Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(15)2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39125769

RESUMO

A T-cell-independent (TI) pathway activated by microbiota results in the generation of low-affinity homeostatic IgA with a critical role in intestinal homeostasis. Moderate aerobic exercise (MAE) provides a beneficial impact on intestinal immunity, but the action of MAE on TI-IgA generation under senescence conditions is unknown. This study aimed to determine the effects of long-term MAE on TI-IgA production in young (3 month old) BALB/c mice exercised until adulthood (6 months) or aging (24 months). Lamina propria (LP) from the small intestine was obtained to determine B cell and plasma cell sub-populations by flow cytometry and molecular factors related to class switch recombination [Thymic Stromal Lymphopoietin (TSLP), A Proliferation-Inducing Ligand (APRIL), B Cell Activating Factor (BAFF), inducible nitric oxide synthase (iNOS), and retinal dehydrogenase (RDH)] and the synthesis of IgA [α-chain, interleukin (IL)-6, IL-21, and Growth Factor-ß (TGF-ß)]; and epithelial cells evaluated IgA transitosis [polymeric immunoglobulin receptor (pIgR), tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), IL-4] by the RT-qPCR technique. The results were compared with data obtained from sedentary age-matched mice. Statistical analysis was computed with ANOVA, and p < 0.05 was considered to be a statistically significant difference. Under senescence conditions, MAE promoted the B cell and IgA+ B cells and APRIL, which may improve the intestinal response and ameliorate the inflammatory environment associated presumably with the downmodulation of pro-inflammatory mediators involved in the upmodulation of pIgR expression. Data suggested that MAE improved IgA and downmodulate the cytokine pro-inflammatory expression favoring homeostatic conditions in aging.


Assuntos
Envelhecimento , Homeostase , Imunoglobulina A , Camundongos Endogâmicos BALB C , Condicionamento Físico Animal , Animais , Imunoglobulina A/metabolismo , Imunoglobulina A/imunologia , Camundongos , Envelhecimento/imunologia , Citocinas/metabolismo , Linfócitos B/imunologia , Linfócitos B/metabolismo , Fator Ativador de Células B/metabolismo , Fator Ativador de Células B/genética , Mucosa Intestinal/metabolismo , Mucosa Intestinal/imunologia , Intestino Delgado/imunologia , Intestino Delgado/metabolismo , Masculino , Plasmócitos/imunologia , Plasmócitos/metabolismo , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética
2.
Front Endocrinol (Lausanne) ; 14: 1190547, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38130396

RESUMO

Introduction: Hypermutated high-affinity immunoglobulin A (IgA), neutralizes toxins and drives the diversification of bacteria communities to maintain intestinal homeostasis although the mechanism underlies the impact of moderate aerobic exercise (MAE) on the IgA-generation via T-dependent (TD) is not fully know. Therefore, the aim of this study was to determine the effect of long-time MAE on the production of IgA through the TD pathway in Peyer´s patches of the small intestine from aged mice. Methods: MAE protocol consisted of twenty 3-month-old (young) BALB/c mice running in an endless band at 0° inclination and a speed of 10 m/h for 5 days a week and resting 2 days on the weekend until reaching 6-month-old (adulthood, n=10) or 24-month-old (aging, n=10). Groups of young, adult, or elderly mice were included as sedentary controls (n=10/per group). At 6 or 24 months old, all were sacrificed, and small intestine samples were dissected to prepare intestinal lavages for IgA quantitation by ELISA and to obtain suspensions from Peyer´s patches (PP) and lamina propria (LP) cells for analysis of T, B, and plasma cell subpopulations by flow cytometry and mRNA analysis expression by RT-qPCR of molecular factors related to differentiation of B cells to IgA+ plasma cells, class switch recombination, and IgA-synthesis. Statistical analysis was computed with two-way ANOVA (factor A=age, factor B=group) and p<0.05 was considered for statistically significant differences. Results: Compared to age-matched sedentary control, in exercised elderly mice, parameters were either increased (IgA concentration, IL-21, IL-10 and RDH mRNA expression), decreased (α-chain mRNA, B cells, mIgA+ B cells, mIgM+ B cells and IL-4 mRNA) or unchanged (PP mIgA+ plasmablasts and LP cyt-IgA+ plasma cells). Regarding the exercised adult mice, they showed an up-modulation of IgA-concentration, mRNA expression IL-21, IL-10, and RDH and cells (PP B and T cells, mIgM+ plasmablasts and LP cyt-IgA+plasma cells). Conclusion: Our findings suggest that MAE restored the IgA production in adult mice via the TD cell pathway but does not in aged mice. Other studies are necessary to know in more detail the impact of long-time MAE on the TD pathway to produce IgA in aging.


Assuntos
Imunoglobulina A , Linfócitos T , Humanos , Camundongos , Animais , Adulto , Lactente , Imunoglobulina A/genética , Interleucina-10 , Intestinos , RNA Mensageiro
3.
Front Immunol ; 14: 1212163, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928533

RESUMO

Regular and moderate exercise is being used for therapeutic purposes in treating several diseases, including cancer, cardiovascular diseases, arthritis, and even chronic kidney diseases (CKDs). Conversely, extenuating physical exercise has long been pointed out as one of the sources of acute kidney injury (AKI) due to its severe impact on the body's physiology. AKI development is associated with increased tubular necrosis, which initiates a cascade of inflammatory responses. The latter involves cytokine production, immune cell (macrophages, lymphocytes, and neutrophils, among others) activation, and increased oxidative stress. AKI can induce prolonged fibrosis stimulation, leading to CKD development. The need for therapeutic alternative treatments for AKI is still a relevant issue. In this context arises the question as to whether moderate, not extenuating, exercise could, on some level, prevent AKI. Several studies have shown that moderate exercise can help reduce tissue damage and increase the functional recovery of the kidneys after an acute injury. In particular, the immune system can be modulated by exercise, leading to a better recovery from different pathologies. In this review, we aimed to explore the role of exercise not as a trigger of AKI, but as a modulator of the inflammatory/immune system in the prevention or recovery from AKI in different scenarios. In AKI induced by ischemia and reperfusion, sepsis, diabetes, antibiotics, or chemotherapy, regular and/or moderate exercise could modulate the immune system toward a more regulatory immune response, presenting, in general, an anti-inflammatory profile. Exercise was shown to diminish oxidative stress, inflammatory markers (caspase-3, lactate dehydrogenase, and nitric oxide), inflammatory cytokines (interleukin (IL)-1b, IL-6, IL-8, and tumor necrosis factor-α (TNF-α)), modulate lymphocytes to an immune suppressive phenotype, and decrease tumor necrosis factor-ß (TGF-ß), a cytokine associated with fibrosis development. Thus, it creates an AKI recovery environment with less tissue damage, hypoxia, apoptosis, or fibrosis. In conclusion, the practice of regular moderate physical exercise has an impact on the immune system, favoring a regulatory and anti-inflammatory profile that prevents the occurrence of AKI and/or assists in the recovery from AKI. Moderate exercise should be considered for patients with AKI as a complementary therapy.


Assuntos
Injúria Renal Aguda , Insuficiência Renal Crônica , Humanos , Amigos , Injúria Renal Aguda/terapia , Injúria Renal Aguda/complicações , Citocinas , Insuficiência Renal Crônica/patologia , Doença Aguda , Exercício Físico , Macrófagos/patologia , Fibrose , Imunidade , Anti-Inflamatórios
4.
J Biomech ; 135: 111035, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35298960

RESUMO

Exercise encourages active and healthy aging, maintaining functional and physical capabilities. This study aimed to assess the effects of a long-term moderate aerobic exercise protocol on bone microarchitecture and fragility associated with chronic inflammation and oxidative stress in aging. Male BALB/c mice (n = 10 per group) underwent a moderate exercise protocol from 13 weeks to 27 (adulthood age) or 108 weeks of age (elderly age) and were then sacrificed. Age-match sedentary mice were included as a control group. Serum cortisol concentrations were determined by chemiluminescent immunoassay, C-reactive protein (CRP) by a turbidimetric assay, advanced glycation end-products (AGEs) and malondialdehyde (MDA) by fluorescent spectroscopy, and total glutathione (GSH) by colorimetric method. The right femur was dissected formorphometric and densitometricanalysis bycomputerized microtomography (µCT),and biomechanical properties were assessed usinga three-point bending device. Musclefrom the same extremitywas obtained to determine relative mRNA expression ofpro-inflammatory cytokines (TNF-α and IL-6) by RT-qPCR.Statistical differences were evaluated by two-way ANOVA and Holm-Sidak method post hoc with P < 0.05. In elderly mice, moderate exercise increased glutathione levels and microarchitecture complexity but decreased bone fragility and oxidative stress markers, cortisol, and pro-inflammatory cytokines. In conclusion, these results suggest a strong link between a pro-inflammatory state and age-conditioned oxidative stress on bone quality. Thus, on a human scale, moderate aerobic exercise may improve bone quality during aging.


Assuntos
Hidrocortisona , Estresse Oxidativo , Animais , Citocinas/metabolismo , Glutationa/metabolismo , Glutationa/farmacologia , Hidrocortisona/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C
5.
Acta Physiol (Oxf) ; 234(1): e13708, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34185958

RESUMO

AIM: We aimed to evaluate whether the streptozotocin-induced diabetic model can generate lung functional, histological and biochemical impairments and whether moderate exercise can prevent these changes. METHODS: Wistar rats were assigned to control (CTRL), exercise (EXE), diabetic (D) and diabetic with exercise (D+EXE) groups. We used the n5-STZ model of diabetes mellitus triggered by a single injection of streptozotocin (STZ, 120 mg/kg b.w., i.p.) in newborn rats on their 5th day of life. EXE and D+EXE rats were trained by running on a motorized treadmill, 5 days a week for 9 weeks. Blood glucose, body weight, food intake, exercise capacity, lung mechanics, morphology, and antioxidant enzymatic activity were analysed. RESULTS: On the 14th week of life, diabetic rats exhibited a significant impairment in post-prandial glycaemia, glucose tolerance, body weight, food intake, lung function (tissue viscance, elastance, Newtonian resistance and hysteresis), morphological parameters, redox balance and exercise capacity. Physical training completely prevented the diabetes-induced alterations, except for those on fasting blood glucose, which nevertheless remained stable. CONCLUSIONS: Mild diabetes in n5-STZ-treated rats jeopardized pulmonary mechanics, morphology and redox balance, which confirms the occurrence of diabetes-induced pneumopathy. Moreover, moderate exercise completely prevented all diabetes-induced respiratory alterations.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Condicionamento Físico Animal , Animais , Glicemia , Pulmão , Ratos , Ratos Wistar , Estreptozocina
6.
J Dev Orig Health Dis ; 13(3): 406-410, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34284843

RESUMO

Exercise counteracts obesity effects, but information on how early-life obesity may affect long-term adaptation to exercise is lacking. This study investigates the impact of early-life postnatal overfeeding (PO) on animals' adaptation to exercise. Only male Wistar rats were used. On postnatal day (PN) 30, rats from control (NL-9 pups) or PO (SL-3 pups) litters were separated into four groups: NL-sedentary (NL-Se), NL-exercised (NL-Ex), SL-sedentary (SL-Se), and SL-exercised (SL-Ex). Exercised groups performed moderate-intensity exercise, running on a treadmill, from PN30 to PN90. Further experiments were carried out between PN90 and PN92. PO promoted obesity in SL versus NL rats (P < 0.05). Exercise reduced body weight (P < 0.001), body fat (P < 0.01), and improved glucose homeostasis in SL-Ex versus SL-Se. SL-Ex presented lower VO2max (P < 0.01) and higher post-exercise LDH (P < 0.05) compared to NL-Ex rats. Although moderate exercise counteracted obesity in SL rats, early-life overnutrition restricts fitness gains in adulthood, indicating that early obesity may impair animals' adaptation to exercise.


Assuntos
Hipernutrição , Animais , Animais Recém-Nascidos , Peso Corporal , Masculino , Músculos , Obesidade/etiologia , Hipernutrição/complicações , Ratos , Ratos Wistar
7.
Biol Res ; 54(1): 31, 2021 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-34538250

RESUMO

BACKGROUND: Heart failure (HF) is the leading cause of death in western countries. Cardiac dysfunction is accompanied by skeletal alterations resulting in muscle weakness and fatigue. Exercise is an accepted interventional approach correcting cardiac and skeletal dysfunction, thereby improving mortality, re-hospitalization and quality of life. Animal models are used to characterize underpinning mechanisms. Transverse aortic constriction (TAC) results in cardiac pressure overload and finally HF. Whether exercise training improves cardiac remodeling and peripheral cachexia in the TAC mouse model was not analyzed yet. In this study, 2 weeks post TAC animals were randomized into two groups either performing a moderate exercise program (five times per week at 60% VO2 max for 40 min for a total of 8 weeks) or staying sedentary. RESULTS: In both TAC groups HF characteristics reduced ejection fraction (- 15% compared to sham, p < 0.001), cardiac remodeling (+ 22.5% cardiomyocyte cross sectional area compared to sham; p < 0.001) and coronary artery congestion (+ 34% diameter compared to sham; p = 0.008) were observed. Unexpectedly, peripheral cachexia was not detected. Furthermore, compared to sedentary group animals from the exercise group showed aggravated HF symptoms [heart area + 9% (p = 0.026), heart circumference + 7% (p = 0.002), right ventricular wall thickness - 30% (p = 0.003)] while muscle parameters were unchanged [Musculus soleus fiber diameter (p = 0.55), Musculus extensor digitorum longus contraction force (p = 0.90)]. CONCLUSION: The severe TAC model is inappropriate to study moderate exercise effects in HF with respect to cardiac and skeletal muscle improvements. Further, the phenotype induced by different TAC procedures should be well documented and taken into account when planning experiments.


Assuntos
Insuficiência Cardíaca , Qualidade de Vida , Animais , Modelos Animais de Doenças , Ventrículos do Coração , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético
8.
Reprod Sci ; 28(8): 2223-2235, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33515208

RESUMO

The present study aims to confirm if the moderate-intensity swimming has successful glycemic control and non-toxic oxidative stress levels and to verify the influence on pancreatic adaptations, embryo implantation, and placental efficiency. Female Wistar rats were randomly distributed to obtain mildly diabetic by streptozotocin induction at birth and the non-diabetic females given vehicle. At adulthood, pregnant rats were put at random into sedentary non-diabetic rats (ND); exercise non-diabetic rats (NDEx); sedentary diabetic rats (D); and exercise diabetic rats (DEx). The rats of the groups submitted to moderate intensity carried loads equivalent to 4% of body weight. On day 17 of gestational day, all rats were submitted to oral glucose tolerance test (OGTT). Next day (GD18), the rats were anesthetized and killed to count implantation sites and to collect placentas, blood, and muscle samples for biochemical biomarkers and pancreas for immunohistochemical analysis. The moderate exercise used was not sufficient to stimulate the aerobic pathway but presented positive results on glucose metabolism, lower embryo postimplantation loss, and pancreatic morphology compared with the sedentary diabetic group. However, the DEx group showed muscular damage, decreased antioxidant defense, and lipid peroxidation. Thus, the moderate-intensity exercise reduces glycemic levels during OGTT and causes no damage to non-diabetic rats related to other analyzed parameters in this study. The exercised diabetic rats present better glycemic metabolism in OGTT, islet pancreatic morphology, and embryofetal development. However, it is necessary an adjustment in this exercise intensity to improve the effectiveness of aerobic training for reduction of maternal muscular and lipid membrane damages.


Assuntos
Glicemia/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Estresse Oxidativo/fisiologia , Condicionamento Físico Animal/fisiologia , Natação/fisiologia , Animais , Citrato (si)-Sintase/metabolismo , Creatina Quinase/sangue , Diabetes Mellitus Experimental/metabolismo , Feminino , Insulina/sangue , Músculo Esquelético/metabolismo , Placenta/metabolismo , Gravidez , Ratos , Ratos Wistar
9.
Biol. Res ; 54: 31-31, 2021. ilus, tab, graf
Artigo em Inglês | LILACS | ID: biblio-1505818

RESUMO

BACKGROUND: Heart failure (HF) is the leading cause of death in western countries. Cardiac dysfunction is accompanied by skeletal alterations resulting in muscle weakness and fatigue. Exercise is an accepted interventional approach correcting cardiac and skeletal dysfunction, thereby improving mortality, re-hospitalization and quality of life. Animal models are used to characterize underpinning mechanisms. Transverse aortic constriction (TAC) results in cardiac pressure overload and finally HF. Whether exercise training improves cardiac remodeling and peripheral cachexia in the TAC mouse model was not analyzed yet. In this study, 2 weeks post TAC animals were randomized into two groups either performing a moderate exercise program (five times per week at 60% VO2 max for 40 min for a total of 8 weeks) or staying sedentary. RESULTS: In both TAC groups HF characteristics reduced ejection fraction (- 15% compared to sham, p < 0.001), cardiac remodeling (+ 22.5% cardiomyocyte cross sectional area compared to sham; p < 0.001) and coronary artery congestion (+ 34% diameter compared to sham; p = 0.008) were observed. Unexpectedly, peripheral cachexia was not detected. Furthermore, compared to sedentary group animals from the exercise group showed aggravated HF symptoms [heart area + 9% (p = 0.026), heart circumference + 7% (p = 0.002), right ventricular wall thickness - 30% (p = 0.003)] while muscle parameters were unchanged [Musculus soleus fiber diameter (p = 0.55), Musculus extensor digitorum longus contraction force (p = 0.90)]. CONCLUSION: The severe TAC model is inappropriate to study moderate exercise effects in HF with respect to cardiac and skeletal muscle improvements. Further, the phenotype induced by different TAC procedures should be well documented and taken into account when planning experiments.


Assuntos
Animais , Camundongos , Qualidade de Vida , Insuficiência Cardíaca , Músculo Esquelético , Modelos Animais de Doenças , Ventrículos do Coração , Camundongos Endogâmicos C57BL
10.
Clin Respir J ; 13(9): 583-589, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31310707

RESUMO

INTRODUCTION AND OBJECTIVE: Moderate exercise performed in normoxia can be immunostimulatory, while strenuous exercise can be immunosuppressive. However, less is known about the effects of exercise under hypoxia on cytokines. The aim of this study was to evaluate the effects of an acute exercise session performed under hypoxia similar to an altitude of 4200 m on cytokine balance. Our hypothesis was that exercise, even of moderate intensity, associated with hypoxia may induce different changes in relation to the normoxic condition. METHODS: Eight healthy male volunteers were exercised on a treadmill for 1 hour at an intensity of 50% VO2peak under normoxic or hypoxic condition (4200 m). Blood samples were collected at rest and immediately 1 hour after the exercise, respectively to determine cytokines, hormones and metabolites. The two-way ANOVA and the Bonferroni post hoc test were used and the significance adopted was P < .05. RESULTS: While IL-2, the IL-2/IL-4 ratio and glutamine decreased under hypoxia, IL-6 and IL-1ra increased. There were increases in the IL-2/IL-4 ratio, IL-6, IL-1ra and IL-10/TNF-α in normoxia. There were no differences in cortisol or glucose. CONCLUSION: Moderate exercise under hypoxia condition changes the Th1/Th2 balance including IL-2, IL-4 and TNF-α cytokines, suggesting a Th2 response after 1 hour rest.


Assuntos
Citocinas/sangue , Exercício Físico/fisiologia , Hipóxia/sangue , Adulto , Doença da Altitude/sangue , Teste de Esforço/métodos , Glutamina/metabolismo , Humanos , Hipóxia/fisiopatologia , Imunomodulação/fisiologia , Inflamação/sangue , Proteína Antagonista do Receptor de Interleucina 1/metabolismo , Interleucina-10/metabolismo , Interleucina-2/metabolismo , Interleucina-4/metabolismo , Interleucina-6/metabolismo , Masculino , Consumo de Oxigênio/imunologia , Consumo de Oxigênio/fisiologia , Fator de Necrose Tumoral alfa/metabolismo
11.
J Physiol ; 597(15): 3905-3925, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31210356

RESUMO

KEY POINTS: Cancer growth, cell proliferation and cachexia index can be attenuated by the beneficial programming effect of moderate exercise training, especially if it begins in adolescence. Walker 256 tumour-bearing rats who started exercise training during adolescence did not revert the basal low glycaemia and insulinaemia observed before tumour cell inoculation. The moderate exercise training improved glucose tolerance and peripheral insulin sensitivity only in rats exercised early in adolescence. The chronic effects of our exercise protocol are be beneficial to prevent cancer cachexia and hold clear potential as a nonpharmacological therapy of insulin sensitization. ABSTRACT: We tested the hypothesis that moderate exercise training, performed early, starting during adolescence or later in life during adulthood, can inhibit tumour cell growth as a result of changes in biometric and metabolic markers. Male rats that were 30 and 70 days old performed a treadmill running protocol over 8 weeks for 3 days week-1 , 44 min day-1 and at 55-65% V̇O2max . After the end of training, a batch of rats was inoculated with Walker 256 carcinoma cells. At 15 days after carcinoma cell inoculation, the tumour was weighed and certain metabolic parameters were evaluated. The data demonstrated that physical performance was better in rats that started exercise training during adolescence according to the final workload and V̇O2max . Early or later moderate exercise training decreased the cachexia index, cell proliferation and tumour growth; however, the effects were more pronounced in rats that exercised during adolescence. Low glycaemia, insulinaemia and tissue insulin sensitivity was not reverted in Walker 256 tumour-bearing rats who trained during adolescence. Cancer growth can be attenuated by the beneficial programming effect of moderate exercise training, especially if it begins during adolescence. In addition, improvement in glucose-insulin homeostasis might be involved in this process.


Assuntos
Carcinoma 256 de Walker/terapia , Condicionamento Físico Animal/métodos , Animais , Caquexia/metabolismo , Caquexia/prevenção & controle , Carcinoma 256 de Walker/patologia , Carcinoma 256 de Walker/prevenção & controle , Células Cultivadas , Glucose/metabolismo , Resistência à Insulina , Masculino , Ratos , Ratos Wistar
12.
Front Physiol ; 10: 170, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30930783

RESUMO

We aimed to test whether moderate physical training can induce long-lasting protection against cardiovascular risk factors induced by high fat diet (HFD) intake, even after cessation of training. 90-days-old Wistar rats were submitted to a sedentary lifestyle or moderate physical training, three times a week, for 30 days. Following this, at 120 days-of age, sedentary and trained rats received a hypercaloric diet (HFD) or a commercial diet normal fat diet (NFD) for 30 days. Body weight (BW) and food intake were evaluated weekly. At 150 days-of age, hemodynamic measures (systolic, diastolic, mean blood pressure, pulse pressure, pulse interval and heart rate) were made via an indwelling femoral artery catheter. Beat-to-beat data were analyzed to calculate power spectra of systolic blood pressure (SBP) and pulse interval. After euthanasia, mesenteric fat pads were removed and weighted and total blood was stored for later analysis of lipid profile. Consumption of a HFD increased blood pressure (BP), pulse pressure, low frequency BP variability, BW gain, fat pad stores and induced dyslipidemia. Interestingly, prior physical training was able to partially protect against this rise in BP and body fat stores. Prior physical training did not totally protect against the effects of HFD consumption but previously trained animals did demonstrate resistance to the development of cardiometabolic alterations, which illustrate that the benefits of physical training may be partially maintained even after 30 days of detraining period.

13.
Front Physiol ; 8: 807, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29163186

RESUMO

An interaction between obesity, impaired glucose metabolism and sperm function in adults has been observed but it is not known whether exposure to a diet high in fat during the peri-pubertal period can have longstanding programmed effects on reproductive function and gonadal structure. This study examined metabolic and reproductive function in obese rats programmed by exposure to a high fat (HF) diet during adolescence. The effect of physical training (Ex) in ameliorating this phenotype was also assessed. Thirty-day-old male Wistar rats were fed a HF diet (35% lard w/w) for 30 days then subsequently fed a normal fat diet (NF) for a 40-day recovery period. Control animals were fed a NF diet throughout life. At 70 days of life, animals started a low frequency moderate exercise training that lasted 30 days. Control animals remained sedentary (Se). At 100 days of life, biometric, metabolic and reproductive parameters were evaluated. Animals exposed to HF diet showed greater body weight, glucose intolerance, increased fat tissue deposition, reduced VO2max and reduced energy expenditure. Consumption of the HF diet led to an increase in the number of abnormal seminiferous tubule and a reduction in seminiferous epithelium height and seminiferous tubular diameter, which was reversed by moderate exercise. Compared with the NF-Se group, a high fat diet decreased the number of seminiferous tubules in stages VII-VIII and the NF-Ex group showed an increase in stages XI-XIII. HF-Se and NF-Ex animals showed a decreased number of spermatozoa in the cauda epididymis compared with animals from the NF-Se group. Animals exposed to both treatments (HF and Ex) were similar to all the other groups, thus these alterations induced by HF or Ex alone were partially prevented. Physical training reduced fat pad deposition and restored altered reproductive parameters. HF diet consumption during the peri-pubertal period induces long-term changes on metabolism and the reproductive system, but moderate and low frequency physical training is able to recover adipose tissue deposition and reproductive system alterations induced by high fat diet. This study highlights the importance of a balanced diet and continued physical activity during adolescence, with regard to metabolic and reproductive health.

14.
Motriz (Online) ; 23(3): e101727, 2017. graf, ilus
Artigo em Inglês | LILACS | ID: biblio-894995

RESUMO

Aims: Maternal low-protein diet induces several impairments on cardiac system. Conversely, moderate exercise has been widely recommended to health improvement due to its effects on heart function. Thus, we investigated whether the moderate physical training is capable to offset the lasting injuries of a maternal protein restriction on the hearts of male adult rats. Methods: Pregnant rats were divided into two groups: Control (C=17% casein) and undernutrition (U=8% casein). Offspring from the undernutrition group, at 60 days of life, were subdivided into undernutrition (U) and undernutrition+exercise (UT) groups. Treadmill exercise was performed: (8 weeks, 5 days/week, 60 min/day at 70% of VO2máx). 48 hours after last exercise session, tissues were collected for morphological and biochemical analysis. Results Despite the deleterious effect induced by low-protein diet, physical training was able to restore morphological parameters to similar levels to the control group. Additionally, oxidative stress index was also improved in UT group, due to the increase in antioxidant enzymatic defense. In metabolic enzymes, maternal low-protein diet induced a change in metabolism, and moderate physical training improved oxidative metabolism. Conclusion: We demonstrated that moderate physical training can offset the cardiac metabolism in adult rats that were exposed to a maternal low-protein diet.(AU)


Assuntos
Animais , Masculino , Ratos , Exercício Físico/fisiologia , Estresse Oxidativo , Nutrição Materna , Fenômenos Fisiológicos da Nutrição Animal , Ratos Wistar
15.
Appl Physiol Nutr Metab ; 40(9): 959-62, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26300017

RESUMO

Previous studies showed that moderate exercise in adult rats enhances neutrophil function, although no studies were performed in juvenile rats. We evaluated the effects of moderate exercise on the neutrophil function in juvenile rats. Viability and neutrophils function were evaluated. Moderate exercise did not impair the viability and mitochondrial transmembrane potential of neutrophils, whereas there was greater reactive oxygen species production (164%; p < 0.001) and phagocytic capacity (29%; p < 0.05). Our results suggest that moderate exercise in juvenile rats improves neutrophil function, similar to adults.


Assuntos
Contração Muscular , Músculo Esquelético/fisiologia , Neutrófilos/fisiologia , Cavidade Peritoneal/citologia , Esforço Físico , Fatores Etários , Animais , Sobrevivência Celular , Masculino , Potencial da Membrana Mitocondrial , Neutrófilos/metabolismo , Fagocitose , Fenótipo , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo
16.
J Int Soc Sports Nutr ; 11: 25, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24914402

RESUMO

BACKGROUND: Postnatal early overfeeding and physical inactivity are serious risk factors for obesity. Physical activity enhances energy expenditure and consumes fat stocks, thereby decreasing body weight (bw). This study aimed to examine whether low-intensity and moderate exercise training in different post-weaning stages of life is capable of modulating the autonomic nervous system (ANS) activity and inhibiting perinatal overfeeding-induced obesity in rats. METHODS: The obesity-promoting regimen was begun two days after birth when the litter size was adjusted to 3 pups (small litter, SL) or to 9 pups (normal litter, NL). The rats were organized into exercised groups as follows: from weaning until 90-day-old, from weaning until 50-day-old, or from 60- until 90-days-old. All experimental procedures were performed just one day after the exercise training protocol. RESULTS: The SL-no-exercised (SL-N-EXE) group exhibited excess weight and increased fat accumulation. We also observed fasting hyperglycemia and glucose intolerance in these rats. In addition, the SL-N-EXE group exhibited an increase in the vagus nerve firing rate, whereas the firing of the greater splanchnic nerve was not altered. Independent of the timing of exercise and the age of the rats, exercise training was able to significantly blocks obesity onset in the SL rats; even SL animals whose exercise training was stopped at the end of puberty, exhibited resistance to obesity progression. Fasting glycemia was maintained normal in all SL rats that underwent the exercise training, independent of the period. These results demonstrate that moderate exercise, regardless of the time of onset, is capable on improve the vagus nerves imbalanced tonus and blocks the onset of early overfeeding-induced obesity. CONCLUSIONS: Low-intensity and moderate exercise training can promote the maintenance of glucose homeostasis, reduces the large fat pad stores associated to improvement of the ANS activity in adult rats that were obesity-programmed by early overfeeding.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA