulo) ; 22(spe1): eRW0352, 2024. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1534336

RESUMO

ABSTRACT Objective To review the long-term outcomes (functional status and psychological sequelae) of survivors of critical illnesses due to epidemic viral pneumonia before the COVID-19 pandemic and to establish a benchmark for comparison of the COVID-19 long-term outcomes. Methods This systematic review of clinical studies reported the long-term outcomes in adults admitted to intensive care units who were diagnosed with viral epidemic pneumonia. An electronic search was performed using databases: MEDLINE®, Web of Science™, LILACS/IBECS, and EMBASE. Additionally, complementary searches were conducted on the reference lists of eligible studies. The quality of the studies was assessed using the Newcastle-Ottawa Scale. The results were grouped into tables and textual descriptions. Results The final analysis included 15 studies from a total of 243 studies. This review included 771 patients with Influenza A, Middle East Respiratory Syndrome, and Severe Acute Respiratory Syndrome. It analyzed the quality of life, functionality, lung function, mortality, rate of return to work, rehospitalization, and psychiatric symptoms. The follow-up periods ranged from 1 to 144 months. We found that the quality of life, functional capacity, and pulmonary function were below expected standards. Conclusion This review revealed great heterogeneity between studies attributed to different scales, follow-up time points, and methodologies. However, this systematic review identified negative long-term effects on patient outcomes. Given the possibility of future pandemics, it is essential to identify the long-term effects of viral pneumonia outbreaks. This review was not funded. Prospero database registration: (www.crd.york.ac.uk/prospero) under registration ID CRD42021190296.

5.
Cureus ; 15(10): e47822, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37899895

RESUMO

Introduction Veterinarians and other professionals who interact with animals on a daily basis encounter an elevated risk of exposure to both known and as-yet-undiscovered microbial agents. Additionally, they are also exposed to physical, chemical, and environmental hazards. Enhancing occupational health and safety in this context carries significant global significance. Methods This study aimed to comprehensively identify and outline the various biological, physical, chemical, and environmental health threats that were encountered by veterinarians in Saudi Arabia. To achieve this, we designed a self-completed questionnaire for 529 participants. The survey encompassed potential occupational hazards such as microbial diseases, injuries resulting from animal bites and scratches, allergies, and environmental risks like sunstroke and dust storms. Results Among the 529 participating veterinarians, 45.9% (243 individuals) reported instances of zoonotic diseases within the past five years. Notably, potential viral agents included Middle East respiratory syndrome coronavirus, avian influenza, and foot-and-mouth disease virus. Bacterial diseases were also frequently documented, with brucellosis (18.7%) and salmonellosis (7.9%) being notable pathogens. Protozoal infections were led by Leishmaniosis, constituting the most commonly detected protozoa (29 /529, 5.5%). Interestingly, 345 (65.2%) of the individuals reported that they have experienced animal bites and scratches. Needle stick injuries were also a common occupational hazard, with an incidence rate of 19.1%. Additionally, chemical exposure was prevalent, particularly to disinfectants (57.5%) and veterinary drugs (23.4%). The study participants also reported their exposure to various environmental hazards, including sunstroke, dust, sandstorms, and heavy rains. Conclusion The findings of this study draw attention to a concerning trend among veterinarians in Saudi Arabia. Their personal health and safety appear to receive inadequate attention, potentially heightening the risk of occupationally related health hazards. These outcomes highlight the need for a reevaluation of safety protocols and infection control practices within the veterinary profession. The implications of this study can potentially inform the development of policies and initiatives aimed at mitigating occupationally related health hazards among veterinarians in Saudi Arabia.

6.
Front Immunol ; 14: 1205080, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37388723

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) infection can cause fatal pulmonary inflammatory disease in humans. Contrarily, camelids and bats are the main reservoir hosts, tolerant for MERS-CoV replication without suffering clinical disease. Here, we isolated cervical lymph node (LN) cells from MERS-CoV convalescent llamas and pulsed them with two different viral strains (clades B and C). Viral replication was not supported in LN, but a cellular immune response was mounted. Reminiscent Th1 responses (IFN-γ, IL-2, IL-12) were elicited upon MERS-CoV sensing, accompanied by a marked and transient peak of antiviral responses (type I IFNs, IFN-λ3, ISGs, PRRs and TFs). Importantly, expression of inflammatory cytokines (TNF-α, IL-1ß, IL-6, IL-8) or inflammasome components (NLRP3, CASP1, PYCARD) was dampened. The role of IFN-λ3 to counterbalance inflammatory processes and bridge innate and adaptive immune responses in camelid species is discussed. Our findings shed light into key mechanisms on how reservoir species control MERS-CoV in the absence of clinical disease.


Assuntos
Camelídeos Americanos , Quirópteros , Coronavírus da Síndrome Respiratória do Oriente Médio , Humanos , Animais , Antivirais , Camelidae , Inflamação , Imunidade Celular
7.
Emerg Infect Dis ; 29(6): 1236-1239, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37209676

RESUMO

We developed an ELISPOT assay for evaluating Middle East respiratory syndrome coronavirus (MERS-CoV)‒specific T-cell responses in dromedary camels. After single modified vaccinia virus Ankara-MERS-S vaccination, seropositive camels showed increased levels of MERS-CoV‒specific T cells and antibodies, indicating suitability of camel vaccinations in disease-endemic areas as a promising approach to control infection.


Assuntos
Camelus , Infecções por Coronavirus , Linfócitos T , Vacinas Virais , Animais , Camelus/imunologia , Linfócitos T/imunologia , Coronavírus da Síndrome Respiratória do Oriente Médio , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/veterinária , Vacinas Virais/imunologia , Vacinação/veterinária , ELISPOT , Anticorpos Antivirais
8.
Emerg Infect Dis ; 29(3): 585-589, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36823022

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) clade B viruses are found in camelids and humans in the Middle East, but clade C viruses are not. We provide experimental evidence for extended shedding of MERS-CoV clade B viruses in llamas, which might explain why they outcompete clade C strains in the Arabian Peninsula.


Assuntos
Camelídeos Americanos , Infecções por Coronavirus , Herpesvirus Cercopitecino 1 , Coronavírus da Síndrome Respiratória do Oriente Médio , Animais , Humanos , Eliminação de Partículas Virais , Camelus
9.
J King Saud Univ Sci ; 35(3): 102540, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36624781

RESUMO

Background: A new coronavirus was identified in Jeddah, Saudi Arabia in 2012 and designated as Middle East Respiratory Syndrome Coronavirus (MERS-CoV). To date, this virus has been reported in 27 countries. The virus transmission to humans has already been reported from camels. Currently, there is no vaccine or antiviral therapy available against this virus. Methods: The siRNAs were in silico predicted, designed, and chemically synthesized by using the MERS-CoV-orf1ab region as a target. The antiviral activity was experimentally evaluated by delivering the siRNAs with Lipofectamine™ 2000 and JetPRIMER as transfection reagents in both Vero cell and HEK-293-T cell lines at two different concentrations (10.0 nM and 5.0 nM). The Ct value of quantitative Real-Time PCR (qRT-PCR) was used to calculate and determine the reduction of viral RNA level in both cell supernatant and cell lysate isolated from both cell lines. Results: The sequence alignment resulted in the selection of highly conserved regions. The orf1ab region was used to predict and design the siRNAs and a total of twenty-one siRNAs were finally selected from four hundred and twenty-six siRNAs generated by online software. Inhibition of viral replication and significant reduction of viral RNA was observed against selected siRNAs in both cell lines at both concentrations. Based on the Ct value, the siRNAs # 11, 12, 18, and 20 were observed to be the best performing in both cell lines at both concentrations. Conclusion: Based on the results and data analysis, it is concluded that the use of two different transfection reagents was significantly effective. But the Lipofectamine™ 2000 was found to be a better transfection reagent than the JetPRIMER for the delivery of siRNAs in both cell lines.

10.
J Clin Nurs ; 32(15-16): 5357-5368, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32786157

RESUMO

AIMS AND OBJECTIVES: This study aimed to examine the lived experience of physicians and nurses who underwent hospitalised isolation during the Middle East respiratory syndrome coronavirus outbreak that hit Korea in 2015, and how it may have affected their professional self-image. BACKGROUND: Health professionals caring for patients during infectious outbreaks such as the Middle East respiratory syndrome have reported negative psychological effects. However, little is known about how the experience influences their professional self-image. DESIGN: An interpretive phenomenological approach was applied using individual in-depth interviews. METHODS: Through purposeful and snowball sampling, 11 health professionals who had experienced hospital isolation due to suspicious symptoms of Middle East respiratory syndrome during the outbreak, participated in face-to-face interviews (50-90 min). We adhered to the Consolidated Criteria for Reporting Qualitative Research guideline for reporting. RESULTS: Six themes were identified: (a) engulfed in chaos and exhaustion; (b) feeling hurt and constrained by the rejection and blame; (c) anxiety induced by the enclosed environment; (d) dread of this uncertain and critical disease; (e) sustained by family and colleagues; and (f) reflection at this turning point, expanding self-understanding and seeking a balance. CONCLUSION: Hospitalised isolation was a "turning point" that appeared to change health professionals' sense of identity and direction. RELEVANCE TO CLINICAL PRACTICE: Preparedness for infectious epidemics should ensure tangible assistance, protection, and clear communication with health professionals, with careful attention to their psychological needs and affirmation of their self-image in the aftermath.


Assuntos
Infecções por Coronavirus , Epidemias , Humanos , Pessoal de Saúde/psicologia , Infecções por Coronavirus/epidemiologia , Pesquisa Qualitativa , Pacientes
11.
Travel Med Infect Dis ; 51: 102482, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36280020

RESUMO

BACKGROUND: Pilgrims travelling to Saudi Arabia are commonly infected with respiratory viruses. Since the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) emerged in 2012, patients with acute respiratory symptoms returning from an endemic area can be suspected to be infected by this virus. METHODS: 98 patients suspected to have MERS-CoV infection from 2014 to 2019 were included in this retrospective cohort study. Upper and lower respiratory tract samples were tested by real-time RT-PCR for the detection of MERS-CoV and other respiratory viruses. Routine microbiological analyses were also performed. Patient data were retrieved from laboratory and hospital databases retrospectively. RESULTS: All patients with suspected MERS-CoV infection travelled before their hospitalization. Most frequent symptoms were cough (94.4%) and fever (69.4%). 98 specimens were tested for MERS-CoV RNA and none of them was positive. Most frequently detected viruses were Enterovirus/Rhinovirus (40/83; 48.2%), Influenzavirus A (34/90; 37.8%) and B (11/90; 12.2%), H-CoV (229E and OC43 10/83; 12% and 7/83; 8.4%, respectively). CONCLUSION: From 2014 to 2019, none of 98 patients returning from endemic areas was MERS-CoV infected. However, infections with other respiratory viruses were frequent, especially with Enterovirus/Rhinoviruses and Influenzaviruses.


Assuntos
Infecções por Coronavirus , Coronavírus da Síndrome Respiratória do Oriente Médio , Orthomyxoviridae , Vírus , Humanos , Estudos Retrospectivos , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/epidemiologia , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Oriente Médio/epidemiologia , Arábia Saudita/epidemiologia
12.
Turk J Biol ; 47(6): 393-405, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38681774

RESUMO

Background/aim: Understanding the mechanism of host transcriptomic response to infection by the SARS-CoV-2 virus is crucial, especially for patients suffering from long-term effects of COVID-19, such as long COVID or pericarditis inflammation, potentially linked to side effects of the SARS-CoV-2 spike proteins. We conducted comprehensive transcriptome and enrichment analyses on lung and peripheral blood mononuclear cells (PBMCs) infected with SARS-CoV-2, as well as on SARS-CoV and MERS-CoV, to uncover shared pathways and elucidate their common disease progression and viral replication mechanisms. Materials and methods: We developed CompCorona, the first interactive online tool for visualizing gene response variance among the family Coronaviridae through 2D and 3D principal component analysis (PCA) and exploring systems biology variance using pathway plots. We also made preprocessed datasets of lungs and PBMCs infected by SARS-CoV-2, SARS-CoV, and MERS-CoV publicly available through CompCorona. Results: One remarkable finding from the lung and PBMC datasets for infections by SARS-CoV-2, but not infections by other coronaviruses (CoVs), was the significant downregulation of the angiogenin (ANG) and vascular endothelial growth factor A (VEGFA) genes, both directly involved in epithelial and vascular endothelial cell dysfunction. Suppression of the TNF signaling pathway was also observed in cells infected by SARS-CoV-2, along with simultaneous activation of complement and coagulation cascades and pertussis pathways. The ribosome pathway was found to be universally suppressed across all three viruses. The CompCorona online tool enabled the comparative analysis of 9 preprocessed host transcriptome datasets of cells infected by CoVs, revealing the specific host response differences in cases of SARS-CoV-2 infection. This included identifying markers of epithelial dysfunction via interactive 2D and 3D PCA, Venn diagrams, and pathway plots. Conclusion: Our findings suggest that infection by SARS-CoV-2 might induce pulmonary epithelial dysfunction, a phenomenon not observed in cells infected by other CoVs. The publicly available CompCorona tool, along with the preprocessed datasets of cells infected by various CoVs, constitutes a valuable resource for further research into CoV-associated syndromes.

13.
Molecules ; 27(22)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36432204

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a human coronaviruses that emerged in China at Wuhan city, Hubei province during December 2019. Subsequently, SARS-CoV-2 has spread worldwide and caused millions of deaths around the globe. Several compounds and vaccines have been proposed to tackle this crisis. Novel recommended in silico approaches have been commonly used to screen for specific SARS-CoV-2 inhibitors of different types. Herein, the phytochemicals of Pakistani medicinal plants (especially Artemisia annua) were virtually screened to identify potential inhibitors of the SARS-CoV-2 main protease enzyme. The X-ray crystal structure of the main protease of SARS-CoV-2 with an N3 inhibitor was obtained from the protein data bank while A. annua phytochemicals were retrieved from different drug databases. The docking technique was carried out to assess the binding efficacy of the retrieved phytochemicals; the docking results revealed that several phytochemicals have potential to inhibit the SARS-CoV-2 main protease enzyme. Among the total docked compounds, the top-10 docked complexes were considered for further study and evaluated for their physiochemical and pharmacokinetic properties. The top-3 docked complexes with the best binding energies were as follows: the top-1 docked complex with a -7 kcal/mol binding energy score, the top-2 docked complex with a -6.9 kcal/mol binding energy score, and the top-3 docked complex with a -6.8 kcal/mol binding energy score. These complexes were subjected to a molecular dynamic simulation analysis for further validation to check the dynamic behavior of the selected top-complexes. During the whole simulation time, no major changes were observed in the docked complexes, which indicated complex stability. Additionally, the free binding energies for the selected docked complexes were also estimated via the MM-GB/PBSA approach, and the results revealed that the total delta energies of MMGBSA were -24.23 kcal/mol, -26.38 kcal/mol, and -25 kcal/mol for top-1, top-2, and top-3, respectively. MMPBSA calculated the delta total energy as -17.23 kcal/mol (top-1 complex), -24.75 kcal/mol (top-2 complex), and -24.86 kcal/mol (top-3 complex). This study explored in silico screened phytochemicals against the main protease of the SARS-CoV-2 virus; however, the findings require an experimentally based study to further validate the obtained results.


Assuntos
Artemisia annua , Tratamento Farmacológico da COVID-19 , Humanos , SARS-CoV-2 , Proteases 3C de Coronavírus , Compostos Fitoquímicos/farmacologia
14.
Molecules ; 27(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36364379

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV), belonging to the betacoronavirus genus can cause severe respiratory illnesses, accompanied by pneumonia, multiorgan failure, and ultimately death. CoVs have the ability to transgress species barriers and spread swiftly into new host species, with human-to-human transmission causing epidemic diseases. Despite the severe public health threat of MERS-CoV, there are currently no vaccines or drugs available for its treatment. MERS-CoV papain-like protease (PLpro) is a key enzyme that plays an important role in its replication. In the present study, we evaluated the inhibitory activities of doxorubicin (DOX) against the recombinant MERS-CoV PLpro by employing protease inhibition assays. Hydrolysis of fluorogenic peptide from the Z-RLRGG-AMC-peptide bond in the presence of DOX showed an IC50 value of 1.67 µM at 30 min. Subsequently, we confirmed the interaction between DOX and MERS-CoV PLpro by thermal shift assay (TSA), and DOX increased ΔTm by ~20 °C, clearly indicating a coherent interaction between the MERS-CoV PL protease and DOX. The binding site of DOX on MERS-CoV PLpro was assessed using docking techniques and molecular dynamic (MD) simulations. DOX bound to the thumb region of the catalytic domain of the MERS-CoV PLpro. MD simulation results showed flexible BL2 loops, as well as other potential residues, such as R231, R233, and G276 of MERS-CoV PLpro. Development of drug repurposing is a remarkable opportunity to quickly examine the efficacy of different aspects of treating various diseases. Protease inhibitors have been found to be effective against MERS-CoV to date, and numerous candidates are currently undergoing clinical trials to prove this. Our effort follows a in similar direction.


Assuntos
Coronavírus da Síndrome Respiratória do Oriente Médio , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , Papaína/química , Peptídeo Hidrolases/metabolismo , Reposicionamento de Medicamentos , Doxorrubicina/farmacologia , Doxorrubicina/metabolismo
15.
Biomed Eng Adv ; 4: 100054, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36158162

RESUMO

With severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as an emergent human virus since December 2019, the world population is susceptible to coronavirus disease 2019 (COVID-19). SARS-CoV-2 has higher transmissibility than the previous coronaviruses, associated by the ribonucleic acid (RNA) virus nature with high mutation rate, caused SARS-CoV-2 variants to arise while circulating worldwide. Neutralizing antibodies are identified as immediate and direct-acting therapeutic against COVID-19. Single-domain antibodies (sdAbs), as small biomolecules with non-complex structure and intrinsic stability, can acquire antigen-binding capabilities comparable to conventional antibodies, which serve as an attractive neutralizing solution. SARS-CoV-2 spike protein attaches to human angiotensin-converting enzyme 2 (ACE2) receptor on lung epithelial cells to initiate viral infection, serves as potential therapeutic target. sdAbs have shown broad neutralization towards SARS-CoV-2 with various mutations, effectively stop and prevent infection while efficiently block mutational escape. In addition, sdAbs can be developed into multivalent antibodies or inhaled biotherapeutics against COVID-19.

16.
FEBS Lett ; 596(19): 2538-2554, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36053897

RESUMO

The Toll-like receptor (TLR)7- and TLR9-dependent signalling cascade is responsible for production of a large amount of alpha interferon by plasmacytoid dendritic cells upon viral infection. Here, we show that Middle East respiratory syndrome coronavirus (MERS-CoV) accessory protein ORF4b has the most potential among the MERS-CoV accessory proteins to inhibit the TLR7/9-signaling-dependent alpha interferon production. ORF4b protein, which has a bipartite nuclear localization signal, was found to bind to IKKα, a kinase responsible for phosphorylation of interferon regulatory factor (IRF)7. This interaction caused relocation of a large proportion of IKKα from the cytoplasm to the nucleus. Studies using ORF4b and IKKα mutants demonstrated that ORF4b protein inhibited IKKα-mediated IRF7 phosphorylation by sequestering IKKα in the nucleus and by impeding the phosphorylation process of cytoplasmic IKKα.


Assuntos
Quinase I-kappa B , Coronavírus da Síndrome Respiratória do Oriente Médio , Células Dendríticas/metabolismo , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Interferon-alfa/metabolismo , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , Sinais de Localização Nuclear/metabolismo , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/metabolismo , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo
17.
Process Saf Environ Prot ; 166: 368-383, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36034108

RESUMO

Over more than two years of global health crisis due to ongoing COVID-19 pandemic, Romania experienced a five-wave pattern. This study aims to assess the potential impact of environmental drivers on COVID-19 transmission in Bucharest, capital of Romania during the analyzed epidemic period. Through descriptive statistics and cross-correlation tests applied to time series of daily observational and geospatial data of major outdoor inhalable particulate matter with aerodynamic diameter ≤ 2.5 µm (PM2.5) or ≤ 10 µm (PM10), nitrogen dioxide (NO2), ozone (O3), sulfur dioxide (SO2), carbon monoxide (CO), Aerosol Optical Depth at 550 nm (AOD) and radon (222Rn), we investigated the COVID-19 waves patterns under different meteorological conditions. This study examined the contribution of individual climate variables on the ground level air pollutants concentrations and COVID-19 disease severity. As compared to the long-term average AOD over Bucharest from 2015 to 2019, for the same year periods, this study revealed major AOD level reduction by ~28 % during the spring lockdown of the first COVID-19 wave (15 March 2020-15 May 2020), and ~16 % during the third COVID-19 wave (1 February 2021-1 June 2021). This study found positive correlations between exposure to air pollutants PM2.5, PM10, NO2, SO2, CO and 222Rn, and significant negative correlations, especially for spring-summer periods between ground O3 levels, air temperature, Planetary Boundary Layer height, and surface solar irradiance with COVID-19 incidence and deaths. For the analyzed time period 1 January 2020-1 April 2022, before and during each COVID-19 wave were recorded stagnant synoptic anticyclonic conditions favorable for SARS-CoV-2 virus spreading, with positive Omega surface charts composite average (Pa/s) at 850 mb during fall- winter seasons, clearly evidenced for the second, the fourth and the fifth waves. These findings are relevant for viral infections controls and health safety strategies design in highly polluted urban environments.

18.
Viruses ; 14(8)2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-36016365

RESUMO

The majority of Kenya's > 3 million camels have antibodies against Middle East respiratory syndrome coronavirus (MERS-CoV), although human infection in Africa is rare. We enrolled 243 camels aged 0−24 months from 33 homesteads in Northern Kenya and followed them between April 2018 to March 2020. We collected and tested camel nasal swabs for MERS-CoV RNA by RT-PCR followed by virus isolation and whole genome sequencing of positive samples. We also documented illnesses (respiratory or other) among the camels. Human camel handlers were also swabbed, screened for respiratory signs, and samples were tested for MERS-CoV by RT-PCR. We recorded 68 illnesses among 58 camels, of which 76.5% (52/68) were respiratory signs and the majority of illnesses (73.5% or 50/68) were recorded in 2019. Overall, 124/4692 (2.6%) camel swabs collected from 83 (34.2%) calves in 15 (45.5%) homesteads between April−September 2019 screened positive, while 22 calves (26.5%) recorded reinfections (second positive swab following ≥ 2 consecutive negative tests). Sequencing revealed a distinct Clade C2 virus that lacked the signature ORF4b deletions of other Clade C viruses. Three previously reported human PCR positive cases clustered with the camel infections in time and place, strongly suggesting sporadic transmission to humans during intense camel outbreaks in Northern Kenya.


Assuntos
Infecções por Coronavirus , Coronavírus da Síndrome Respiratória do Oriente Médio , Animais , Anticorpos Antivirais , Camelus , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/veterinária , Surtos de Doenças , Humanos , Quênia/epidemiologia , Zoonoses
19.
Eur J Radiol Open ; 9: 100438, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35996746

RESUMO

Objectives: When diagnosing Coronavirus disease 2019(COVID-19), radiologists cannot make an accurate judgments because the image characteristics of COVID-19 and other pneumonia are similar. As machine learning advances, artificial intelligence(AI) models show promise in diagnosing COVID-19 and other pneumonias. We performed a systematic review and meta-analysis to assess the diagnostic accuracy and methodological quality of the models. Methods: We searched PubMed, Cochrane Library, Web of Science, and Embase, preprints from medRxiv and bioRxiv to locate studies published before December 2021, with no language restrictions. And a quality assessment (QUADAS-2), Radiomics Quality Score (RQS) tools and CLAIM checklist were used to assess the quality of each study. We used random-effects models to calculate pooled sensitivity and specificity, I2 values to assess heterogeneity, and Deeks' test to assess publication bias. Results: We screened 32 studies from the 2001 retrieved articles for inclusion in the meta-analysis. We included 6737 participants in the test or validation group. The meta-analysis revealed that AI models based on chest imaging distinguishes COVID-19 from other pneumonias: pooled area under the curve (AUC) 0.96 (95 % CI, 0.94-0.98), sensitivity 0.92 (95 % CI, 0.88-0.94), pooled specificity 0.91 (95 % CI, 0.87-0.93). The average RQS score of 13 studies using radiomics was 7.8, accounting for 22 % of the total score. The 19 studies using deep learning methods had an average CLAIM score of 20, slightly less than half (48.24 %) the ideal score of 42.00. Conclusions: The AI model for chest imaging could well diagnose COVID-19 and other pneumonias. However, it has not been implemented as a clinical decision-making tool. Future researchers should pay more attention to the quality of research methodology and further improve the generalizability of the developed predictive models.

20.
Biotechnol Prog ; 38(6): e3292, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35932092

RESUMO

Severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and the current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are the most impactful coronaviruses in human history, especially the latter, which brings revolutionary changes to human vaccinology. Due to its high infectivity, the virus spreads rapidly throughout the world and was declared a pandemic in March 2020. A vaccine would normally take more than 10 years to be developed. As such, there is no vaccine available for SARS-CoV and MERS-CoV. Currently, 10 vaccines have been approved for emergency use by World Health Organization (WHO) against SARS-CoV-2. Virus-like particle (VLP)s are nanoparticles resembling the native virus but devoid of the viral genome. Due to their self-adjuvanting properties, VLPs have been explored extensively for vaccine development. However, none of the approved vaccines against SARS-CoV-2 was based on VLP and only 4% of the vaccine candidates in clinical trials were based on VLPs. In the current review, we focused on discussing the major advances in the development of VLP-based vaccine candidates against the SARS-CoV, MERS-CoV, and SARS-CoV-2, including those in clinical and pre-clinical studies, to give a comprehensive overview of the VLP-based vaccines against the coronaviruses.


Assuntos
COVID-19 , Coronavírus da Síndrome Respiratória do Oriente Médio , Vacinas de Partículas Semelhantes a Vírus , Vacinas Virais , Humanos , SARS-CoV-2 , Vacinas contra COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...