Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.515
Filtrar
1.
Cell Rep Med ; 5(7): 101648, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38986624

RESUMO

Low migratory dendritic cell (DC) levels pose a challenge in cancer immune surveillance, yet their impact on tumor immune status and immunotherapy responses remains unclear. We present clinical evidence linking reduced migratory DC levels to immune-cold tumor status, resulting in poor patient outcomes. To address this, we develop an autologous DC-based nanovaccination strategy using patient-derived organoid or cancer cell lysate-pulsed cationic nanoparticles (cNPs) to load immunogenic DC-derived microvesicles (cNPcancer cell@MVDC). This approach transforms immune-cold tumors, increases migratory DCs, activates T cells and natural killer cells, reduces tumor growth, and enhances survival in orthotopic pancreatic and lung cancer models, surpassing conventional methods. In vivo imaging reveals superior cNPcancer cell@MVDC accumulation in tumors and lymph nodes, promoting immune cell infiltration. Mechanistically, cNPs enrich mitochondrial DNA, enhancing cGAS-STING-mediated DC activation and migration. Our strategy shifts cold tumors to a hot state, enhancing antitumor immunity for potential personalized cancer treatments.


Assuntos
Vacinas Anticâncer , DNA Mitocondrial , Células Dendríticas , Neoplasias Pulmonares , Nanopartículas , Neoplasias Pancreáticas , Células Dendríticas/imunologia , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/patologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/patologia , Humanos , Animais , DNA Mitocondrial/genética , DNA Mitocondrial/imunologia , Camundongos , Vacinas Anticâncer/imunologia , Nanopartículas/química , Linhagem Celular Tumoral , Imunoterapia/métodos , Feminino , Movimento Celular , Camundongos Endogâmicos C57BL
2.
Front Physiol ; 15: 1384966, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39015222

RESUMO

Aging is a complex process that features a functional decline in many organelles. Various factors influence the aging process, such as chromosomal abnormalities, epigenetic changes, telomere shortening, oxidative stress, and mitochondrial dysfunction. Mitochondrial dysfunction significantly impacts aging because mitochondria regulate cellular energy, oxidative balance, and calcium levels. Mitochondrial integrity is maintained by mitophagy, which helps maintain cellular homeostasis, prevents ROS production, and protects against mtDNA damage. However, increased calcium uptake and oxidative stress can disrupt mitochondrial membrane potential and permeability, leading to the apoptotic cascade. This disruption causes increased production of free radicals, leading to oxidative modification and accumulation of mitochondrial DNA mutations, which contribute to cellular dysfunction and aging. Mitochondrial dysfunction, resulting from structural and functional changes, is linked to age-related degenerative diseases. This review focuses on mitochondrial dysfunction, its implications in aging and age-related disorders, and potential anti-aging strategies through targeting mitochondrial dysfunction.

3.
Clin Nephrol Case Stud ; 12: 42-47, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38957708

RESUMO

We investigated the pathogenesis of a perihilar variant of focal segmental glomerulosclerosis detected by kidney biopsy in a 16-year-old male. The disease was refractory to steroid therapy, and at the second kidney biopsy, abnormal mitochondrial proliferation was newly observed in the podocytes. The patient also developed late-onset hearing loss and had a family history of diabetes, and genetic testing confirmed the mitochondrial DNA mutation 3243A>G (48%). Eight months after hemodialysis was started, encephalopathy occurred presumably due to rapid dehydration. After changing dialysis into continuous ambulatory peritoneal dialysis, encephalopathy was resolved, but the patient developed myocardial hypertrophy, probably because of the myocardial overreaction to congestion. A myocardial biopsy showed mitochondrial proliferation in the myocardium. After renal transplantation from his mother with a heteroplasmy of 4%, the cardiomyopathy improved, and the renal function has remained stable for 4 years. We speculated that the abnormal mitochondrial morphology in the kidney and heart may be characteristic of mitochondrial genetic disease, and renal transplantation from the mother with a low heteroplasmy was considered desirable for mitochondrial nephropathy with poor prognosis.

4.
Ann Surg Oncol ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38985229

RESUMO

BACKGROUND: Colorectal cancer (CRC) patients with mismatch repair-deficient/microsatellite instability-high (dMMR/MSI-H) status are conventionally perceived as unresponsive to adjuvant chemotherapy (ACT). The mitochondrial transcription factor A (TFAM) is required for mitochondrial DNA copy number (mtDNA-CN) expression. In light of previous findings indicating that the frequent truncating-mutation of TFAM affects the chemotherapy resistance of MSI CRC cells, this study aimed to explore the potential of mtDNA-CN as a predictive biomarker for ACT efficacy in dMMR CRC patients. METHODS: Levels of MtDNA-CN were assessed using quantitative real-time polymerase chain reaction (qRT-PCR) in a cohort of 308 CRC patients with dMMR comprising 180 stage II and 128 stage III patients. Clinicopathologic and therapeutic data were collected. The study examined the association between mtDNA-CN levels and prognosis, as well as the impact of ACT benefit on dMMR CRC patients. Subgroup analyses were performed based mainly on tumor stage and mtDNA-CN level. Kaplan-Meier and Cox regression models were used to evaluate the effect of mtDNA-CN on disease-free survival (DFS) and overall survival (OS). RESULTS: A substantial reduction in mtDNA-CN expression was observed in tumor tissue, and higher mtDNA-CN levels were correlated with improved DFS (73.4% vs 85.7%; P = 0.0055) and OS (82.5% vs 90.3%; P = 0.0366) in dMMR CRC patients. Cox regression analysis identified high mtDNA-CN as an independent protective factor for DFS (hazard ratio [HR] 0.547; 95% confidence interval [CI] 0.321-0.934; P = 0.0270) and OS (HR 0.520; 95% CI 0.272-0.998; P = 0.0492). Notably, for dMMR CRC patients with elevated mtDNA-CN, ACT significantly improved DFS (74.6% vs 93.4%; P = 0.0015) and OS (81.0% vs 96.7%; P = 0.0017), including those with stage II or III disease. CONCLUSIONS: The mtDNA-CN levels exhibited a correlation with the prognosis of stage II or III CRC patients with dMMR. Elevated mtDNA-CN emerges as a robust prognostic factor, indicating improved ACT outcomes for stages II and III CRC patients with dMMR. These findings suggest the potential utility of mtDNA-CN as a biomarker for guiding personalized ACT treatment in this population.

5.
Front Oncol ; 14: 1394699, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993645

RESUMO

Endometrial cancer (EC) is a devastating and common disease affecting women's health. The NCI Surveillance, Epidemiology, and End Results Program predicted that there would be >66,000 new cases in the United States and >13,000 deaths from EC in 2023, and EC is the sixth most common cancer among women worldwide. Regulation of mitochondrial metabolism plays a role in tumorigenesis. In proliferating cancer cells, mitochondria provide the necessary building blocks for biosynthesis of amino acids, lipids, nucleotides, and glucose. One mechanism causing altered mitochondrial activity is mitochondrial DNA (mtDNA) mutation. The polyploid human mtDNA genome is a circular double-stranded molecule essential to vertebrate life that harbors genes critical for oxidative phosphorylation plus mitochondrial-derived peptide genes. Cancer cells display aerobic glycolysis, known as the Warburg effect, which arises from the needs of fast-dividing cells and is characterized by increased glucose uptake and conversion of glucose to lactate. Solid tumors often contain at least one mtDNA substitution. Furthermore, it is common for cancer cells to harbor mixtures of wild-type and mutant mtDNA genotypes, known as heteroplasmy. Considering the increase in cancer cell energy demand, the presence of functionally relevant carcinogenesis-inducing or environment-adapting mtDNA mutations in cancer seems plausible. We review 279 EC tumor-specific mtDNA single nucleotide variants from 111 individuals from different studies. Many transition mutations indicative of error-prone DNA polymerase γ replication and C to U deamination events were present. We examine the spectrum of mutations and their heteroplasmy and discuss the potential biological impact of recurrent, non-synonymous, insertion, and deletion mutations. Lastly, we explore current EC treatments, exploiting cancer cell mitochondria for therapy and the prospect of using mtDNA variants as an EC biomarker.

6.
Psychiatry Res ; 339: 116063, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39003800

RESUMO

The object of this study is test whether mitochondrial blood-based biomarkers are associated with markers of metabolic syndrome in bipolar disorder, hypothesizing higher lactate but unchanged cell-free circulating mitochondrial DNA levels in bipolar disorder patients with metabolic syndrome. In a cohort study, primary testing from the FondaMental Advanced Centers of Expertise for bipolar disorder (FACE-BD) was conducted, including 837 stable bipolar disorder patients. The I-GIVE validation cohort consists of 237 participants: stable and acute bipolar patients, non-psychiatric controls, and acute schizophrenia patients. Multivariable regression analyses show significant lactate association with triglycerides, fasting glucose and systolic and diastolic blood pressure. Significantly higher levels of lactate were associated with presence of metabolic syndrome after adjusting for potential confounding factors. Mitochondrial-targeted metabolomics identified distinct metabolite profiles in patients with lactate presence and metabolic syndrome, differing from those without lactate changes but with metabolic syndrome. Circulating cell-free mitochondrial DNA was not associated with metabolic syndrome. This thorough analysis mitochondrial biomarkers indicate the associations with lactate and metabolic syndrome, while showing the mitochondrial metabolites can further stratify metabolic profiles in patients with BD. This study is relevant to improve the identification and stratification of bipolar patients with metabolic syndrome and provide potential personalized-therapeutic opportunities.

7.
Animals (Basel) ; 14(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38998023

RESUMO

The evidential value of an mtDNA match between biological remains and their potential donor is determined by the random match probability of the haplotype. This probability is based on the haplotype's population frequency estimate. Consequently, implementing a population study representative of the population relevant to a forensic case is vital to correctly evaluating the evidence. The emerging number of poaching cases and the limited availability of such data emphasizes the need for an improved fallow deer mtDNA population databank for forensic purposes, including targeting the entire mitochondrial control region. By sequencing a 945-base-pair-long segment of the mitochondrial control region in 138 animals from five populations in Hungary, we found four different haplotypes, including one which had not yet been described. Our results, supplemented with data already available from previous research, do not support the possibility of determining the population of origin, although some patterns of geographical separation can be distinguished. Estimates of molecular diversity indicate similarly low mtDNA diversity (Hd = 0.565 and π = 0.002) compared to data from other countries. The calculated random match probability of 0.547 shows a high probability of coincidence and, therefore, a limited capacity for exclusion. Our results indicate that despite the overall low genetic diversity of mtDNA within the Hungarian fallow deer samples, a pattern of differentiation among the regions is present, which can have relevance from a forensic point of view.

8.
Matrix Biol ; 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39009171

RESUMO

Post-mitotic, non-proliferative dermal fibroblasts have crucial functions in maintenance and restoration of tissue homeostasis. They are involved in essential processes such as wound healing, pigmentation and hair growth, but also tumor development and aging-associated diseases. These processes are energetically highly demanding and error prone when mitochondrial damage occurs. However, mitochondrial function in fibroblasts and the influence of mitochondrial dysfunction on fibroblast-specific demands are still unclear. To address these questions, we created a mouse model in which accelerated cell-specific mitochondrial DNA (mtDNA) damage accumulates. We crossed mice carrying a dominant-negative mutant of the mitochondrial replicative helicase Twinkle (RosaSTOP system) with mice that express fibroblast-specific Cre Recombinase (Collagen1A2 CreERT) which can be activated by Tamoxifen (TwinkleFIBRO). Thus, we are able to induce mtDNA deletions and duplications in specific cells, a process which resembles the physiological aging process in humans, where this damage accumulates in all tissues. Upon proliferation in vitro, Tamoxifen induced Twinkle fibroblasts deplete most of their mitochondrial DNA which, although not disturbing the stoichiometry of the respiratory chain complexes, leads to reduced ROS production and mitochondrial membrane potential as well as an anti-inflammatory and anti-fibrotic profile of the cells. In Sodium Azide treated wildtype fibroblasts, without a functioning respiratory chain, we observe the opposite, a rather pro-inflammatory and pro-fibrotic signature. Upon accumulation of mitochondrial DNA mutations in vivo the TwinkleFIBRO mice are protected from fibrosis development induced by intradermal Bleomycin injections. This is due to dampened differentiation of the dermal fibroblasts into α-smooth-muscle-actin positive myofibroblasts in TwinkleFIBRO mice. We thus provide evidence for striking differences of the impact that mtDNA mutations have in contrast to blunted mitochondrial function in dermal fibroblasts and skin homeostasis. These data contribute to improved understanding of mitochondrial function and dysfunction in skin and provide mechanistic insight into potential targets to treat skin fibrosis in the future.

9.
Neurosci Lett ; 836: 137897, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004114

RESUMO

The efficacy of vitamin C in age-related hearing loss, i.e., presbycusis, remains debatable. On a separate note, inflammation induced by the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome is involved in the progression of presbycusis. In this study, we investigated the effect of vitamin C on male C57BL/6 mice's presbycusis and NLRP3 inflammasome. The results showed that vitamin C treatment improved hearing, reduced the production of inflammatory factors, inhibited NLRP3 inflammasome activation, and decreased cytosolic mitochondrial DNA (mtDNA) in the C57BL/6 mouse cochlea, inferior colliculus, and auditory cortex. According to this study, vitamin C protects auditory function in male C57BL/6 presbycusis mice through reducing mtDNA release, inhibiting the NLRP3 inflammasome activation in the auditory pathway. Our study provides a theoretical basis for applying vitamin C to treat presbycusis.

10.
One Health ; 18: 100675, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39010966

RESUMO

Fascioliasis is a snail-borne zoonotic disease with impact on the development of human subjects and communities. It is caused by two liver-infecting fasciolid trematode species, the globally-distributed Fasciola hepatica and the Africa/Asia-restricted but more pathogenic, larger F. gigantica. Fasciola gigantica is the cause of endemicity in livestock throughout the warm lowlands from Pakistan to southeastern Asia since old times. Human fascioliasis is emerging in this region at present, with an increase of patient reports. Complete sequences of rDNA ITS-1 and ITS-2 spacers and mtDNA nad1 and cox1 genes were obtained from fasciolid eggs found in the endoscopic bile aspirate from a patient of Arunachal Pradesh, northeastern India. Egg measurements, pronounced ITS heterozygosity, and pure F. gigantica mtDNA haplotypes demonstrate an infection by a recent F. gigantica-like hybrid. Sequence identities and similarities with the same DNA markers found in livestock from Bangladesh prove the human-infecting fasciolid to present identical ITSs and nad1 haplotypes and only one silent transversion in cox1 when compared to a widely-spread combined haplotype in animals. In northeastern India and Bangladesh, human fascioliasis emergence appears linked to increasing livestock prevalences due to: ruminant importation from other countries because of the increasing demand of rapidly growing human populations; numerous livestock movements, including transborder corridors, due to the uncontrolled small-scale household farming practices; and man-made introduction of F. hepatica with imported livestock into an area originally endemic for F. gigantica leading to frequent hybridization. Sequences, phylogenetic trees, and networks indicate that the origins of intermediate/hybrid fasciolids and factors underlying human infection risk differ in eastern and western South Asia. The emergence scenario in southern China and Vietnam resembles the aforementioned of northeastern India and Bangladesh, whereas in Pakistan it is linked to increasing monsoon rainfall within climate change combined with an impact of an extensive irrigation system. Past human-guided movements of pack animals along the western Grand Trunk Road and the eastern Tea-Horse Road explain the F. gigantica mtDNA results obtained. Physicians should be aware about these emerging scenarios, clinical pictures, diagnostic techniques and treatment. Government authorities must appropriately warn health professionals, ensure drug availability and improve livestock control.

11.
Iran J Parasitol ; 19(2): 140-152, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39011532

RESUMO

Background: Current study was designed to provide a better insight into the circulating genotypes, genetic diversity, and population structure of Echinococcus spp. between southeast of Iran and Pakistan. Methods: From Jun 2020 to Dec 2020, 46 hydatid cysts were taken from human (n: 6), camel (n: 10), goat (n: 10), cattle (n: 10) and sheep (n: 10) in various cities of Sistan and Baluchestan Province of Iran, located at the neighborhood of Pakistan. DNA samples were extracted, amplified, and subjected to sequence analysis of cox1 and nad1 genes. Results: The phylogeny inferred by the Maximum Likelihood algorithm indicated that G1 genotype (n: 19), G3 genotype (n: 14) and G6 genotype (n: 13) assigned into their specific clades. The diversity indices showed a moderate (nad1: Hd: 0.485) to high haplotype diversity (cox1: Hd: 0.867) of E. granulosus s.s. (G1/G3) and low nucleotide diversity. The negative value of Tajima's D and Fu's Fs test displayed deviation from neutrality indicating a recent population expansion. A parsimonious network of the haplotypes of cox1 displayed star-like features in the overall population containing IR9/PAK1/G1, IR2/PAK2/G3 and IR18/G6 as the most common haplotypes. A pairwise fixation index (Fst) indicated that E. granulosus s.s. populations are genetically moderate differentiated between southeast of Iran and Pakistan. The extension of haplotypes PAK18/G1 (sheep) and PAK26/G1 (cattle) toward Iranian haplogroup revealed that there is dawn of Echinococcus flow due to a transfer of alleles between mentioned populations through transport of livestock or their domestication. Conclusion: The current findings strengthen our knowledge concerning the evolutionary paradigms of E. granulosus in southeastern borders of Iran and is effective in controlling of hydatidosis.

12.
J Pak Med Assoc ; 74(6): 1099-1103, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38948979

RESUMO

OBJECTIVE: To determine the relationship between eating habits and mitochondrial deoxyribonucleic acid copy number in adult cases of eveningness chronotypes. Methods: The cross-sectional, analytical study was conducted from September 2022 to June 2023 at the Physiology Department of the Islamic International Medical College, Rawalpindi, in collaboration with the Genetic Resource Centre, Rawalpindi, Pakistan, and comprised adult subjects who were assessed using the Morningness-Eveningness Questionnaire. The participants' eating habits were assessed using the Healthy Eating Assessment Questionnaire, and on they were divided into those with healthy eating habits in group A and those with unhealthy eating habits in group B. Deoxyribonucleic acid was extracted using the Chelex method, the mitochondrial deoxyribonucleic acid copy number of all participants was quantified using quantitative polymerase chain reaction. Data was analysed using SPSS 27. RESULTS: Of the 80 subjects, 30(37.5%) were males and 50(62.5%) were females. The overall mean age was 24.27±6.91 years (range: 18-45 years). There were 40(50%) subjects in each group. The mean mitochondrial deoxyribonucleic acid copy number in group A was 2.74±0.14 compared to 2.26±0.25 in group B (p<0.001). Conclusion: Subjects with healthy eating habits exhibited higher mitochondrial deoxyribonucleic acid copy numbers, indicating reduced damage to mitochondrial deoxyribonucleic acid.


Assuntos
Variações do Número de Cópias de DNA , DNA Mitocondrial , Comportamento Alimentar , Humanos , Feminino , Masculino , Adulto , DNA Mitocondrial/genética , Comportamento Alimentar/fisiologia , Estudos Transversais , Pessoa de Meia-Idade , Adulto Jovem , Adolescente , Ritmo Circadiano/genética , Paquistão , Inquéritos e Questionários , Dieta Saudável , Cronotipo
14.
Zookeys ; 1205: 223-238, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966573

RESUMO

Most of Switzerland is inhabited by the nominotypical subspecies of the barred grass snake (Natrixhelveticahelvetica), which is characterized by mitochondrial DNA lineage E. Only in the northeast of the country, the common grass snake (N.natrix) occurs and hybridizes with N.h.helvetica in a narrow contact zone. However, we discovered that in southern and western Switzerland barred grass snakes representing another mtDNA lineage (lineage C) are widely distributed. Lineage C is typical for Alpine populations of the southern subspecies N.h.sicula. Our microsatellite analyses of the Swiss samples revealed differences between the two subspecies and also a substructure with two clusters in each subspecies. Furthermore, we discovered a contact and hybrid zone of N.h.helvetica and N.h.sicula along the northern shore of Lake Geneva and also confirm that interbreeding with alien common grass snakes (N.n.moreotica, mtDNA lineage 7) occurs there. This finding is of concern for nature conservation and measures should be taken to prevent further genetic pollution. Using morphometrics, we found no differences between the two subspecies of N.helvetica, while N.natrix was slightly distinct from N.helvetica.

15.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000167

RESUMO

Skeletal muscle aging and sarcopenia result in similar changes in the levels of aging markers. However, few studies have examined cancer sarcopenia from the perspective of aging. Therefore, this study investigated aging in cancer sarcopenia and explored its causes in vitro and in vivo. In mouse aging, in vitro cachexia, and mouse cachexia models, skeletal muscles showed similar changes in aging markers including oxidative stress, fibrosis, reduced muscle differentiation potential, and telomere shortening. Furthermore, examination of mitochondrial DNA from skeletal muscle revealed a 5 kb deletion in the major arc; truncation of complexes I, IV, and V in the electron transport chain; and reduced oxidative phosphorylation (OXPHOS). The mouse cachexia model demonstrated high levels of high-mobility group box-1 (HMGB1) and tumor necrosis factor-α (TNFα) in cancer ascites. Continuous administration of neutralizing antibodies against HMGB1 and TNFα in this model reduced oxidative stress and abrogated mitochondrial DNA deletion. These results suggest that in cancer sarcopenia, mitochondrial oxidative stress caused by inflammatory cytokines leads to mitochondrial DNA damage, which in turn leads to decreased OXPHOS and the promotion of aging.


Assuntos
Envelhecimento , Dano ao DNA , DNA Mitocondrial , Proteína HMGB1 , Músculo Esquelético , Estresse Oxidativo , Sarcopenia , Animais , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Camundongos , Envelhecimento/metabolismo , Envelhecimento/genética , Sarcopenia/metabolismo , Sarcopenia/patologia , Sarcopenia/genética , Proteína HMGB1/metabolismo , Proteína HMGB1/genética , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/genética , Caquexia/metabolismo , Caquexia/patologia , Caquexia/genética , Caquexia/etiologia , Fosforilação Oxidativa , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patologia , Masculino , Camundongos Endogâmicos C57BL
16.
Reprod Biol Endocrinol ; 22(1): 83, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020374

RESUMO

BACKGROUND: Besides adenine triphosphate (ATP) production for sustaining motility, the mitochondria of sperm also host other critical cellular functions during germ cell development and fertilization including calcium homeostasis, generation of reactive oxygen species (ROS), apoptosis, and in some cases steroid hormone biosynthesis. Normal mitochondrial membrane potential with optimal mitochondrial performance is essential for sperm motility, capacitation, acrosome reaction, and DNA integrity. RESULTS: Defects in the sperm mitochondrial function can severely harm the fertility potential of males. The role of sperm mitochondria in fertilization and its final fate after fertilization is still controversial. Here, we review the current knowledge on human sperm mitochondria characteristics and their physiological and pathological conditions, paying special attention to improvements in assistant reproductive technology and available treatments to ameliorate male infertility. CONCLUSION: Although mitochondrial variants associated with male infertility have potential clinical use, research is limited. Further understanding is needed to determine how these characteristics lead to adverse pregnancy outcomes and affect male fertility potential.


Assuntos
Fertilidade , Infertilidade Masculina , Mitocôndrias , Espermatozoides , Humanos , Masculino , Infertilidade Masculina/fisiopatologia , Infertilidade Masculina/metabolismo , Espermatozoides/metabolismo , Espermatozoides/fisiologia , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Fertilidade/fisiologia , Motilidade dos Espermatozoides/fisiologia , Feminino , Espécies Reativas de Oxigênio/metabolismo , Animais
17.
Mitochondrial DNA B Resour ; 9(7): 892-896, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39027116

RESUMO

Freshwater mussels perform important ecological functions in ecosystems, such as water filtration and energy cycling. Unlike marine bivalves, freshwater mussels have unique characteristics including internal fertilization and parental care. Some freshwater mussels are facing a high risk of extinction due to several factors such as climate change and habitat loss. Potomida semirugata (Lamarck, 1819) is one of the freshwater mussel species with a high risk of extinction and listed as Endangered in the Red List of the International Union for Conservation of Nature. Here, we present the first F-type mitogenome sequence of P. semirugata. The genome was sequenced on an Illumina high-throughput platform from a P. semirugata specimen collected from the Tersakan River (Turkey). The 16,093 bp mitochondrial genome sequence contains 13 protein-coding genes, 22 transfer RNAs, and two ribosomal RNAs. Phylogenetic analysis placed P. semirugata in the Lamprotulini clade with Potomida littoralis, as expected. Potomida semirugata is a poorly studied species and the genomic resource provided here will contribute to a better understanding of its biological characterization.

18.
Drug Discov Today ; 29(8): 104086, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38960132

RESUMO

Circulating cell-free mitochondrial DNA (ccf-mtDNA) has emerged as a promising biomarker, with potential implications for disease diagnosis. Changes in mtDNA, such as deletions, mutations or variations in the number of copies, have been associated with mitochondrial disorders, heart diseases, cancer and age-related non-communicable diseases. Previous methods, such as polymerase chain reaction-based approaches, next-generation sequencing and imaging-based techniques, have shown improved accuracy in identifying rare mtDNA variants or mutations, but they have limitations. This article explains the basic principles and benefits of using planar optical waveguide-based detection devices, which represent an advanced approach in the field of sensing.

19.
J Am Acad Dermatol ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39025264

RESUMO

BACKGROUND: Ultraviolet-A radiation (UVA) contributes to photoaging/photocarcinogenesis by generating inflammation and oxidative damage. Current photoprotective strategies are limited by availability/utilization of UVA filters, highlighting an unmet need. Cannabidiol (CBD), having anti-inflammatory/antioxidant properties via regulation of NFR-2, HMOX1, and PPAR-y, could potentially mitigate damage from UVA exposure. OBJECTIVE/METHODS: Prospective, single-center, pilot clinical trial (NCT05279495). Nineteen participants applied nano-CBD (nCBD) or vehicle (VC) cream to randomized, blinded buttock sites twice-daily for 14-days, then treated sites were irradiated with ≤3x UVA minimal erythema dose. After 24-hours, punch biopsies were obtained for histology, immunohistochemistry, real-time PCR. RESULTS: At 24-hours, 21% of participants had less observed erythema on CBD-treated skin than VC skin. Histologically, nCBD-treated skin had reduced UVA-induced epidermal hyperplasia than VC (p=0.01). Immunohistochemistry detected reduced cytoplasmic/nuclear 8-oxo-guanine glycosylase 1 staining in nCBD-treated skin compared to VC (p<0.01). Quantitative mtDNA PCR demonstrated UVA-induced deletion of ND4 (proxy:4977bp deletion; p=0.003) and ND1 (proxy:3895bp deletion; p=0.002) were significantly reduced by in vivo nCBD treatment compared to VC. LIMITATIONS: Sample size. CONCLUSION: Topically applied nCBD cream reduced UVA-induced formation of a frequent mutagenic nuclear DNA base lesion and protected against mtDNA mutations associated with UVA-induced skin aging. This trial is the first to identify UV-protective capacity of CBD-containing topicals in humans.

20.
Clin Ther ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39025716

RESUMO

PURPOSE: Doxecitine (deoxycytidine [dC]) and doxribtimine (deoxythymidine [dT]) powder for oral solution is a 1:1 mixture consisting of equal weights 2'-deoxycytidine (dC) and 2'-deoxythymidine (dT). Doxecitine and doxribtimine (referred to as study drug) is being developed as treatment for people with thymidine kinase 2 deficiency (TK2d). TK2d is an ultra-rare mitochondrial DNA depletion and multiple deletion syndrome characterized by progressive muscle weakness and premature death. Here, we report the pharmacokinetics (PK), the effect of food, and the tolerability of 2 study drug formulations, evaluated in 2 studies (Study MT-1621-103 and Study MT-1621-105). METHODS: A sequential, ascending 1:1 dose ratio was used for both studies (n = 14 healthy volunteer adult participants/study). After a 28-day (Study MT-1621-103) or 35-day (Study MT-1621-105) screening period, participants fasted overnight and sequentially received 86.6, 173.4, and 266.6 mg/kg study drug with a 48-hour PK assessment period and 48-hour washout period between doses. After 48 additional hours, participants were fed a high-fat meal and received 266.6 mg/kg study drug. Plasma and urine were collected before dosing and throughout the 48-hour PK period. dC and dT concentrations were analyzed by validated liquid chromatography mass spectrometry methods. Safety was evaluated throughout the study and at 2-week follow-up. FINDINGS: Plasma levels of dC and dT increased rapidly and dose-dependently above endogenous levels for both formulations, with a median Tmax of 1 to 2 hours under fasting conditions. Post-dose plasma dC and dT concentrations declined to nearly pre-dose (baseline) concentrations after 8 to 12 hours, suggesting rapid elimination. Peak and extent of plasma exposure (baseline-corrected Cmax and AUC0-t) tended to increase less than dose-proportionally for plasma dC and greater than dose-proportionally for plasma dT. PK variability of dC and dT was moderate-to-high (>30%). Administration with food delayed Tmax to a median of 2 to 4 hours and increased plasma exposure: baseline-corrected plasma dC Cmax and AUC0-t increased by ∼79% to 96% and 137% to 250%, respectively, and dT Cmax and AUC0-t increased by 27% to 29% and 74% to 89%, respectively, indicating a significant food effect. Renal clearance played a minor role in the elimination of systemically available intact dC and dT (Fe<0.3%). The study drug was generally well tolerated; most frequent study-drug-related adverse events (AEs) were diarrhea (n = 4/29, 14%) and dizziness (n = 3/29, 10%). Most AEs were mild-to-moderate in severity. IMPLICATIONS: Doxecitine and doxribtimine are orally bioavailable in the intended clinical dose range. The PK profile supports a formulation consisting of equal doses of doxecitine and doxribtimine, a 3-times-daily dosing regimen, and administration with food.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA