Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 209
Filtrar
1.
Int J Legal Med ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39164574

RESUMO

The inference of body fluids and tissues is critical in reconstructing crime scenes and inferring criminal behaviors. Nevertheless, present methods are incompatible with conventional DNA genotyping, and additional testing might result in excessive consumption of forensic scene materials. This study aims to investigate the feasibility of distinguishing common body fluids/tissues through the difference in mitochondrial DNA copy number (mtDNAcn). Four types of body fluids/tissues were analyzed in this study - hair, saliva, semen, and skeletal muscle. MtDNAcn was estimated by dividing the read counts of mitochondrial DNA to that of nuclear DNA (RRmt/nu). Results indicated that there were significant differences in RRmt/nu between different body fluids/tissues. Specifically, hair samples exhibited the highest RRmt/nu (log10RRmt/nu: 4.3 ± 0.28), while semen samples showed the lowest RRmt/nu (log10RRmt/nu: -0.1 ± 0.28). RRmt/nu values for DNA samples without extraction were notably higher (approximately 2.9 times) than those obtained after extraction. However, no significant difference in RRmt/nu was observed between various age and gender groups. Hierarchical clustering and Kmeans clustering analyses showed that body fluids/tissues of the same type clustered closely to each other and could be inferred with high accuracy. In conclusion, this study demonstrated that the simultaneous detection of nuclear and mitochondrial DNA made it possible to perform conventional DNA analyses and body fluid/tissue inference at the same time, thus killing two birds with one stone. Furthermore, mtDNAcn has the potential to serve as a novel and promising biomarker for the identification of body fluids/tissues.

2.
Respir Res ; 25(1): 321, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39174953

RESUMO

BACKGROUND: Mitochondria is prone to oxidative damage by endogenous and exogenous sources of free radicals, including particulate matter (PM). Given the role of mitochondria in inflammatory disorders, such as asthma and chronic obstructive pulmonary disease, we hypothesized that supplementation of vitamin D may play a protective role in PM-induced mitochondrial oxidative damages of human bronchial epithelial BEAS-2B cells. METHODS: BEAS-2B cells were pretreated with 1,25(OH)2D3, an active form of vitamin D, for 1 h prior to 24-hour exposure to PM (SRM-1648a). Oxidative stress was measured by flow cytometry. Mitochondrial functions including mitochondrial membrane potential, ATP levels, and mitochondrial DNA copy number were analyzed. Additionally, mitochondrial ultrastructure was examined using transmission electron microscopy. Intracellular and mitochondrial calcium concentration changes were assessed using flow cytometry based on the expression of Fluo-4 AM and Rhod-2 AM, respectively. Pro-inflammatory cytokines, including IL-6 and MCP-1, were quantified using ELISA. The expression levels of antioxidants, including SOD1, SOD2, CAT, GSH, and NADPH, were determined. RESULTS: Our findings first showed that 24-hour exposure to PM led to the overproduction of reactive oxygen species (ROS) derived from mitochondria. PM-induced mitochondrial oxidation resulted in intracellular calcium accumulation, particularly within mitochondria, and alterations in mitochondrial morphology and functions. These changes included loss of mitochondrial membrane integrity, disarrayed cristae, mitochondrial membrane depolarization, reduced ATP production, and increased mitochondrial DNA copy number. Consequently, PM-induced mitochondrial damage triggered the release of certain inflammatory cytokines, such as IL-6 and MCP-1. Similar to the actions of mitochondrial ROS inhibitor MitoTEMPO, 1,25(OH)2D3 conferred protective effects on mtDNA alterations, mitochondrial damages, calcium dyshomeostasis, thereby decreasing the release of certain inflammatory cytokines. We found that greater cellular level of 1,25(OH)2D3 upregulated the expression of enzymatic (SOD1, SOD2, and CAT) and non-enzymatic (GSH and NADPH) antioxidants to modulate cellular redox homeostasis. CONCLUSION: Our study provides new evidence that 1,25(OH)2D3 acts as an antioxidant, enhancing BEAS-2B antioxidant responses to regulate mitochondrial ROS homeostasis and mitochondrial function, thereby enhancing epithelial defense against air pollution exposure.


Assuntos
Brônquios , Cálcio , Células Epiteliais , Homeostase , Mitocôndrias , Material Particulado , Humanos , Material Particulado/toxicidade , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mitocôndrias/ultraestrutura , Cálcio/metabolismo , Brônquios/efeitos dos fármacos , Brônquios/metabolismo , Brônquios/patologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Células Epiteliais/ultraestrutura , Homeostase/efeitos dos fármacos , Homeostase/fisiologia , Linhagem Celular , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Vitamina D/farmacologia , Espécies Reativas de Oxigênio/metabolismo
3.
Front Cell Infect Microbiol ; 14: 1413103, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39113822

RESUMO

Background: Sepsis represents a severe manifestation of infection often accompanied by metabolic disorders and mitochondrial dysfunction. Notably, mitochondrial DNA copy number (mtDNA-CN) and the expression of specific mitochondrial genes have emerged as sensitive indicators of mitochondrial function. To investigate the utility of mitochondrial gene expression in peripheral blood cells for distinguishing severe infections and predicting associated outcomes, we conducted a prospective cohort study. Methods: We established a prospective cohort comprising 74 patients with non-sepsis pneumonia and 67 cases of sepsis induced by respiratory infections, aging from 2 to 6 years old. We documented corresponding clinical data and laboratory information and collected blood samples upon initial hospital admission. Peripheral blood cells were promptly isolated, and both total DNA and RNA were extracted. We utilized absolute quantification PCR to assess mtDNA-CN, as well as the expression levels of mt-CO1, mt-ND1, and mt-ATP6. Subsequently, we extended these comparisons to include survivors and non-survivors among patients with sepsis using univariate and multivariate analyses. Receiver operating characteristic (ROC) curves were constructed to assess the diagnostic potential. Results: The mtDNA-CN in peripheral blood cells was significantly lower in the sepsis group. Univariate analysis revealed a significant reduction in the expression of mt-CO1, mt-ND1, and mt-ATP6 in patients with sepsis. However, multivariate analysis did not support the use of mitochondrial function in peripheral blood cells for sepsis diagnosis. In the comparison between pediatric sepsis survivors and non-survivors, univariate analysis indicated a substantial reduction in the expression of mt-CO1, mt-ND1, and mt-ATP6 among non-survivors. Notably, total bilirubin (TB), mt-CO1, mt-ND1, and mt-ATP6 levels were identified as independent risk factors for sepsis-induced mortality. ROC curves were then established for these independent risk factors, revealing areas under the curve (AUCs) of 0.753 for TB (95% CI 0.596-0.910), 0.870 for mt-CO1 (95% CI 0.775-0.965), 0.987 for mt-ND1 (95% CI 0.964-1.000), and 0.877 for mt-ATP6 (95% CI 0.793-0.962). Conclusion: MtDNA-CN and mitochondrial gene expression are closely linked to the severity and clinical outcomes of infectious diseases. Severe infections lead to impaired mitochondrial function in peripheral blood cells. Notably, when compared to other laboratory parameters, the expression levels of mt-CO1, mt-ND1, and mt-ATP6 demonstrate promising potential for assessing the prognosis of pediatric sepsis.


Assuntos
DNA Mitocondrial , Curva ROC , Sepse , Humanos , Sepse/sangue , Sepse/diagnóstico , Sepse/mortalidade , Pré-Escolar , Feminino , Masculino , DNA Mitocondrial/genética , Estudos Prospectivos , Prognóstico , Criança , Mitocôndrias/genética , Mitocôndrias/metabolismo , NADH Desidrogenase/genética , ATPases Mitocondriais Próton-Translocadoras/genética , Células Sanguíneas/metabolismo , Genes Mitocondriais , Expressão Gênica , Pneumonia/diagnóstico , Pneumonia/sangue , Valor Preditivo dos Testes
4.
Front Immunol ; 15: 1448558, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39206185

RESUMO

Objective: The level of mitochondrial DNA copy number (mtDNA-CN) in peripheral blood cells had been identified to be involved in several immune and cardiovascular diseases. Thus, the aim of this study is to evaluate the levels of mtDNA-CN in Kawasaki disease (KD) and to construct a nomogram prediction for coronary artery lesions in children with KD. Methods: One hundred and forty-four children with KD diagnosed from March 2020 to March 2022 were involved in the study. The clinical features and laboratory test parameters of these children were assessed between the KD and normal groups. Univariable and multivariable analyses were performed sequentially to identify the essential risk factors. Subsequently, a nomogram prediction was constructed. Results: A total of 274 children were included in the analysis. Of these, 144 (52.6%) represented the KD group. Peripheral blood DNA mtDNA qPCR showed that the -log value of mtDNA-CN in the KD group (6.67 ± 0.34) was significantly higher than that in the healthy group (6.40 ± 0.18) (P<0.001). The area under the ROC curve for mtDNA-CN in distinguishing KD was 0.757. MtDNA-CN (OR = 13.203, P = 0.009, 95% CI 1.888-92.305), RBC (OR = 5.135, P = 0.014, 95% CI 1.394-18.919), and PA (OR = 0.959, P = 0.014, 95% CI 0.927-0.991) were identified as independent risk factors for coronary artery dilation in children with KD. Finally, the nomogram predictive was established based on the results of multivariable analysis, demonstrating the satisfied prediction and calibration values. Conclusion: The results of this study revealed that mtDNA-CN could be used as a biomarker in predicting the development of KD. Furthermore, the higher the mtDNA-CN was significantly associated with coronary artery dilation in KD.


Assuntos
Variações do Número de Cópias de DNA , DNA Mitocondrial , Síndrome de Linfonodos Mucocutâneos , Nomogramas , Humanos , Síndrome de Linfonodos Mucocutâneos/genética , Síndrome de Linfonodos Mucocutâneos/diagnóstico , Masculino , DNA Mitocondrial/genética , Feminino , Pré-Escolar , Lactente , Vasos Coronários/patologia , Criança , Fatores de Risco , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/diagnóstico , Doença da Artéria Coronariana/sangue , Curva ROC , Biomarcadores/sangue
5.
J Affect Disord ; 366: 370-378, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39197553

RESUMO

BACKGROUND: Mitochondria is essential for cellular energy production, oxidative stress, and apoptosis. Mitochondrial DNA (mtDNA) encodes essential proteins for mitochondrial function. Although several studies have explored the association between changes in mtDNA copy number (mtDNA-CN) and risk of mental disorders, the results remain debated. This study used a bidirectional two-sample Mendelian randomization (MR) analysis to examine the genetic causality between mtDNA-CN and mental disorders. METHODS: Genome-wide association study (GWAS) data for mtDNA-CN were sourced from UK biobank, involving 383,476 European cases. GWAS data for seven mental disorders-attention deficit/hyperactivity disorder, autism spectrum disorder (ASD), schizophrenia, bipolar disorder, major depressive disorder, anxiety, and obsessive-compulsive disorder-were primarily obtained from the Psychiatric Genomics Consortium. Causal associations were assessed using inverse variance weighting, with sensitivity analyses via the weighted median and MR-Egger methods. Reverse MR considered the seven mental disorders as exposures. All analyses were replicated with additional mtDNA-CN GWAS data from 465,809 individuals in the Heart and Ageing Research in Genomic Epidemiology consortium and the UK Biobank. RESULTS: Forward MR observed a 27 % decrease in the risk of ASD per standard deviation increase in genetically determined blood mtDNA-CN (OR = 0.73, 95%CI: 0.58-0.92, p = 0.002), with no causal effects on other disorders. Additionally, reverse MR did not indicate a causal association between any of the mental disorders and mtDNA-CN. Validation analyses corroborated these findings, indicating their robustness. CONCLUSIONS: Our study supports the potential causal association between mtDNA-CN and the risk of ASD, suggesting that mtDNA-CN could serve as a promising biomarker for early screening of ASD.


Assuntos
Variações do Número de Cópias de DNA , DNA Mitocondrial , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Transtornos Mentais , Humanos , DNA Mitocondrial/genética , DNA Mitocondrial/sangue , Transtornos Mentais/genética , Transtornos Mentais/epidemiologia , Transtornos Mentais/sangue , Feminino , Predisposição Genética para Doença , Masculino
6.
Ann Surg Oncol ; 31(9): 6320-6330, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38985229

RESUMO

BACKGROUND: Colorectal cancer (CRC) patients with mismatch repair-deficient/microsatellite instability-high (dMMR/MSI-H) status are conventionally perceived as unresponsive to adjuvant chemotherapy (ACT). The mitochondrial transcription factor A (TFAM) is required for mitochondrial DNA copy number (mtDNA-CN) expression. In light of previous findings indicating that the frequent truncating-mutation of TFAM affects the chemotherapy resistance of MSI CRC cells, this study aimed to explore the potential of mtDNA-CN as a predictive biomarker for ACT efficacy in dMMR CRC patients. METHODS: Levels of MtDNA-CN were assessed using quantitative real-time polymerase chain reaction (qRT-PCR) in a cohort of 308 CRC patients with dMMR comprising 180 stage II and 128 stage III patients. Clinicopathologic and therapeutic data were collected. The study examined the association between mtDNA-CN levels and prognosis, as well as the impact of ACT benefit on dMMR CRC patients. Subgroup analyses were performed based mainly on tumor stage and mtDNA-CN level. Kaplan-Meier and Cox regression models were used to evaluate the effect of mtDNA-CN on disease-free survival (DFS) and overall survival (OS). RESULTS: A substantial reduction in mtDNA-CN expression was observed in tumor tissue, and higher mtDNA-CN levels were correlated with improved DFS (73.4% vs 85.7%; P = 0.0055) and OS (82.5% vs 90.3%; P = 0.0366) in dMMR CRC patients. Cox regression analysis identified high mtDNA-CN as an independent protective factor for DFS (hazard ratio [HR] 0.547; 95% confidence interval [CI] 0.321-0.934; P = 0.0270) and OS (HR 0.520; 95% CI 0.272-0.998; P = 0.0492). Notably, for dMMR CRC patients with elevated mtDNA-CN, ACT significantly improved DFS (74.6% vs 93.4%; P = 0.0015) and OS (81.0% vs 96.7%; P = 0.0017), including those with stage II or III disease. CONCLUSIONS: The mtDNA-CN levels exhibited a correlation with the prognosis of stage II or III CRC patients with dMMR. Elevated mtDNA-CN emerges as a robust prognostic factor, indicating improved ACT outcomes for stages II and III CRC patients with dMMR. These findings suggest the potential utility of mtDNA-CN as a biomarker for guiding personalized ACT treatment in this population.


Assuntos
Biomarcadores Tumorais , Neoplasias Colorretais , Variações do Número de Cópias de DNA , Reparo de Erro de Pareamento de DNA , DNA Mitocondrial , Instabilidade de Microssatélites , Estadiamento de Neoplasias , Humanos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/tratamento farmacológico , DNA Mitocondrial/genética , Feminino , Masculino , Quimioterapia Adjuvante , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Pessoa de Meia-Idade , Prognóstico , Taxa de Sobrevida , Idoso , Seguimentos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Adulto
7.
Sci Total Environ ; 941: 173767, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38844220

RESUMO

Epidemiologic studies have reported the relationships between perfluoroalkyl substances (PFASs) and breast cancer incidence, yet the underlying mechanisms are not well understood. This study aimed to elucidate the mediation role of mitochondrial DNA copy number (mtDNAcn) in the relationships between PFASs exposure and breast cancer risk. We conducted a case-cohort study within the Dongfeng-Tongji cohort, involving 226 incident breast cancer cases and a random sub-cohort (n = 990). Their plasma concentrations of six PFASs [including perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroheptanoic acid (PFHpA), perfluorooctane sulfonic acid (PFOS) and perfluorohexane sulfonic acid (PFHxS)], and peripheral blood levels of mtDNAcn, were detected at baseline by using ultraperformance liquid chromatography-tandem mass spectrometry and quantitative real-time PCR, respectively. Linear regression and Barlow-weighted Cox models were employed separately to assess the relationships of mtDNAcn with PFASs and breast cancer risk. Mediation analysis was further conducted to quantify the mediating effects of mtDNAcn on PFAS-breast cancer relationships. We observed increased blood mtDNAcn levels among participants with the highest PFNA and PFHpA exposure [Q4 vs. Q1, ß(95%CI) = 0.092(0.022, 0.162) and 0.091(0.022, 0.160), respectively], while no significant associations were observed of PFOA, PFDA, PFOS, or PFHxS with mtDNAcn. Compared to participants within the lowest quartile subgroup of mtDNAcn, those with the highest mtDNAcn levels exhibited a significantly increased risk of breast cancer and postmenopausal breast cancer [Q4 vs. Q1, HR(95%CI) = 3.34(1.80, 6.20) and 3.71(1.89, 7.31)]. Furthermore, mtDNAcn could mediate 14.6 % of the PFHpA-breast cancer relationship [Indirect effect, HR(95%CI) = 1.02(1.00, 1.05)]. Our study unveiled the relationships of PFNA and the short-chain PFHpA with mtDNAcn and the mediation role of mtDNAcn in the PFHpA-breast cancer association. These findings provided insights into the potential biological mechanisms linking PFASs to breast cancer risk.


Assuntos
Neoplasias da Mama , DNA Mitocondrial , Poluentes Ambientais , Fluorocarbonos , Fluorocarbonos/sangue , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/genética , Humanos , Feminino , Pessoa de Meia-Idade , Estudos Prospectivos , Poluentes Ambientais/sangue , Incidência , Ácidos Alcanossulfônicos/sangue , Caprilatos/sangue , Adulto , Variações do Número de Cópias de DNA , Exposição Ambiental/estatística & dados numéricos , China/epidemiologia , Estudos de Coortes , Estudos de Casos e Controles
8.
Front Pediatr ; 12: 1401737, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38938506

RESUMO

The mitochondrion is a multifunctional organelle that modulates multiple systems critical for homeostasis during pathophysiological stress. Variation in mitochondrial DNA (mtDNA) copy number (mtDNAcn), a key mitochondrial change associated with chronic stress, is an emerging biomarker for disease pathology and progression. mtDNAcn can be quantified from whole blood samples using qPCR to determine the ratio of mtDNA to nuclear DNA. However, the collection of blood samples in pediatric populations, particularly in infants and young children, can be technically challenging, yield much smaller volume samples, and can be distressing for the patients and their caregivers. Therefore, we have validated a mtDNAcn assay utilizing DNA from simple buccal swabs (Isohelix SK-2S) and report here it's performance in specimens from infants (age = <12 months). Utilizing qPCR to amplify ∼200 bp regions from two mitochondrial (ND1, ND6) and two nuclear (BECN1, NEB) genes, we demonstrated absolute (100%) concordance with results from low-pass whole genome sequencing (lpWGS). We believe that this method overcomes key obstacles to measuring mtDNAcn in pediatric populations and creates the possibility for development of clinical assays to measure mitochondrial change during pathophysiological stress.

9.
Int J Mol Sci ; 25(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38892250

RESUMO

Neurodegenerative diseases are progressive disorders that affect the central nervous system (CNS) and represent the major cause of premature death in the elderly. One of the possible determinants of neurodegeneration is the change in mitochondrial function and content. Altered levels of mitochondrial DNA copy number (mtDNA-CN) in biological fluids have been reported during both the early stages and progression of the diseases. In patients affected by neurodegenerative diseases, changes in mtDNA-CN levels appear to correlate with mitochondrial dysfunction, cognitive decline, disease progression, and ultimately therapeutic interventions. In this review, we report the main results published up to April 2024, regarding the evaluation of mtDNA-CN levels in blood samples from patients affected by Alzheimer's (AD), Parkinson's (PD), and Huntington's diseases (HD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS). The aim is to show a probable link between mtDNA-CN changes and neurodegenerative disorders. Understanding the causes underlying this association could provide useful information on the molecular mechanisms involved in neurodegeneration and offer the development of new diagnostic approaches and therapeutic interventions.


Assuntos
Variações do Número de Cópias de DNA , DNA Mitocondrial , Mitocôndrias , Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/genética , DNA Mitocondrial/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Doença de Huntington/genética , Doença de Huntington/patologia , Animais
10.
Nutrients ; 16(10)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38794655

RESUMO

The aim of this study was to assess the causal relationships between mineral metabolism disorders, representative of trace elements, and key aging biomarkers: telomere length (TL) and mitochondrial DNA copy number (mtDNA-CN). Utilizing bidirectional Mendelian randomization (MR) analysis in combination with the two-stage least squares (2SLS) method, we explored the causal relationships between mineral metabolism disorders and these aging indicators. Sensitivity analysis can be used to determine the reliability and robustness of the research results. The results confirmed that a positive causal relationship was observed between mineral metabolism disorders and TL (p < 0.05), while the causal relationship with mtDNA-CN was not significant (p > 0.05). Focusing on subgroup analyses of specific minerals, our findings indicated a distinct positive causal relationship between iron metabolism disorders and both TL and mtDNA-CN (p < 0.05). In contrast, disorders in magnesium and phosphorus metabolism did not exhibit significant causal effects on either aging biomarker (p > 0.05). Moreover, reverse MR analysis did not reveal any significant causal effects of TL and mtDNA-CN on mineral metabolism disorders (p > 0.05). The combination of 2SLS with MR analysis further reinforced the positive causal relationship between iron levels and both TL and mtDNA-CN (p < 0.05). Notably, the sensitivity analysis did not indicate significant pleiotropy or heterogeneity within these causal relationships (p > 0.05). These findings highlight the pivotal role of iron metabolism in cellular aging, particularly in regulating TL and sustaining mtDNA-CN, offering new insights into how mineral metabolism disorders influence aging biomarkers. Our research underscores the importance of trace element balance, especially regarding iron intake, in combating the aging process. This provides a potential strategy for slowing aging through the adjustment of trace element intake, laying the groundwork for future research into the relationship between trace elements and healthy aging.


Assuntos
DNA Mitocondrial , Análise da Randomização Mendeliana , Telômero , Humanos , DNA Mitocondrial/genética , Telômero/metabolismo , Minerais/metabolismo , Envelhecimento/genética , Variações do Número de Cópias de DNA , Oligoelementos/sangue , Ferro/metabolismo , Ferro/sangue , Biomarcadores/sangue
11.
Environ Sci Pollut Res Int ; 31(26): 38142-38152, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38789711

RESUMO

While mitochondria are susceptible to environmental detriments, little is known about potential associations between arsenic metabolites and mitochondria DNA copy number (mtDNAcn). We attempted to examine whether maternal urinary arsenic metabolite levels in different trimesters were related to neonatal cord blood mtDNAcn. We included 819 mother-newborn pairs embedded in an in-progress birth cohort survey performed from April 2014 to October 2016 in Wuhan, China. We determined maternal urinary arsenic species concentrations in different trimesters. We determined cord blood mtDNAcn using quantitative real-time polymerase chain reaction. In covariate-adjusted models, each one-unit increment of dimethylated arsenic (DMA) and total arsenic (TAs) in the third trimester was related to 8.43% (95% CI 1.13%, 16.26%) and 12.15% (95% CI 4.35%, 20.53%) increases in mtDNAcn, respectively. The dose-response trend with statistical significance was observed across tertiles of DMA and TAs in the third trimester with mtDNAcn (DMA percent changes (%Δ) = 25.60 (95% CI 6.73, 47.82), for the highest vs the lowest tertile (P = 0.02); TAs %Δ = 40.31 (95% CI 19.25, 65.10), for the highest vs the lowest tertile (P = 0.0002)). These findings may prove the relationships between prenatal arsenic species levels and neonatal mitochondrial dysfunction.


Assuntos
Arsênio , DNA Mitocondrial , Humanos , Feminino , Gravidez , Recém-Nascido , Adulto , Estudos de Coortes , Variações do Número de Cópias de DNA , Coorte de Nascimento , China , Exposição Materna , Sangue Fetal/química
12.
Metallomics ; 16(7)2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38772737

RESUMO

Accumulating evidence indicates that plasma metal levels may be associated with Type 2 diabetes mellitus (T2DM) incident risk. Mitochondrial function such as mitochondrial DNA copy number (mtDNA-CN) might be linked to metal exposure and physiological metabolism. Mediation analysis was conducted to determine the mediating roles of mtDNA-CN in the association between plasma metals and diabetes risk. In the present study, we investigated associations between plasma metals levels, mtDNA-CN, and T2DM incident in the elderly population with a 6-year follow-up (two times) study. Ten plasma metals [i.e. manganese, aluminum, calcium, iron, barium (Ba), arsenic, copper, selenium, titanium, and strontium] were measured using inductively coupled plasma mass spectrometry. mtDNA-CN was measured by real-time polymerase chain reaction. Multivariable linear regression and logistic regression analyses were carried out to estimate the relationship between plasma metal concentrations, mtDNA-CN, and T2DM incident risk in the current work. Plasma Ba deficiency and mtDNA-CN decline were associated with T2DM incident risk during the aging process. Meanwhile, plasma Ba was found to be positively associated with mtDNA-CN. Mitochondrial function mtDNA-CN demonstrated mediating effects in the association between plasma Ba deficiency and T2DM incident risk, and 49.8% of the association was mediated by mtDNA-CN. These findings extend the knowledge of T2DM incident risk factors and highlight the point that mtDNA-CN may be linked to plasma metal elements and T2DM incident risk.


Assuntos
Bário , Variações do Número de Cópias de DNA , DNA Mitocondrial , Diabetes Mellitus Tipo 2 , Humanos , DNA Mitocondrial/genética , DNA Mitocondrial/sangue , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/sangue , Masculino , Feminino , Idoso , Seguimentos , Bário/sangue , Fatores de Risco , Pessoa de Meia-Idade , Incidência
13.
Front Mol Biosci ; 11: 1362955, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572445

RESUMO

Introduction: Mitochondrial dysfunction may be one of the causes of inflammatory activation of monocytes and macrophages, which leads to excessive secretion of inflammatory mediators and the development of chronic inflammation. Aims: The study was aimed to evaluate the secretion of inflammatory cytokine tumor necrosis factor-α (TNF-α) in the primary culture of monocytes, and to analyze its relationship with the number of mitochondrial DNA (mtDNA) copies in the blood of patients with coronary heart disease (CHD) and obesity. Materials and methods: 108 patients with obesity and concomitant CHD and a control group of 25 participants were included in the study. CD14+ monocytes were isolated by a standard method in a ficoll-urographin gradient, followed by separation using magnetic particles. The number of mtDNA copies was estimated using qPCR. Results: It was demonstrated that the number of mtDNA copies was significantly increased in groups of patients with CHD and obesity + CHD in comparison with control group. mtDNA copy number positively correlated with basal and LPS-stimulated TNF-α secretion, the most significant correlation was found in the group of patients with CHD and obesity. Conclusion: Thus, the change in mtDNA copy number in CD14+ monocytes which indicates the presence of mitochondrial dysfunction, confirm the direct involvement of mitochondria in the violation of the inflammatory response of monocytes revealed in this study as an increased secretion of inflammatory cytokine TNF-α.

14.
Mitochondrion ; 77: 101887, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38663837

RESUMO

Telomere length (TL) and mitochondrial DNA copy number (mt-cn) are associated with embryonic development. Here, we investigated the correlation between TL and mt-cn in bovine embryos to determine whether TL regulates mt-cn. TL and mt-cn were closely correlated in embryos derived from six bulls. Treatment of embryos with a telomerase inhibitor (TMPyP) and siTERT shortened the TL and reduced mt-cn in blastocysts. RNA-sequencing of blastocysts developed with TMPyP revealed differentially expressed genes associated with transforming growth factor-ß1 signaling and inflammation. In conclusion, TL regulates mt-cn in embryos.


Assuntos
Blastocisto , Variações do Número de Cópias de DNA , Animais , Bovinos , Blastocisto/metabolismo , Blastocisto/efeitos dos fármacos , Telômero/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Masculino , Feminino , Homeostase do Telômero/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/genética , Desenvolvimento Embrionário/efeitos dos fármacos , Desenvolvimento Embrionário/genética
15.
Aging (Albany NY) ; 16(8): 7387-7404, 2024 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-38663933

RESUMO

Mitochondrial DNA (mtDNA) copy number and telomere length (TL) are dynamic factors that have been linked to the aging process in organisms. However, the causal relationship between these variables remains uncertain. In this research, instrumental variables (IVs) related to mtDNA copy number and TL were obtained from publicly available genome-wide association studies (GWAS). Through bidirectional Mendelian randomization (MR) analysis, we examined the potential causal relationship between these factors. The forward analysis, with mtDNA copy number as the exposure and TL as the outcome, did not reveal a significant effect (B=-0.004, P>0.05). On the contrary, upon conducting a reverse analysis, it was found that there exists a positive causal relationship (B=0.054, P<0.05). Sensitivity analyses further confirmed the reliability of these results. The outcomes of this study indicate a one-way positive causal relationship, indicating that telomere shortening in the aging process may lead to a decrease in mtDNA copy number, providing new perspectives on their biological mechanisms.


Assuntos
Envelhecimento , Variações do Número de Cópias de DNA , DNA Mitocondrial , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Telômero , Humanos , DNA Mitocondrial/genética , Envelhecimento/genética , Telômero/genética , Biomarcadores , Homeostase do Telômero/genética , Encurtamento do Telômero/genética
16.
J Cancer Surviv ; 18(4): 1154-1167, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38635100

RESUMO

PURPOSE: Childhood cancer survivors are at risk for cardiac dysfunction and impaired physical performance, though underlying cellular mechanisms are not well studied. In this cross-sectional study, we examined the association between peripheral blood mitochondrial DNA copy number (mtDNA-CN, a proxy for mitochondrial function) and markers of performance impairment and cardiac dysfunction. METHODS: Whole-genome sequencing, validated by quantitative polymerase chain reaction, was used to estimate mtDNA-CN in 1720 adult survivors of childhood cancer (48.5% female; mean age = 30.7 years, standard deviation (SD) = 9.0). Multivariable logistic regression was performed to evaluate the associations between mtDNA-CN and exercise intolerance, walking inefficiency, and abnormal global longitudinal strain (GLS), adjusting for treatment exposures, age, sex, and race and ethnicity. RESULTS: The prevalence of exercise intolerance, walking inefficiency, and abnormal GLS among survivors was 25.7%, 10.7%, and 31.7%, respectively. Each SD increase of mtDNA-CN was associated with decreased odds of abnormal GLS (adjusted odds ratio (OR) = 0.88, p = 0.04) but was not associated with exercise intolerance (OR = 1.02, p = 0.76) or walking inefficiency (OR = 1.06, p = 0.46). Alkylating agent exposure was associated with increased odds of exercise intolerance (OR = 2.25, p < 0.0001), walking inefficiency (OR = 2.37, p < 0.0001), and abnormal GLS (OR = 1.78, p = 0.0002). CONCLUSIONS: Increased mtDNA-CN is associated with decreased odds of abnormal cardiac function in childhood cancer survivors. IMPLICATIONS FOR CANCER SURVIVORS: These findings demonstrate a potential role for mtDNA-CN as a biomarker of early cardiac dysfunction in this population.


Assuntos
Sobreviventes de Câncer , DNA Mitocondrial , Neoplasias , Caminhada , Humanos , Feminino , Masculino , Sobreviventes de Câncer/estatística & dados numéricos , Adulto , Estudos Transversais , Neoplasias/genética , DNA Mitocondrial/genética , Variações do Número de Cópias de DNA , Adulto Jovem , Tolerância ao Exercício , Criança , Adolescente , Mitocôndrias , Cardiopatias/etiologia , Cardiopatias/genética
17.
Environ Mol Mutagen ; 65(3-4): 143-152, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38523463

RESUMO

Cervical cancer is the fourth most commonly diagnosed cancer in women and is considered a preventable disease, as vaccination and screening programs effectively reduce its incidence and mortality rates. Disease physiopathology and malignant cell transformation is a complex process, but it is widely known that high-risk HPV (hrHPV) infection is a necessary risk factor for cancer development. Mitochondria, cell organelles with important bioenergetic and biosynthetic functions, are important for cell energy production, cell growth, and apoptosis. Mitochondrial DNA is a structure that is particularly susceptible to quantitative (mtDNA copy number variation) and qualitative (sequence variations) alterations that are associated with various types of cancer. Novel biomarkers with diagnostic and prognostic value in cervical cancer can be evaluated to provide higher specificity and complement hrHPV molecular testing, which is the most recommended method for primary screening. In accordance with this, this review aimed to assess mitochondrial alterations associated with cervical cancer in clinical cervicovaginal samples, in order to unravel their possible role as specific diagnostic and prognostic biomarkers for cervical malignancy, and also to guide the understanding of their involvement in carcinogenesis, HPV infection, and disease progression.


Assuntos
Variações do Número de Cópias de DNA , DNA Mitocondrial , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Humanos , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/virologia , Neoplasias do Colo do Útero/patologia , DNA Mitocondrial/genética , Feminino , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/virologia , Mitocôndrias/genética , Mitocôndrias/metabolismo , Biomarcadores Tumorais/genética , Prognóstico
18.
Sci Total Environ ; 923: 171423, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38442762

RESUMO

BACKGROUND: Ambient particulate matter (PM) has been recognized as inducing oxidative stress, which could contribute to mitochondrial damage and dysfunction. However, studies investigating the association between ambient PM and mitochondria, particularly mitochondrial DNA copy number (mtDNA-CN), have yielded inconsistent results. METHODS: We conducted comprehensive literature searches to identify observational studies published before July 17, 2023, examining the association between ambient PM exposure and mtDNA-CN. Meta-analysis using random effects model was employed to calculate the pooled effect estimates for general individual exposures, as well as for prenatal exposure with specific trimester. Additionally, the quality and level of evidence for each exposure-outcome pair was evaluated. RESULTS: A total of 10 studies were included in the systematic review and meta-analysis. The results indicated that general individual exposure to PM2.5 (ß = -0.084, 95 % CI: -0.521, 0.353; I2 = 93 %) and PM10 (ß = 0.035, 95 % CI: -0.129, 0.199; I2 = 95 %) did not significantly affect mtDNA-CN. Prenatal exposure to PM2.5 (ß = 0.023, 95 % CI: -0.087, 0.133; I2 = 0 %) and PM10 (ß = 0.006, 95 % CI: -0.135; 0.147; I2 = 51 %) were also not significantly associated with mtDNA-CN in offspring. The level of evidence for each tested exposure-outcome pair was assessed as "inadequate." CONCLUSIONS: The findings of this systematic review and meta-analysis indicate that there is an "inadequate" strength of evidence for the association between general individual or prenatal exposure to ambient PM and mtDNA-CN. Future research necessitates studies with more rigorous design, enhanced control of confounding factors, and improved measures of exposure to substantiate our findings.


Assuntos
Poluentes Atmosféricos , Variações do Número de Cópias de DNA , DNA Mitocondrial , Material Particulado , DNA Mitocondrial/genética , Humanos , Poluentes Atmosféricos/toxicidade , Exposição Ambiental/efeitos adversos , Gravidez , Feminino , Poluição do Ar/efeitos adversos , Exposição Materna/estatística & dados numéricos , Exposição Materna/efeitos adversos
19.
Environ Pollut ; 346: 123642, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38402934

RESUMO

Mitochondria are bioenergetic, biosynthetic, and signaling organelles in eukaryotes, and contain their own genomes, mitochondrial DNA (mtDNA), to supply energy to cells by generating ATP via oxidative phosphorylation. Therefore, the threat to mitochondria' integrity and health resulting from environmental exposure could induce adverse health effects in organisms. In this review, we summarized the association between mtDNA copy number (mtDNAcn), and environmental exposures as reported in the literature. We conducted a literature search in the Web of Science using [Mitochondrial DNA copy number] and [Exposure] as two keywords and employed three selection criteria for the final inclusion of 97 papers for review. The consensus of data was that mtDNAcn could be used as a plausible biomarker for cumulative exposures to environmental chemical and physical agents. In order to furtherly expand the application of mtDNAcn in ecological and environmental health research, we suggested a series of algorithms aiming to standardize the calculation of mtDNAcn based on the PCR results in this review. We also discussed the pitfalls of using whole blood/plasma samples for mtDNAcn measurements and regard buccal cells a plausible and practical alternative. Finally, we recognized the importance of better understanding the mechanistic analysis and regulatory mechanism of mtDNAcn, in particular the signals release and regulation pathways. We believe that the development of using mtDNAcn as an exposure biomarker will revolutionize the evaluation of chronic sub-lethal toxicity of chemicals to organisms in ecological and environmental health research that has not yet been implemented.


Assuntos
Variações do Número de Cópias de DNA , DNA Mitocondrial , DNA Mitocondrial/genética , Mucosa Bucal , Mitocôndrias/genética , Exposição Ambiental , Biomarcadores
20.
Int J Mol Sci ; 25(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38338706

RESUMO

Telomere shortening, chromosomal damage, and mitochondrial dysfunction are major initiators of cell aging and biomarkers of many diseases. However, the underlying correlations between nuclear and mitochondrial DNA alterations remain unclear. We investigated the relationship between telomere length (TL) and micronucleus (MN) and their association with mitochondrial DNA copy number (mtDNAcn) in peripheral blood mononuclear cells (PBMCs) in response to 100 µM and 200 µM of hydrogen peroxide (H2O2) at 44, 72, and 96 h. Significant TL shortening was observed after both doses of H2O2 and at all times (all p < 0.05). A concomitant increase in MN was found at 72 h (p < 0.01) and persisted at 96 h (p < 0.01). An increase in mtDNAcn (p = 0.04) at 200 µM of H2O2 was also found. In PBMCs treated with 200 µM H2O2, a significant inverse correlation was found between TL and MN (r = -0.76, p = 0.03), and mtDNA content was directly correlated with TL (r = 0.6, p = 0.04) and inversely related to MN (r = -0.78, p = 0.02). Telomere shortening is the main triggering mechanism of chromosomal damage in stimulated T lymphocytes under oxidative stress. The significant correlations between nuclear DNA damage and mtDNAcn support the notion of a telomere-mitochondria axis that might influence age-associated pathologies and be a target for the development of relevant anti-aging drugs.


Assuntos
DNA Mitocondrial , Leucócitos Mononucleares , DNA Mitocondrial/metabolismo , Leucócitos Mononucleares/metabolismo , Peróxido de Hidrogênio/toxicidade , Variações do Número de Cópias de DNA , Mitocôndrias/genética , Mitocôndrias/metabolismo , Encurtamento do Telômero , Telômero/genética , Telômero/metabolismo , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA