Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39162252

RESUMO

Coupled nanomechanical resonators have unveiled fascinating physical phenomena, including phonon-cavity coupling, coupled energy decay pathway, avoided crossing, and internal resonance. Despite these discoveries, the mechanisms and control techniques of nonlinear mode coupling phenomena with internal resonances require further exploration. Here, we report on the observation of stochastic switching between the two resonance states with coupled 1:1 internal resonance, for resonant two-dimensional (2D) molybdenum disulfide (MoS2) nanoelectromechanical systems (NEMS), which is directly driven to the critical coupling regime without parametric pumping. We further demonstrate that the probability of state switching is linearly tunable from ∼0% to ∼100% by varying the driving voltage. Furthermore, we gradually increase the white noise amplitude and show that the probability of obtaining the higher-energy state decreases, and the stochastic switching phenomenon eventually disappears. The results provide insights into the dynamics of coupled NEMS resonators and open up new possibilities for sensing and stochastic computing.

2.
ACS Nano ; 16(2): 2261-2270, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35107966

RESUMO

Resonant nanoelectromechanical systems (NEMS) based on two-dimensional (2D) materials such as molybdenum disulfide (MoS2) are interesting for highly sensitive mass, force, photon, or inertial transducers, as well as for fundamental research approaching the quantum limit, by leveraging the mechanical degree of freedom in these atomically thin materials. For these mechanical resonators, the quality factor (Q) is essential, yet the mechanism and tuning methods for energy dissipation in 2D NEMS resonators have not been fully explored. Here, we demonstrate that by tuning static strain and vibration-induced strain in suspended MoS2 using gate voltages, we can effectively tune the Q in 2D MoS2 NEMS resonators. We further show that for doubly clamped resonators, the Q increases with larger DC gate voltage, while fully clamped drumhead resonators show the opposite trend. Using DC gate voltages, we can tune the Q by ΔQ/Q = 448% for fully clamped resonators, and by ΔQ/Q = 369% for doubly clamped resonators. We develop the strain-modulated dissipation model for these 2D NEMS resonators, which is verified against our measurement data for 8 fully clamped resonators and 7 doubly clamped resonators. We find that static tensile strain decreases dissipation while vibration-induced strain increases dissipation, and the actual dependence of Q on DC gate voltage depends on the competition between these two effects, which is related to the device boundary condition. Such strain dependence of Q is useful for optimizing the resonance linewidth in 2D NEMS resonators toward low-power, ultrasensitive, and frequency-selective devices for sensing and signal processing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA