Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
1.
Foodborne Pathog Dis ; 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39110468

RESUMO

Protein-based detection methods, enzyme-linked immunosorbent assays (ELISAs) and lateral flow strips, have been widely used for rapid, specific, and sensitive detection of genetically modified organisms (GMOs). However, the traditional ELISA method for the quantitative detection of GMOs has certain limitations. Herein, a quantum dot (QD)-based fluorescence-linked immunosorbent assay was developed using QDs as fluorescent markers for the detection of glyphosate-resistant protein (CP4-EPSPS) in the MON89788 soybean. The end-point fluorescent detection system was carried out using QDs conjugated with a goat anti-rabbit secondary antibody. Compared with the conventional sandwich ELISA method, the newly developed fluorescence-linked immunosorbent assay was highly sensitive and accurate for detecting the CP4-EPSPS protein. The quantified linearity was achieved in the range of 0.05-5% (w/w) for the MON89788 soybean sample. The recovery of protein extracted from mixed MON89788 soybean samples ranged from 87.67% to 116.83%. The limits of detection and limits of quantification were 0.7101 and 2.152 pg/mL, respectively. All of the results indicated that the QD-based fluorescence-linked immunosorbent assay was a highly specific and sensitive method for monitoring the CP4-EPSPS protein in GMOs.

2.
Med Trop Sante Int ; 4(2)2024 06 30.
Artigo em Francês | MEDLINE | ID: mdl-39099706

RESUMO

Background: Dental caries is a global disease that can have disabling effects. In Africa, its prevalence in schools is very variable, due to the great variability of food habits and oral hygiene. This study aimed to assess the prevalence of dental caries, associated factors, and to research oral pathologies associated with that dental decay in one circumscription of the city of N'Djamena. Material and methods: This was a cross-sectional study conducted in 3 schools in the 7th borough of the city of N'Djamena. A total of 360 pupils aged between 6 and 12 years were recruited between October 2021 and September 2022. Each participant underwent to an oral examination which consisted in looking carefully at the pupil's face (cheeks, lips) to note any deformities or possible facial asymmetry, and to check for any sensation of pain in any part of the face. In another hand, the oral examination aimed to look for any decay on all the teeth and determine the category and class of it. Finally, the personal data (age, sex, class, parents' occupations) of each participant and the results of his oral examination were collected into a database and analyzed. Results: A total of 185 pupils had at least one decayed tooth, giving a prevalence rate of 51.4%. Among them, 45% had at least 2 decayed teeth. The school attended and snacking between meals were significantly associated with the presence of caries (p<0.05). Teeth 36 (lower left first molar) and 46 (lower right first molar) were the most often affected by caries (21% and 22% respectively). The mixt DMF index was 0.6 and the overall frequency of decayed teeth was 51.9%. According to Black's classification, class II caries was the most prevalent (48%), while according to Baume's classification, category II was the most prevalent (54%). The time of brushing, the material and the type of product used significantly influenced the appearance of caries (p<0.05). Participants with dental dyschromia had more tooth decay. Conclusion: Caries was prevalent in the targeted schools and represented a real problem for pupils. Implementing an oral health policy based on preventive dentistry by raising awareness among children and their parents would contribute to the proper education of pupils.


Assuntos
Cárie Dentária , Higiene Bucal , Humanos , Cárie Dentária/epidemiologia , Criança , Masculino , Estudos Transversais , Feminino , Prevalência , Higiene Bucal/estatística & dados numéricos , Chade/epidemiologia , Instituições Acadêmicas , Estudantes/estatística & dados numéricos
3.
EFSA J ; 22(8): e8886, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39099613

RESUMO

Genetically modified maize MON 95275 was developed to confer protection to certain coleopteran species. These properties were achieved by introducing the mpp75Aa1.1, vpb4Da2 and DvSnf7 expression cassettes. The molecular characterisation data and bioinformatic analyses reveal similarity to known toxins, which was further assessed. None of the identified differences in the agronomic/phenotypic and compositional characteristics tested between maize MON 95275 and its conventional counterpart needs further assessment. The GMO Panel does not identify safety concerns regarding the toxicity and allergenicity of the Mpp75Aa1.1 and Vpb4Da2 proteins and the DvSnf7 dsRNA and derived siRNAs as expressed in maize MON 95275 and finds no evidence that the genetic modification would change the overall allergenicity of maize MON 95275. In the context of this application, the consumption of food and feed from maize MON 95275 does not represent a nutritional concern in humans and animals. The GMO Panel concludes that maize MON 95275 is as safe as the conventional counterpart and non-GM maize varieties tested, and no post-market monitoring of food/feed is considered necessary. In the case of accidental release of maize MON 95275 material into the environment, this would not raise environmental safety concerns. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of maize MON 95275. The GMO Panel concludes that maize MON 95275 is as safe as its conventional counterpart and the tested non-GM maize varieties with respect to potential effects on human and animal health and the environment.

4.
Hosp Pract (1995) ; : 1-17, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39165153

RESUMO

What is this summary about? This is a plain language summary of a late-stage clinical trial called IMPALA, originally reported in The New England Journal of Medicine. The IMPALA trial studied a drug called molgramostim nebulizer solution (molgramostim) to see how well it worked and how safe it was in patients with autoimmune pulmonary alveolar proteinosis (aPAP). Normally, tiny air sacs (alveoli) in the lungs are covered by a thin layer of an oily substance called surfactant that helps to keep them open. In aPAP, surfactant builds up and clogs alveoli making it difficult to breathe. Inhaled molgramostim helps to reduce the amount of surfactant clogging the alveoli.What were the results of the trial? After 24 weeks of treatment, patients who received molgramostim every day had better oxygen transfer into blood than patients who received an inactive substance (placebo). Patients' sense of well-being and quality of life was improved more with daily molgramostim than placebo. The amount of surfactant in the lungs measured using scans and the number of whole-lung lavages (lung washes) patients required were lower with daily molgramostim than placebo. The number of medical problems (adverse events) was similar in patients who received molgramostim and placebo except for chest pain, which was more common with molgramostim.What do the results of the trial mean? The IMPALA trial demonstrated that molgramostim is a promising treatment option for people with aPAP.

5.
Front Genet ; 15: 1351710, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38818041

RESUMO

Background: Hereditary neurodevelopmental disorders (NDDs) are prevalent in poorly prognostic pediatric diseases, but the pathogenesis of NDDs is still unclear. Irregular myelination could be one of the possible causes of NDDs. Case presentation: Here, whole exome sequencing was carried out for a consanguineous Pakistani family with NDDs to identify disease-associated variants. The co-segregation of candidate variants in the family was validated using Sanger sequencing. The potential impact of the gene on NDDs has been supported by conservation analysis, protein prediction, and expression analysis. A novel homozygous variant DOP1A(NM_001385863.1):c.2561A>G was identified. It was concluded that the missense variant might affect the protein-protein binding sites of the critical MEC interaction region of DOP1A, and DOP1A-MON2 may cause stability deficits in Golgi-endosome protein traffic. Proteolipid protein (PLP) and myelin-associate glycoprotein (MAG) could be targets of the DOP1A-MON2 Golgi-endosome traffic complex, especially during the fetal stage and the early developmental stages. This further supports the perspective that disorganized myelinogenesis due to congenital DOP1A deficiency might cause neurodevelopmental disorders (NDDs). Conclusion: Our case study revealed the potential pathway of myelinogenesis-relevant NDDs and identified DOP1A as a potential NDDs-relevant gene in humans.

6.
EFSA J ; 22(4): e8715, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38686342

RESUMO

Following the joint submission of dossier GMFF-2022-9170 under Regulation (EC) No 1829/2003 from Bayer Agriculture B.V. and Corteva Agriscience Belgium B.V., the Panel on genetically modified organisms of the European Food Safety Authority was asked to deliver a scientific risk assessment on the data submitted in the context of the renewal of authorisation application for the herbicide tolerant and insect resistant genetically modified maize MON 89034 × 1507 × MON 88017 × 59122 and 8 out of 10 of its subcombinations, for food and feed uses, excluding cultivation within the European Union. The data received in the context of this renewal application contained post-market environmental monitoring reports, an evaluation of the literature retrieved by a scoping review, a search for additional studies performed by or on behalf of the applicant and updated bioinformatics analyses. The GMO Panel assessed these data for possible new hazards, modified exposure or new scientific uncertainties identified during the authorisation period and not previously assessed in the context of the original application. Under the assumption that the DNA sequences of the events in maize MON 89034 × 1507 × MON 88017 × 59122 and 8 out of 10 of its subcombinations considered for renewal are identical to the sequences of the originally assessed events, the GMO Panel concludes that there is no evidence in renewal dossier GMFF-2022-9170 for new hazards, modified exposure or scientific uncertainties that would change the conclusions of the original risk assessment on maize MON 89034 × 1507 × MON 88017 × 59122 and 8 out of 10 of its subcombinations.

7.
EFSA J ; 22(4): e8716, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38681739

RESUMO

Following the submission of dossier GMFF-2022-3670 under Regulation (EC) No 1829/2003 from Corteva Agriscience Belgium BV and Bayer Agriculture BV, the Panel on genetically modified organisms of the European Food Safety Authority was asked to deliver a scientific risk assessment on the data submitted in the context of the renewal of authorisation application for the herbicide-tolerant and insect-resistant genetically modified maize MON 89034 × 1507 × NK603, for food and feed uses, excluding cultivation within the European Union. The data received in the context of this renewal application contained post-market environmental monitoring reports, a systematic search and evaluation of literature, updated bioinformatic analyses and a search for additional documents or studies performed by or on behalf of the applicant. The GMO Panel assessed these data for possible new hazards, modified exposure or new scientific uncertainties identified during the authorisation period and not previously assessed in the context of the original application. Under the assumption that the DNA sequences of the events in maize MON 89034 × 1507 × NK603 considered for renewal are identical to the sequences of the originally assessed events, the GMO Panel concludes that there is no evidence in renewal dossier GMFF-2022-3670 for new hazards, modified exposure or scientific uncertainties that would change the conclusions of the original risk assessment on maize MON 89034 × 1507 × NK603.

8.
EFSA J ; 22(4): e8714, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38681741

RESUMO

Genetically modified (GM) maize MON 94804 was developed to achieve a reduction in plant height by introducing the GA20ox_SUP suppression cassette. The molecular characterisation and bioinformatic analyses do not identify issues requiring food/feed safety assessment. None of the agronomic/phenotypic and compositional differences identified between maize MON 94804 and its conventional counterpart needs further assessment, except for ear height, plant height and levels of carbohydrates in forage, which do not raise safety or nutritional concerns. The Panel on Genetically Modified Organisms (GMO Panel) does not identify safety concerns regarding the toxicity and allergenicity of the GA20ox_SUP precursor-miRNA and derived mature miRNA as expressed in maize MON 94804 and finds no evidence that the genetic modification would change the overall allergenicity of maize MON 94804. In the context of this application, the consumption of food and feed from maize MON 94804 does not represent a nutritional concern in humans and animals. The GMO Panel concludes that maize MON 94804 is as safe as the conventional counterpart and non-GM maize varieties tested, and no post-market monitoring of food/feed is considered necessary. In the case of accidental release of viable maize MON 94804 grains into the environment, this would not raise environmental safety concerns. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of maize MON 94804. The GMO Panel concludes that maize MON 94804 is as safe as its conventional counterpart and the tested non-GM maize varieties with respect to potential effects on human and animal health and the environment.

9.
J Genet Eng Biotechnol ; 22(1): 100352, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38494265

RESUMO

BACKGROUND: Frequent drought events due to climate change have become a major threat to maize (Zea mays L.) production and food security in Africa. Genetic engineering is one of the ways of improving drought tolerance through gene introgression to reduce the impact of drought stress in maize production. This study aimed to evaluate the efficacy of Event MON 87460 (CspB; DroughtGard®) gene in more than 120 conventional drought-tolerant maize hybrids in Kenya, South Africa, and Uganda for 3-6 years under managed drought-stress and optimal conditions and establish any additional yield contribution or yield penalties of the gene in traited hybrids relative to their non-traited isohybrids. Germplasm used in the study were either MON 87460 traited un-adapted (2008-2010), adapted traited DroughtTEGO® (2011-2013) or a mix of both under confined field trials. RESULTS: Results showed significant yield differences (p < 0.001) among MON 87460 traited and non-traited hybrids across well-watered and managed drought-stress treatments. The gene had positive and significant effect on yield by 36-62% in three hybrids (CML312/CML445; WMA8101/CML445; and CML312/S0125Z) relative to non-traited hybrids under drought, and without significant yield penalty under optimum-moisture conditions in Lutzville, South Africa. Five traited hybrids (WMA2003/WMB4401; CML442/WMB4401; CML489/WMB4401; CML511/CML445; and CML395/WMB4401) had 7-13% significantly higher yield than the non-traited isohybrids out of 34 adapted DroughtTEGO® hybrids with same background genetics in the three countries for ≥ 3 years. The positive effect of MON 87460 was mostly observed under high drought-stress relative to low, moderate, or severe stress levels. CONCLUSION: This study showed that MON 87460 transgenic drought tolerant maize hybrids could effectively tolerate drought and shield farmers against severe yield loss due to drought stress. The study signified that development and adoption of transgenic drought tolerant maize hybrids can cushion against farm yield losses due to drought stress as part of an integrated approach in adaptation to climate change effects.

10.
Anal Chim Acta ; 1294: 342293, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38336414

RESUMO

BACKGROUND: The practical application of moisture sensitive metal organic frameworks (MOFs) in extraction technology faces challenges related to competitive adsorption and water stability. The target analytes cannot be effectively extracted under humid conditions due to the competitive moisture adsorption and/or framework structure collapse of MOFs. In this study, the microporous organic networks (MONs) were synthesized through Sonogashira coupling reaction to use for hydrophobic modification on the surface of MOF-199. RESULTS: The MOF-199@MON as coating was deposited on stainless steel wires for solid-phase microextraction (SPME) of benzene series (BTEX) in aqueous environments. Under the optimal extraction conditions, the MOF-199@MON coated fiber for SPME coupled with GC-MS for the determination of BTEX gave the linear range of 0.5-500 µg L-1, the limit of detections (LODs, S/N = 3) of 0.01-0.04 µg L-1, the limit of quantifications (LOQs, S/N = 10) of 0.04-0.12 µg L-1, the enhancement factors of 3567-4878, and the intra-day, inter-day and fiber-to-fiber precisions (relative standard deviations, RSDs) of 1.0-9.8, 1.9-7.9 and 4.5-9.5 %, respectively. The developed method was successfully applied to the analysis of BTEX in water samples with the recoveries of 71.0 %-113 %. SIGNIFICANCE: This work reveals the home-made SPME fibers have a long service life (the extraction efficiency of fiber decreased by only 7.26 %-13.14 % after 100 cycles). The potential of MON functionalized MOFs as effective adsorbents for the SPME of pollutants in the water environment.

11.
Autophagy Rep ; 3(1)2024.
Artigo em Inglês | MEDLINE | ID: mdl-38344192

RESUMO

Macroautophagy (also known as autophagy) plays a pivotal role in maintaining cellular homeostasis. The terminal step of the multi-step autophagy degradation pathway involves fusion between the cargo-laden, double-membraned autophagosome and the lytic organelle lysosome/vacuole. Over the past decade, various core components of the molecular machinery that execute this critical terminal autophagy event have been identified. This review highlights recent advances in understanding the molecular structures, biochemical functions, and regulatory mechanisms of key components of this highly sophisticated machinery including the SNARE fusogens, tethering factors, Rab GTPases and associated guanine nucleotide exchange factors, and other accessory factors.

12.
Anal Chim Acta ; 1296: 342290, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38401924

RESUMO

Genetically modified crops (GMOs) have led to significant, if not revolutionary, agricultural advances. The development of GMOs requires necessary regulations, which depend on the detection of GMOs. A sensitive and specific biosensor for the detection of transgenic crops is crucial to improve the detection efficiency of GMOs. Here, we developed a CRISPR/Cas12a-mediated entropy-driven electrochemiluminescence (ECL) biosensor for the sensitive and specific detection of MON810, the world's most widely used transgenic insect-resistant maize. We designed two crRNAs to activate CRISPR/Cas12a, allowing it to cut non-specific single strands, and we modified the DNA tetrahedron (DT) on the surface of the gold electrode to diminish non-specific adsorption. The entropy-driven chain displacement reaction with the target DNA takes place for amplification. After optimization, the biosensor has satisfactory accuracy and selectivity, with a linear range of ECL of 1-106 fM and a limit of detection (LOD) of 3.3 fM by the 3σ method. The biosensor does not require polymerase chain reaction (PCR) amplification or complex sample processing, which dramatically improves transgenic crop detection efficiency. This new biosensor achieves rapid, sensitive, and highly specific detection of transgenic crops, and has great potential for large-scale field detection of transgenic crops.


Assuntos
Técnicas Biossensoriais , Zea mays , Zea mays/genética , Sistemas CRISPR-Cas , Produtos Agrícolas , Entropia , Plantas Geneticamente Modificadas/genética , DNA
13.
EFSA J ; 22(1): e8489, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38250501

RESUMO

Following the submission of dossier GMFF-2022-9450 under Regulation (EC) No 1829/2003 from Bayer Agriculture BV, the Panel on Genetically Modified Organisms of the European Food Safety Authority was asked to deliver a scientific risk assessment on the data submitted in the context of the renewal of authorisation application for the insect protected genetically modified maize MON 810, for food and feed uses (including pollen), excluding cultivation within the European Union. The data received in the context of this renewal application contained post-market environmental monitoring reports, an evaluation of the literature retrieved by a scoping review, additional studies performed by or on behalf of the applicant and updated bioinformatics analyses. The GMO Panel assessed these data for possible new hazards, modified exposure or new scientific uncertainties identified during the authorisation period and not previously assessed in the context of the original application. Under the assumption that the DNA sequence of the event in maize MON 810 considered for renewal is identical to the sequence of the originally assessed event, the GMO Panel concludes that there is no evidence in dossier GMFF-2022-9450 for new hazards, modified exposure or scientific uncertainties that would change the conclusions of the original risk assessment on maize MON 810.

14.
J Hazard Mater ; 465: 133468, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38219584

RESUMO

Microporous organic networks (MONs) are highly porous materials that are particularly useful in analytical chemistry. However, the use of these materials is often limited by the functional groups available on their surface. Here, we described the polymerization of a sea urchin-like structure material at ambient temperature, that was functionalized with hydroxyl, carboxyl, and triazine groups and denoted as OH-COOH-MON-TEPT. A substantial proportion of OH-COOH-MON-TEPT was intricately decorated EDA-Fe3O4, creating a well-designed configuration (EDA-Fe3O4 @OH-COOH-MON-TEPT-EDC) for superior adsorption of the target analytes phenylurea herbicides (PUHs) via magnetic solid-phase extraction (MSPE). The proposed method showed remarkably low limits of detection ranging from 0.03 to 0.22 ng·L-1. Experimental investigations and theoretical analyses unveiled the adsorption mode between EDA-Fe3O4 @OH-COOH-MON-TEPT-EDC and PUHs. These findings establish a robust foundation for potential applications of EDA-Fe3O4 @OH-COOH-MON-TEPT-EDC in the analysis of various polar contaminants.

15.
Small ; 20(7): e2303300, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37840438

RESUMO

Combining the methanol oxidation reaction (MOR) and hydrogen evolution reaction (HER) within an integrated electrolytic system may offer the advantages of enhanced kinetics of the anode, reduced energy consumption, and the production of high-purity hydrogen. Herein, it is reported the construction of Ni─MoN nanorod arrays supported on a nickel foam substrate (Ni─MoN/NF) as a bifunctional electrocatalyst for electrocatalytic hydrogen production and selective methanol oxidation to formate. Remarkably, The optimal Ni─MoN/NF catalyst displays exceptional HER performance with an overpotential of only 49 mV to attain 10 mA cm-2 in acid, and exhibits a high activity for MOR to achieve 100 mA cm-2 at 1.48 V in alkali. A hybrid acid/base electrolytic cell with Ni─MoN/NF electrode as anode and cathode is further developed for an integrated HER-MOR cell, which only requires a voltage of 0.56 V at 10 mA cm-2 , significantly lower than that of the HER-OER system (0.70 V). The density functional theory studies reveal that the incorporation of Ni effectively modulates the electronic structure of MoN, thereby resulting in enhanced catalytic activity. The unique combination of high electrocatalytic activity and excellent stability make the Ni─MoN/NF catalyst a promising candidate for practical applications in electrocatalytic hydrogen production and methanol oxidation.

16.
Small ; 20(9): e2306781, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37806758

RESUMO

The defect engineering of inorganic solids has received significant attention because of its high efficacy in optimizing energy-related functionalities. Consequently, this approach is effectively leveraged in the present study to synthesize atomically-thin holey 2D nanosheets of a MoN-Mo5 N6 composite. This is achieved by controlled nitridation of assembled MoS2 monolayers, which induced sequential cation/anion migration and a gradual decrease in the Mo valency. Precise control of the interlayer distance of the MoS2 monolayers via assembly with various tetraalkylammonium ions is found to be crucial for synthesizing sub-nanometer-thick holey MoN-Mo5 N6 nanosheets with a tunable anion/cation vacancy content. The holey MoN-Mo5 N6 nanosheets are employed as efficient immobilization matrices for Pt single atoms to achieve high electrocatalytic mass activity, decent durability, and low overpotential for the hydrogen evolution reaction (HER). In situ/ex situ spectroscopy and density functional theory (DFT) calculations reveal that the presence of cation-deficient Mo5 N6 domain is crucial for enhancing the interfacial interactions between the conductive molybdenum nitride substrate and Pt single atoms, leading to enhanced electron injection efficiency and electrochemical stability. The beneficial effects of the Pt-immobilizing holey MoN-Mo5 N6 nanosheets are associated with enhanced electronic coupling, resulting in improvements in HER kinetics and interfacial charge transfer.

17.
ACS Nano ; 17(20): 20098-20111, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37805936

RESUMO

Given its abundant physiological functions, nitric oxide (NO) has attracted much attention as a cancer therapy. The sensitive release and great supply capacity are significant indicators of NO donors and their performance. Here, a transition metal nitride (TMN) MoN@PEG is adopted as an efficient NO donor. The release process starts with H+-triggered denitrogen owing to the high electronegativity of the N atom and weak Mo-N bond. Then, these active NHx are oxidized by O2 and other reactive oxygen species (ROS) to form NO, endowing specific release to the tumor microenvironment (TME). With a porous nanosphere structure (80 nm), MoN@PEG does not require an extra carrier for NO delivery, contributing to ultrahigh atomic utilization for outstanding release ability (94.1 ± 5.6 µM). In addition, it can also serve as a peroxidase and sonosensitizer for anticancer treatment. To further improve the charge separation, MoN-Pt@PEG was prepared to enhance the sonodynamic therapy (SDT) effect. Accordingly, ultrasound (US) further promotes NO generation due to more ROS generation, facilitating in situ peroxynitrite (·ONOO-) generation with great cytotoxicity. At the same time, the nanostructure also degrades gradually, leading to high elimination (94.6%) via feces and urine within 14-day. The synergistic NO and chemo-/sono-dynamic therapy brings prominent antitumor efficiency and further activates the immune response to inhibit metastasis and recurrence. This work develops a family of NO donors that would further widen the application of NO therapy in other fields.


Assuntos
Nanosferas , Neoplasias , Terapia por Ultrassom , Humanos , Óxido Nítrico , Doadores de Óxido Nítrico/farmacologia , Molibdênio/farmacologia , Porosidade , Espécies Reativas de Oxigênio , Linhagem Celular Tumoral , Microambiente Tumoral
18.
J Colloid Interface Sci ; 650(Pt B): 1174-1181, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37473477

RESUMO

Achieving efficient hydrogen evolution reaction (HER) catalysts to scale up electrochemical water splitting is desirable but remains a major challenge. Here, nitrogen-doped carbon nanotubes (NCNTs) loaded with PtNi/MoN electrocatalyst (PtNi/MoN@C) is synthesized by a simple strategy to obtain stronger interphase effects and significantly improve HER activity. The surface morphology of the materials is altered by Pt doping and the electronic structure of MoN is changed, which optimizing the electronic environment of the materials, shifting the binding energy and giving the materials a higher electrical conductivity, this ultimately leads to faster proton and electron transfer processes. The synergistic effect of Pt nanoparticles, MoN and the good combination with carbon leads to a high HER activity of 18 mV to reach 10 mA cm-2 in alkaline solution, outperforming that of the commercial Pt/C. Theoretical studies show that the heterostructures can efficiently enhance the electron transport and reduce the △GH*.

19.
Proc Natl Acad Sci U S A ; 120(30): e2303750120, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37463208

RESUMO

Maturation from early to late endosomes depends on the exchange of their marker proteins Rab5 to Rab7. This requires Rab7 activation by its specific guanine nucleotide exchange factor (GEF) Mon1-Ccz1. Efficient GEF activity of this complex on membranes depends on Rab5, thus driving Rab-GTPase exchange on endosomes. However, molecular details on the role of Rab5 in Mon1-Ccz1 activation are unclear. Here, we identify key features in Mon1 involved in GEF regulation. We show that the intrinsically disordered N-terminal domain of Mon1 autoinhibits Rab5-dependent GEF activity on membranes. Consequently, Mon1 truncations result in higher GEF activity in vitro and alterations in early endosomal structures in Drosophila nephrocytes. A shift from Rab5 to more Rab7-positive structures in yeast suggests faster endosomal maturation. Using modeling, we further identify a conserved Rab5-binding site in Mon1. Mutations impairing Rab5 interaction result in poor GEF activity on membranes and growth defects in vivo. Our analysis provides a framework to understand the mechanism of Ras-related in brain (Rab) conversion and organelle maturation along the endomembrane system.


Assuntos
Proteínas de Drosophila , Proteínas de Saccharomyces cerevisiae , Animais , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Transporte Proteico , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Endossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Drosophila/metabolismo , Proteínas rab5 de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo
20.
Insects ; 14(6)2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37367313

RESUMO

Transgenic Bt crops are important tools for growers to manage insect pests, but their durability is threatened by the evolution of insect resistance. Implementing a resistance monitoring program is essential to detect and mitigate resistance. For non-high-dose Bt crops, resistance monitoring is challenging, because insect control is not complete, so targeted insects and insect damage will be present even without resistance. Given these challenges, sentinel plots have been used to monitor for insect resistance to non-high-dose crops by assessing changes in the efficacy of a Bt crop over time relative to a non-Bt control. We optimized a sentinel plot resistance monitoring approach for MON 88702 ThryvOn™ cotton, a new non-high-dose Bt product targeting two sucking pest taxa-Lygus (L. lineolaris and L. hesperus) and thrips (Frankliniella fusca and F. occidentalis)-and report here on the thrips monitoring methods and results. Quantifying thrips immatures was the best metric to characterize the impact of the trait, with at least a 40-60% average reduction of thrips immatures on ThryvOn relative to the control cotton at all sites with higher thrips densities. These data can be used within a ThryvOn resistance monitoring program and represent a case study for establishing a resistance monitoring approach for a non-high-dose trait product.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA