Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Chem Biodivers ; 21(5): e202400033, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38488267

RESUMO

In this research, the extract of Ephedra intermedia Schrenk & C.A.Mey. was encapsulated using the mini-emulsion polymerization method based on methyl methacrylate polymers with a nanometer size. The encapsulated extract was characterized using different analytical techniques. Furthermore, the loading efficiency and release of the plant extract were examined. FT-IR spectroscopy confirmed the formation of an expectational product. The TEM and SEM imaging showed a spherical morphology for the prepared encapsulated extract. The average size of poly-methyl-methacrylate nanoparticles containing Ephedra extract was found to be approximately 47 nm. The extract loading efficiency and encapsulation efficiency test demonstrated a dose-depending behavior on E. intermedia extract for both analyses, which is highly advantageous for traversing biological barriers. The release assay shows a controlled release for the extract at phosphate buffer solution (PBS). A 38 % release was calculated after 36 hours. The results obtained from the present study reveal that encapsulating the plant extract is a suitable alternative to control and increase their medicinal properties.


Assuntos
Emulsões , Ephedra , Extratos Vegetais , Polimerização , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Emulsões/química , Humanos , Ephedra/química , Tamanho da Partícula , Metanol/química , Nanopartículas/química , Liberação Controlada de Fármacos
2.
Angew Chem Int Ed Engl ; 63(20): e202402747, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38488767

RESUMO

In this study, some copper catalysts used for atom transfer radical polymerization (ATRP) were explored as efficient anti-tumor agents. The aqueous solution of copper-containing nanoparticles with uniform spheric morphology was in situ prepared through a copper-catalyzed activator generated by electron transfer (AGET) ATRP in water. Nanoparticles were then directly injected into tumor-bearing mice for antitumor chemotherapy. The copper nanodrugs had prolonged blood circulation time and enhanced accumulation at tumor sites, thus showing potent antitumor activity. This work provides a novel strategy for precise and large-scale preparation of copper nanodrugs with high antitumor activity.


Assuntos
Antineoplásicos , Cobre , Polimerização , Cobre/química , Animais , Camundongos , Antineoplásicos/química , Antineoplásicos/farmacologia , Humanos , Catálise , Nanopartículas Metálicas/química , Linhagem Celular Tumoral , Radicais Livres/química , Nanopartículas/química
3.
Ultrason Sonochem ; 101: 106666, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37922718

RESUMO

In this article, a new system employing an ultrasonic microreactor coupled with a tubular reactor is presented for the continuous generation of polymer nanoparticles. The continuous generation of cross-linked polymer nanoparticles utilizing the monomer butyl methacrylate and the cross-linker ethylene glycol dimethacrylate is demonstrated. Firstly, the miniemulsion polymerization of a monomer-in-water miniemulsion is studied in a batch system. Secondly, a coiled tubular reactor is employed for the continuous polymerization of the miniemulsion generated by an ultrasonic microreactor. Finally, the influence of monomer volume fraction and surfactant concentration on the synthesized polymer nanoparticles is studied. Polymer particles in a size range of 50-250 nm are synthesized and a high polymerization conversion is achieved utilizing the system demonstrated in this article.

4.
Nanomaterials (Basel) ; 13(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36985940

RESUMO

Enclosed nanoscale volumes, i.e., confined spaces, represent a fascinating playground for the controlled synthesis of inorganic materials, albeit their role in determining the synthetic outcome is currently not fully understood. Herein, we address the synthesis of MoO3 nano- and microrods with hexagonal section in inverse miniemulsion droplets and batch conditions, evaluating the effects of spatial confinement offered by miniemulsion droplets on their crystallization. Several synthetic parameters were systematically screened and their effect on the crystal structure of h-MoO3, as well as on its size, size distribution and morphology, were investigated. Moreover, a direct insight on the crystallization pathway of MoO3 in both synthetic conditions and as a function of synthetic parameters was provided by an in situ time-resolved SAXS/WAXS study, that confirmed the role of miniemulsion confined space in altering the stepwise process of the formation of h-MoO3.

5.
Polymers (Basel) ; 15(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36987366

RESUMO

Discoloration of wood coatings due to fungal growth negatively affects the aesthetic properties of the coatings, and new ways to control fungal growth on coatings are needed. For this reason, silver nanoparticles (AgNPs) have been incorporated in acrylic latexes as antifungal agents. Using miniemulsion polymerization, latexes were prepared with two types of initiators (hydrophilic and hydrophobic) to assess the influence of the initiator type on AgNPs dispersion, both within the latex particles and the dry film. In addition, the impact of NP dispersion on resistance to black-stain fungi (Aureobasidium pullulans) was also evaluated. Inductively coupled plasma optical emission spectroscopy (ICP-OES) analysis indicates that acrylic latexes prepared with azobisisobutyronitrile (AIBN) as the initiator contain more AgNPs than those prepared with potassium persulfate (KPS). Cryo-TEM and SEM analyses show that the distribution of the AgNPs within the polymer particles is influenced by the nature of the initiator. When AIBN, a hydrophobic initiator, is used, the AgNPs appear to be closer to the surface of the polymer particles and more evenly distributed. However, the antifungal efficiency of the AgNPs-embedded latexes against A. pullulans is found to be higher when KPS is used, despite this initiator leading to a smaller amount of incorporated AgNPs and a less uniform dispersion of the nanoparticles.

6.
Materials (Basel) ; 16(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36837094

RESUMO

The demand for waterproof leather has been increasing, and environmentally friendly waterproof fatliquors have recently received increasing attention. In this work, two polymer nanoemulsions containing carboxyl groups were synthesized and used as waterproof fatliquors for chrome-tanned leather. First, a reactive emulsifier (C12-Na) was prepared using itaconic anhydride and lauryl alcohol. Subsequently, two polymer nanoemulsions were prepared through mini-emulsion polymerization with C12-Na as the emulsifier, 4,4'-azobis (4-cyanovaleric acid) as the initiator, and lauryl acrylate (LA)/stearyl acrylate (SA) as monomers; these were named PLA and PSA. PLA and PSA were characterized using FT-IR, a Zetasizer, and GPC. It was found that the critical micellar concentration (CMC) of C12-Na was 2.34 mmol/L, which could reduce the surface tension of water to 26.61 mN/m. The average particle sizes of PLA and PSA were 53.39 and 67.90 nm, respectively. The maeser flexes of leather treated with PLA and PSA were 13928 and 19492 at a 5% dosage, respectively, and the contact angles reached 148.4° and 150.3°, respectively; these values were both higher than for a conventional fatliquor. Compared with PLA, the leather treated with PSA exhibited better fullness, and tensile and tearing strength. The prepared nanoemulsions have prospective applications in leather manufacturing as waterproof fatliquors.

7.
Macromol Rapid Commun ; 44(16): e2200611, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36098551

RESUMO

Multifunctional nanocarriers enhance the treatment efficacy for modern therapeutics and have gained increasing importance in biomedical research. Codelivery of multiple bioactive molecules enables synergistic therapies. Coencapsulation of cargo molecules into one nanocarrier system is challenging due to different physicochemical properties of the cargo molecules. Additionally, coencapsulation of multiple molecules simultaneously shall proceed with high control and efficiency. Orthogonal approaches for the preparation of nanocarriers are essential to encapsulate sensitive bioactive molecules while preserving their bioactivity. Preparation of nanocarriers by physical processes (i.e., self-assembly or coacervation) and chemical reactions (i.e., click reactions, polymerizations, etc.) are considered as orthogonal methods to most cargo molecules. This review shall act as a guideline to allow the reader to select a suitable preparation protocol for a desired nanocarrier system. This article helps to select for combinations of cargo molecules (hydrophilic-hydrophobic, small-macro, organic-inorganic) with nanocarrier material and synthesis protocols. The focus of this article lies on the coencapsulation of multiple cargo molecules into biocompatible and biodegradable nanocarriers prepared by orthogonal strategies. With this toolbox, the selection of a preparation method for a known set of cargo molecules to prepare the desired biodegradable and loaded nanocarrier shall be provided.


Assuntos
Portadores de Fármacos , Nanopartículas , Portadores de Fármacos/química , Nanopartículas/química , Interações Hidrofóbicas e Hidrofílicas
8.
Polymers (Basel) ; 16(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38201765

RESUMO

This work focuses on the encapsulation of two organic phase change materials (PCMs), hexadecane and octadecane, through the formation of nanocapsules of the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) obtained by oxidative polymerization in miniemulsion. The energy storage capacity of nanoparticles is studied by preparing polymer films on supporting substrates. The results indicate that the prepared systems can store and later release thermal energy in the form of latent heat efficiently, which is of vital importance to increase the efficiency of future thermoelectric devices.

9.
Molecules ; 27(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36500534

RESUMO

Mosquitoes can be vectors of pathogens and transmit diseases to both animals and humans. Species of the genus Culex are part of the cycle of neglected diseases, especially Culex quinquefasciatus, which is an anthropophilic vector of lymphatic filariasis. Natural products can be an alternative to synthetic insecticides for vector control; however, the main issue is the poor water availability of some compounds from plant origin. In this context, nanoemulsions are kinetic stable delivery systems of great interest for lipophilic substances. The objective of this study was to investigate the larvicidal activity of the Hyptis suaveolens essential oil nanoemulsion on Cx. quinquefasciatus. The essential oil showed a predominance of monoterpenes with retention time (RT) lower than 15 min. The average size diameter of the emulsions (sorbitan monooleate/polysorbate 20) was ≤ 200 nm. The nanoemulsion showed high larvicidal activity in concentrations of 250 and 125 ppm. CL50 values were 102.41 (77.5253−149.14) ppm and 70.8105 (44.5282−109.811) ppm after 24 and 48 h, respectively. The mortality rate in the surfactant control was lower than 9%. Scanning micrograph images showed changes in the larvae's integument. This study achieved an active nanoemulsion on Cx. quinquefasciatus through a low-energy-input technique and without using potentially toxic organic solvents. Therefore, it expands the scope of possible applications of H. suaveolens essential oil in the production of high-added-value nanosystems for tropical disease vector control.


Assuntos
Aedes , Culex , Culicidae , Inseticidas , Lamiaceae , Óleos Voláteis , Humanos , Animais , Óleos Voláteis/farmacologia , Óleos Voláteis/análise , Larva , Mosquitos Vetores , Inseticidas/química , Extratos Vegetais/química , Folhas de Planta/química
10.
ACS Nano ; 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36472438

RESUMO

We describe here a method to decrease particle size of nanoparticles synthesized by miniemulsion polymerization. Small nanoparticles or nanocapsules were obtained by generating an osmotic pressure to induce the diffusion of monomer molecules from the dispersed phase of a miniemulsion before polymerization to an upper oil layer. The size reduction is dependent on the difference in concentration of monomer in the dispersed phase and in the upper oil layer and on the solubility of the monomer in water. By labeling the emulsion droplets with a copolymer of stearyl methacrylate and a polymerizable dye, we demonstrated that the migration of the monomer to the upper hexadecane layer relied on molecular diffusion rather than diffusion of monomer droplets to the oil layer. Moreover, surface tension measurements confirmed that the emulsions were still in the miniemulsion regime and not in the microemulsion regime. The particle size can be tuned by controlling the duration during which the miniemulsion stayed in contact with the hexadecane layer, the interfacial area between the miniemulsion and the hexadecane layer and by the concentration of surfactant. Our method was applied to reduce the size of polystyrene and poly(methyl methacrylate) nanoparticles, nanocapsules of a copolymer of styrene and methyl methacrylic acid, and silica nanocapsules. This work demonstrated that a successful reduction of nanoparticle size in the miniemulsion process can be achieved without using excess amounts of surfactant. The method relies on building osmotic pressure in oil droplets dispersed in water which acts as semipermeable membrane.

11.
Molecules ; 27(16)2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-36014411

RESUMO

To investigate the utility of acrylic monomers from various plant oils in adhesives manufacturing, 25-45 wt. % of high oleic soybean oil-based monomer (HOSBM) was copolymerized in a miniemulsion with commercially applied butyl acrylate (BA), methyl methacrylate (MMA), or styrene (St). The compositions of the resulting ternary latex copolymers were varied in terms of both "soft" (HOSBM, BA) and "rigid" (MMA or St) macromolecular fragments, while total monomer conversion and molecular weight of copolymers were determined after synthesis. For most latexes, results indicated the presence of lower and higher molecular weight fractions, which is beneficial for the material adhesive performance. To correlate surface properties and adhesive performance of HOSBM-based copolymer latexes, contact angle hysteresis (using water as a contact liquid) for each latex-substrate pair was first determined. The data showed that plant oil-based latexes exhibit a clear ability to spread and adhere once applied on the surface of materials differing by polarities, such as semicrystalline polyethylene terephthalate (PET), polypropylene (PP), bleached paperboard (uncoated), and tops coated with a clay mineral paperboard. The effectiveness of plant oil-based ternary latexes as adhesives was demonstrated on PET to PP and coated to uncoated paperboard substrates. As a result, the latexes with high biobased content developed in this study provide promising adhesive performance, causing substrate failure instead of cohesive/adhesive break in many experiments.


Assuntos
Adesivos , Látex , Adesivos/química , Látex/química , Metilmetacrilato , Óleos de Plantas , Polímeros/química , Óleo de Soja , Estireno
12.
ACS Appl Mater Interfaces ; 14(34): 39384-39395, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35972915

RESUMO

Fluorescent polymer nanomaterials with dynamic fluorescence properties hold great potential in many advanced applications, including but not limited to information encryption, adaptive camouflage, and biosensors. The key to improving the application value of materials is to establish an accurate control strategy for dynamic fluorescence behavior. Herein, we develop a core-shell engineering strategy to precisely and independently manipulate the dynamic fluorescence behavior through the shell polymeric matrix. The core-shell fluorescent polymer nanoparticles (CS-FPNPs) are constructed through a sequential process of miniemulsion polymerization and seeded emulsion polymerization. Taking advantage of the core-shell structure, the rigid core matrix ensures the strong initial emission of AIE units, while the photoisomerization behavior of spiropyrane (SP) units is delicately and independently regulated by the rigidness of the shell matrix. Thereby, CS-FPNPs exhibit bright time-dependent reversible dynamic fluorescence behavior under alternating UV/vis irradiation. Benefited from the excellent processability and film formation ability, we have successfully applied CS-FPNPs to dynamic decorative painting, warning labels, and dynamic QR code security. Impressively, the fluorescence manipulation strategy based on core-shell engineering allows the independent regulation of specific luminescent units in complicated emission systems to accurately embody designed emission behavior.

13.
Adv Exp Med Biol ; 1357: 43-82, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35583640

RESUMO

The extensive knowledge in the miniemulsion technique used in biocatalysis applications by the authors allowed the development of drug delivery systems that constitutes the LipNanoCar technology core for the production of lipid nanoemulsions and solid lipid nanoparticles. The LipNanoCar technology, together with adequate formulations of different oils, fatty acids, surfactants, and temperature, allows the entrapment of several bioactive and therapeutic compounds in lipid nanoparticles for cosmetic, nutrition, and pharmaceutical applications.The LIpNanoCar technology allowed lipid nanoparticles production with average sizes ranging from 100 to 300 nm and Zeta Potentials between -55 and -20 mV. Concomitantly, high entrapment or encapsulation efficiencies (%EE) were achieved, as illustrated in this work for ß-carotene and vitamins derivatives (>85%) for cosmetic application, and for antibiotics currently used in chemotherapy, like rifampicin (69-85%) and pyrazinamide (14-29%) against Mycobacterium tuberculosis (TB), and ciprofloxacin (>65%) and tobramycin (~100%) in Cystic Fibrosis (CF) respiratory infections therapy. Ciprofloxacin presented, for example, a quick-release from the lipid nanoparticles using a dialysis tubing (96% in the first 7 h), but slower than the free antibiotic (95% in the first 3 h). This result suggests that ciprofloxacin is loaded near the external surface of the lipid nanoparticles.The toxicity and validation of entrapment of antibiotics in lipid nanoparticles for Cystic Fibrosis therapy were assessed using Caenorhabditis elegans as an animal model of bacterial infection. Fluorescence microscopy of an entrapped fluorescent dye (DiOC) confirmed the uptake of the lipid nanoparticles by ingestion, and their efficacy was successfully tested in C. elegans. Burkholderia contaminans IST408 and Burkholderia cenocepacia K56-2 infections were tested as model bacterial pathogens difficult to eradicate in Cystic Fibrosis respiratory diseases.


Assuntos
Fibrose Cística , Nanopartículas , Infecções por Pseudomonas , Animais , Antibacterianos/uso terapêutico , Caenorhabditis elegans , Ciprofloxacina/uso terapêutico , Fibrose Cística/microbiologia , Lipossomos , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa , Tecnologia
14.
Polymers (Basel) ; 14(8)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35458337

RESUMO

We synthetized a new rod-coil block copolymer (BCP) based on the semiconducting polymerpoly({4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl}) (PTB7) and poly-4-vinylpyridine (P4VP), tailored to produce water-processable nanoparticles (WPNPs) in blend with phenyl-C71-butyric acid methyl ester (PC71BM). The copolymer PTB7-b-P4VP was completely characterized by means of two-dimensional nuclear magnetic resonance (2D-NMR), matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry (MS), size-exclusion chromatography (SEC), and differential scanning calorimetry (DSC) to confirm the molecular structure. The WPNPs were prepared through an adapted miniemulsion approach without any surfactants. Transmission electron microscopy (TEM) images reveal the nano-segregation of two active materials inside the WPNPs. The nanostructures appear spherical with a Janus-like inner morphology. PTB7 segregated to one side of the nanoparticle, while PC71BM segregated to the other side. This morphology was consistent with the value of the surface energy obtained for the two active materials PTB7-b-P4VP and PC71BM. The WPNPs obtained were deposited as an active layer of organic solar cells (OSCs). The films obtained were characterized by UV-Visible Spectroscopy (UV-vis), atomic force microscopy (AFM), and grazing incidence X-ray diffraction (GIXRD). J-V characteristics of the WPNP-based devices were measured by obtaining a power conversion efficiency of 0.85%. Noticeably, the efficiency of the WPNP-based devices was higher than that achieved for the devices fabricated with the PTB7-based BCP dissolved in chlorinated organic solvent.

15.
Nanomaterials (Basel) ; 12(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35214969

RESUMO

A rapid and one-pot synthesis of poly 3-thiopheneacetic acid (PTAA) functionalized polyurea polymer dots (Pdots) using polyethyleneimine and isophorone diisocyanate is reported. The one-pot mini-emulsion polymerization technique yielded Pdots with an average diameter of ~20 nm. The size, shape, and concentration of the surface functional groups could be controlled by altering the synthesis parameters such as ultrasonication time, concentration of the surfactant, and crosslinking agent, and the types of isocyanates utilized for the synthesis. Colloidal properties of Pdots were characterized using dynamic light scattering and zeta potential measurements. The spherical geometry of Pdots was confirmed by scanning electron microscopy. The Pdots were post-functionalized by 1,4,7,10 tetraazacyclododecane-1,4,7,10-tetraacetic acid for chelating gadolinium nanoparticles (Gd3+) that provide magnetic properties to the Pdots. Thus, the synthesized Pdots possess fluorescent and magnetic properties, imparted by PTAA and Gd3+, respectively. Fluorescence spectroscopy and microscopy revealed that the synthesized dual-functional Gd3+-Pdots exhibited detectable fluorescent signals even at lower concentrations. Magnetic levitation experiments indicated that the Gd3+-Pdots could be easily manipulated via an external magnetic field. These findings illustrate that the dua- functional Gd3+-Pdots could be potentially utilized as fluorescent reporters that can be magnetically manipulated for bioimaging applications.

16.
Carbohydr Polym ; 278: 118935, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34973753

RESUMO

It is an urgent task to exploit effective antimicrobial agents due to the rise of drug-resistant pathogens. Herein, antimicrobial quaternized chitosan/Ag composite nanogels (QCS/Ag CNGs) with tunable properties were fabricated through inverse miniemulsion technique with a high encapsulation efficiency of NH2-Ag nanoparticles (NPs). The QCS/Ag CNGs possess superior broad-spectrum antimicrobial activity and low biotoxicity, via synergistic sterilization of Ag NPs and QCS. Furthermore, the NH2-Ag NPs were chemically linked to the QCS matrix through Schiff base reactions, and the QCS/Ag CNGs have reactive groups, making it possible to obtain durable antibacterial cotton fabrics. Thus, QCS/Ag CNGs modified cotton fabrics exhibited laundering durability of antimicrobial effect after 100 washing cycles without sacrificing other inherent properties of cotton fabrics. Our study provides a facile and controllable method to construct polymer/inorganic CNGs to address the urgent need for antibacterial agents/fabrics.


Assuntos
Antibacterianos/farmacologia , Quitosana/farmacologia , Fibra de Algodão , Nanopartículas Metálicas/química , Nanogéis/química , Prata/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Candida albicans/efeitos dos fármacos , Configuração de Carboidratos , Quitosana/química , Emulsões , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Prata/química , Staphylococcus aureus/efeitos dos fármacos
17.
J Colloid Interface Sci ; 612: 628-638, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35026568

RESUMO

HYPOTHESIS: Conventional synthesis methods of polymeric nanoparticles as drug delivery systems are based on the use of large amounts of organic solvents, hence requiring several steps for the obtaining of waterborne dispersions. In view of the need for new environmentally friendly methods, emulsion polymerization and their related techniques are a good alternative for the production of monodispersed waterborne dispersions of biodegradable nanoparticles in a cleaner, reproducible and faster manner. EXPERIMENTS: Herein, the miniemulsion polymerization technique at low temperature using poly(2-ethyl-2-oxazoline) as surfactant has been developed for poly(hydroxyethyl methacrylate-lactic acid) and poly(hydroxyethyl methacrylate-lactic-co-glycolic acid) nanoparticles. Additionally, the anti-inflammatory drug BRP-187 was used to proof the potential of this technique in the encapsulation of hydrophobic drugs. The effect of the oligomer composition on the miniemulsion and the final dispersion stability, the final oligomer conversion, the polymer particle size and the drug encapsulation efficiency has been studied. FINDINGS: Monodisperse spherical particles ranging between 170 and 250 nm in diameter in long term non-toxic stable waterborne dispersions were obtained with drug encapsulation efficiencies up to 66%. In contrast with conventional synthesis techniques, residual organic solvents are completely removed and, thus, the potential of redox initiated miniemulsion polymerization to obtain stable drug loaded poly(hydroxyethyl methacrylate-lactic acid) and poly(hydroxyethyl methacrylate-lactic-co-glycolic acid) nanoparticles in an efficient and fast manner is shown.


Assuntos
Nanopartículas , Anti-Inflamatórios , Emulsões , Tamanho da Partícula , Poliésteres , Polimerização , Temperatura
18.
ACS Appl Mater Interfaces ; 13(33): 39042-39054, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34375073

RESUMO

In developing a cluster-nanocarrier design, as a magnetic resonance imaging contrast agent, we have investigated the enhanced relaxivity of a manganese and iron-oxo cluster grafted within a porous polystyrene nanobead with increased relaxivity due to a higher surface area. The synthesis of the cluster-nanocarrier for the cluster Mn8Fe4O12(O2CC6H4CH═CH2)16(H2O)4, cross-linked with polystyrene (the nanocarrier), under miniemulsion conditions is described. By including a branched hydrophobe, iso-octane, the resulting nanobeads are porous and ∼70 nm in diameter. The increased surface area of the nanobeads compared to nonporous nanobeads leads to an enhancement in relaxivity; r1 increases from 3.8 to 5.2 ± 0.1 mM-1 s-1, and r2 increases from 11.9 to 50.1 ± 4.8 mM-1 s-1, at 9.4 teslas, strengthening the potential for T1 and T2 imaging. Several metrics were used to assess stability, and the porosity produced no reduction in metal stability. Synchrotron X-ray fluorescence microscopy was used to demonstrate that the nanobeads remain intact in vivo. In depth, physicochemical characteristics were determined, including extensive pharmacokinetics, in vivo imaging, and systemic biodistribution analysis.


Assuntos
Materiais Biocompatíveis/química , Meios de Contraste/química , Ferro/química , Manganês/química , Nanopartículas/química , Compostos Organometálicos/química , Poliestirenos/química , Animais , Materiais Biocompatíveis/farmacocinética , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular , Sobrevivência Celular/efeitos dos fármacos , Meios de Contraste/farmacocinética , Reagentes de Ligações Cruzadas/química , Humanos , Imageamento por Ressonância Magnética , Camundongos Endogâmicos BALB C , Imagem Multimodal , Porosidade , Espectrometria por Raios X , Distribuição Tecidual
19.
ACS Appl Mater Interfaces ; 13(28): 33574-33583, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34247480

RESUMO

Dynamic color-tunable fluorescent materials are sought-after materials in many applications. Here, we report a polymeric matrix-regulated fluorescence strategy via synergistically modulating aggregation-induced emission (AIE) properties and the Förster resonance energy transfer (FRET) process, which leads to tunable dynamic variation of color and photoluminescence (PL) intensity of fluorescent polymeric nanoparticles (FRET-PNPs) driven by photoirradiation. The FRET-PNPs were prepared via a facile one-pot miniemulsion copolymerization with the tetraphenyletheyl (TPE) and spiropyran (SP) units chemically bonded to the polymer matrix. The FRET-PNPs exhibited dynamic variation of fluorescence properties (colors and PL intensity) under photoirradiation on the timescale of minutes. The variation of the polymer matrix composition could deliberately influence the AIE property of TPE units and the isomerization process of SP to merocyanine units, which further affect the FRET efficiency of FRET-PNPs and, eventually, lead to versatile dynamic fluorescence variation. The dynamic fluorescence property as well as the excellent processability and film formation ability of FRET-PNPs allowed for diverse applications, such as warning labels, dynamic decorative painting, and multiple information encryption. Without sophisticated molecular design or tedious preparation processes, a new perspective for the design, fabrication, and performance optimization of fluorescent nanomaterials for innovative applications was proposed.

20.
Chemistry ; 27(57): 14168-14178, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34320258

RESUMO

Liquid-crystalline polymer particles prepared by classical polymerization techniques are receiving increased attention as promising candidates for use in a variety of applications including micro-actuators, structurally colored objects, and absorbents. These particles have anisotropic molecular order and liquid-crystalline phases that distinguish them from conventional polymer particles. In this minireview, the preparation of liquid-crystalline polymer particles from classical suspension, (mini-)emulsion, dispersion, and precipitation polymerization reactions are discussed. The particle sizes, molecular orientations, and liquid-crystalline phases produced by each technique are summarized and compared. We conclude with a discussion of the challenges and prospects of the preparation of liquid-crystalline polymer particles by classical polymerization techniques.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...