Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.549
Filtrar
1.
BMC Microbiol ; 24(1): 238, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961393

RESUMO

OBJECTIVES: Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is extensively employed for the identification of filamentous fungi on MALDI Biotyper (Bruker Daltonics) and Vitek MS (biomerieux), but the performance of fungi identification on new EXS2600 (Zybio) is still unknow. Our study aims to evaluate the new EXS2600 system's (Zybio) ability to rapidly identify filamentous fungi and determine its effect on turnaround time (TAT) in our laboratory. METHODS: We tested 117 filamentous fungi using two pretreatment methods: the formic acid sandwich (FA-sandwich) and a commercial mold extraction kit (MEK, Zybio). All isolates were confirmed via sequence analysis. Laboratory data were extracted from our laboratory information system over two 9-month periods: pre-EXS (April to December 2022) and post-EXS (April to December 2023), respectively. RESULTS: The total correct identification (at the species, genus, or complex/group level) rate of fungi was high, FA-sandwich (95.73%, 112/117), followed by MEK (94.02%, 110/117). Excluding 6 isolates not in the database, species-level identification accuracy was 92.79% (103/111) for FA-sandwich and 91.89% (102/111) for MEK; genus-level accuracy was 97.29% (108/111) and 96.39% (107/111), respectively. Both methods attained a 100% correct identification rate for Aspergillus, Lichtheimia, Rhizopus Mucor and Talaromyces species, and were able to differentiate between Fusarium verticillioides and Fusarium proliferatum within the Fusarium fujikuroi species complex. Notably, high confidence was observed in the species-level identification of uncommon fungi such as Trichothecium roseum and Geotrichum candidum. The TAT for all positive cultures decreased from pre EXS2600 to post (108.379 VS 102.438, P < 0.05), and the TAT for tissue decreased most (451.538 VS 222.304, P < 0.001). CONCLUSIONS: The FA-sandwich method is more efficient and accurate for identifying filamentous fungi with EXS2600 than the MEK. Our study firstly evaluated the performance of fungi identification on EXS2600 and showed it is suitable for clinical microbiology laboratories use.


Assuntos
Formiatos , Fungos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Fungos/classificação , Fungos/isolamento & purificação , Fungos/química , Fungos/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Formiatos/química
2.
Food Microbiol ; 123: 104583, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39038889

RESUMO

Gray mold, caused by Botrytis cinerea, is a prevalent postharvest disease of apple that limits their shelf life, resulting in significant economic losses. The use of antagonistic microorganisms has been shown to be an effective approach for managing postharvest diseases of fruit. In the present study, an endophytic yeast strain PGY-2 was isolated from apples and evaluated for its biocontrol efficacy against gray mold and its mechanisms of action. Results indicated that strain PGY-2, identified as Bullera alba, reduced the occurrence of gray mold on apples and significantly inhibited lesion development in pathogen-inoculated wounds. Gray mold control increased with the use of increasing concentrations of PGY-2, with the best disease control observed at 108 cells/mL. Notably, Bullera alba PGY-2 did not inhibit the growth of Botrytis cinerea in vitro indicating that the yeast antagonist did not produce antimicrobial compounds. The rapid colonization and stable population of PGY-2 in apple wounds at 4 °C and 25 °C confirmed its ability to compete with pathogens for nutrients and space. PGY-2 also had a strong ability to form a biofilm and enhanced the activity of multiple defense-related enzymes (POD, PPO, APX, SOD, PAL) in host tissues. Our study is the first time to report the use of Bullera alba PGY-2 as a biocontrol agent for postharvest diseases of apple and provide evidence that Bullera alba PGY-2 represents an endophytic antagonistic yeast with promising biocontrol potential and alternative to the use of synthetic, chemical fungicides for the control of postharvest gray mold in apples.


Assuntos
Antibiose , Botrytis , Endófitos , Frutas , Malus , Doenças das Plantas , Malus/microbiologia , Botrytis/crescimento & desenvolvimento , Botrytis/fisiologia , Botrytis/efeitos dos fármacos , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Endófitos/fisiologia , Endófitos/isolamento & purificação , Frutas/microbiologia , Leveduras/fisiologia , Leveduras/isolamento & purificação , Biofilmes/crescimento & desenvolvimento
3.
Plants (Basel) ; 13(13)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38999685

RESUMO

Gray mold, caused by Botrytis cinerea Pers. Fr., is one of the most vital plant diseases, causing extensive pre- and post-harvest losses in apple fruits. In the current study, we isolated and identified two potential endophytic bioagents, Bacillus subtilis and Streptomyces endus. Both bioagents exhibited a potent fungistatic effect against B. cinerea under both in vitro and in planta conditions. Moreover, two experiments were carried out; (i) the first experiment was conducted at room temperature after artificial inoculation with B. cinerea to monitor the progression of the infection and the corresponding biochemical responses of the apples. Our in vivo findings showed that the treated B. cinerea-infected apple fruits with the cell-free bacterial filtrate of B. subtilis and S. endus (dipping or wrapping) significantly reduced the rotten area of the treated apple at room temperature. Additionally, B. subtilis and S. endus enhanced the enzymatic (POX and PPO) and non-enzymatic (phenolics and flavonoids) antioxidant defense machinery in treated apples. (ii) The second experiment focused on the preventive effects of both bioagents over a 90-day storage period at 1 °C of healthy apples (no artificial inoculation). The application of both bacterial filtrates prolonged the storage period, reduced the relative weight loss, and maintained high-quality parameters including titratable acidity, firmness, and total soluble solids of apple fruits under cold storage at 1 °C. The Kaplan-Meier analysis of rotten apples over 90 days during cold storage showed that the treated apples lasted longer than the non-treated apples. Moreover, the lifespan of apple fruits dipped in the culture filtrate of B. subtilis, or a fungicide, was increased, with no significant differences, compared with the non-treated apples. The current results showed the possibility of using both bioagents as a safe and eco-friendly alternative to chemical fungicides to control gray mold disease in apples.

4.
Food Chem X ; 23: 101563, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38984293

RESUMO

Bread is an important staple food that is susceptible to spoilage, making it one of the most wasted foods. To determine the safety of partially moldy bread, five types of bread were inoculated with common mold species. After incubation, the metabolite profile was determined in and under the inoculation spot, as well as at a lateral distance of 3 cm from the moldy spot. The result showed that the metabolites were exclusively concentrated in the inoculation area and directly below the inoculation area. The only exception was citrinin, a mycotoxin produced by Penicillia such as Penicillium citrinum, which was detected in almost all tested bread areas when inoculated with the corresponding strains. The results of our study suggest that the removal of moldy parts may be a solution to reduce food waste if the remaining bread is to be used, for example for insect farming to produce animal feed.

5.
Small ; : e2312254, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874100

RESUMO

Nanoimprinting large-area structures, especially high-density features like meta lenses, poses challenges in achieving defect-free nanopatterns. Conventional high-resolution molds for nanoimprinting are often expensive, typically constructed from inorganic materials such as silicon, nickel (Ni), or quartz. Unfortunately, replicated nanostructures frequently suffer from breakage or a lack of definition during demolding due to the high adhesion and friction at the polymer-mold interface. Moreover, mold degradation after a limited number of imprinting cycles, attributed to contamination and damaged features, is a common issue. In this study, a disruptive approach is presented to address these challenges by successfully developing an anti-sticking nanocomposite mold. This nanocomposite mold is created through the co-deposition of nickel atoms and low surface tension polytetrafluoroethylene (PTFE) nanoparticles via electroforming. The incorporation of PTFE enhances the ease of polymer release from the mold. The resulting Ni-PTFE nanocomposite mold exhibits exceptional lubrication properties and a significantly reduced surface energy. This robust nanocomposite mold proves effective in imprinting fine, densely packed nanostructures down to 100 nm using thermal nanoimprinting for at least 20 cycles. Additionally, UV nanoimprint lithography (UV-NIL) is successfully performed with this nanocomposite mold. This work introduces a novel and cost-effective approach to reusable high-resolution molds, ensuring defect-reduction production in nanoimprinting.

6.
Pestic Biochem Physiol ; 202: 105932, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38879298

RESUMO

The marine antifungal peptide epinecidin-1 (EPI) have been shown to inhibit Botrytis cinerea growth, while the molecular mechanism have not been explored based on omics technology. This study aimed to investigate the molecular mechanism of EPI against B. cinerea by transcriptome technology. Our findings indicated that a total of 1671 differentially expressed genes (DEGs) were detected in the mycelium of B. cinerea treated with 12.5 µmol/L EPI for 3 h, including 773 up-regulated genes and 898 down-regulated genes. Cluster analysis showed that DEGs (including steroid biosynthesis, (unsaturated) fatty acid biosynthesis) related to cell membrane metabolism were significantly down-regulated, and almost all DEGs involved in DNA replication were significantly inhibited. In addition, it also induced the activation of stress-related pathways, such as the antioxidant system, ATP-binding cassette transporter (ABC) and MAPK signaling pathways, and interfered with the tricarboxylic acid (TCA) cycle and oxidative phosphorylation pathways related to mitochondrial function. The decrease of mitochondrial related enzyme activities (succinate dehydrogenase, malate dehydrogenase and adenosine triphosphatase), the decrease of mitochondrial membrane potential and the increase content of hydrogen peroxide further confirmed that EPI treatment may lead to mitochondrial dysfunction and oxidative stress. Based on this, we speculated that EPI may impede the growth of B. cinerea through its influence on gene expression, and may lead to mitochondrial dysfunction and oxidative stress.


Assuntos
Antifúngicos , Peptídeos Catiônicos Antimicrobianos , Botrytis , Transcriptoma , Transcriptoma/fisiologia , Antifúngicos/metabolismo , Peptídeos Catiônicos Antimicrobianos/toxicidade , Botrytis/efeitos dos fármacos , Botrytis/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Peróxido de Hidrogênio , Expressão Gênica , Transportadores de Cassetes de Ligação de ATP/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno , Mitocôndrias , Estresse Oxidativo
7.
Front Plant Sci ; 15: 1400164, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38887459

RESUMO

During the postharvest storage of tomatoes, they are susceptible to infection by Botrytis cinerea, leading to significant economic losses. This study evaluated the antifungal potential of 2-heptanol (2-HE), a volatile biogenic compound, against B. cinerea and explored the underlying antifungal mechanism. The results indicated that 2-HE effectively suppressed the growth of B. cinerea mycelia both in vivo and in vitro and stimulated the activities of antioxidative enzymes, including superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) in tomatoes. Furthermore, 2-HE reduced spore viability, compromised membrane integrity, and resulted in increased levels of extracellular nucleic acids, protein content, and membrane lipid peroxidation. Transcriptomic analysis revealed that 2-HE disrupted the membrane transport system and enhanced amino acid metabolism, which led to intracellular nutrient depletion and subsequent B. cinerea cell death. Additionally, the 2-HE treatment did not negatively impact the appearance or quality of the tomatoes. In conclusion, the findings of this study offer insights into the use of 2-HE as a biocontrol agent in food and agricultural applications.

8.
Front Microbiol ; 15: 1399777, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38887717

RESUMO

Introduction: The air-curing process of cigar tobacco, as a key step in enhancing the quality of cigars, is often susceptible to contamination by mold spores, which severely constrains the quality of cigar tobacco. Methods: This study employed high-throughput Illumina sequencing technology and a continuous flow analysis system to analyze the differences between the microbial communities and physicochemical components of moldy and healthy cigar tobacco leaves. Furthermore, correlation analysis was performed to reveal the impact of mold on the quality of cigar tobacco. Results: The differences between the microbial flora and physicochemical compositions of moldy (MC) and healthy (HC) tobacco leaves were analyzed, revealing significant disparities between the two groups. Aspergillus spp. represented the dominant mold in MC, with nine out of twelve isolated molds showing higher quantities on MC than on HC. Mold contamination notably decreased the total nitrogen (TN), total phosphorus (TP), total alkaloids (TA), starch, protein, and flavor constituents while increasing the total fatty acid esters (TFAA), which was accompanied by a shift towards weakly acidic pH in the leaves. Fungal community analysis indicated a significant reduction in the fungal operational taxonomic unit (OUT) numbers and diversity indices in MC, contrasting with the bacterial trends. Aspergillus exhibited significantly higher relative abundance in MC, with LEfSe analysis pinpointing it as the primary driver of differentiation. Furthermore, significant negative correlations were observed between Aspergillus and TP, starch, TA, and protein, while a significant positive association was evident with TFAA. Network analysis underscored the pivotal role of Aspergillus as the species influencing disparities between HC and MC, with its abundance serving as a critical determinant during the air-curing process. Discussion: This study elucidated substantial quality distinctions between MC and HC during air-curing, with Aspergillus emerging as the key species contributing to leaf mold.

9.
J Clin Med ; 13(11)2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38892989

RESUMO

Three-dimensional (3D) printing is dramatically improving breast reconstruction by offering customized and precise interventions at various stages of the surgical process. In preoperative planning, 3D imaging techniques, such as computer-aided design, allow the creation of detailed breast models for surgical simulation, optimizing surgical outcomes and reducing complications. During surgery, 3D printing makes it possible to customize implants and precisely shape autologous tissue flaps with customized molds and scaffolds. This not only improves the aesthetic appearance, but also conforms to the patient's natural anatomy. In addition, 3D printed scaffolds facilitate tissue engineering, potentially favoring the development and integration of autologous adipose tissue, thus avoiding implant-related complications. Postoperatively, 3D imaging allows an accurate assessment of breast volume and symmetry, which is crucial in assessing the success of reconstruction. The technology is also a key educational tool, enhancing surgeon training through realistic anatomical models and surgical simulations. As the field evolves, the integration of 3D printing with emerging technologies such as biodegradable materials and advanced imaging promises to further refine breast reconstruction techniques and outcomes. This study aims to explore the various applications of 3D printing in breast reconstruction, addressing current challenges and future opportunities.

10.
Int J Food Microbiol ; 421: 110801, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38924974

RESUMO

Blue cheeses, including renowned mold-ripened varieties such as Roquefort (France), Gorgonzola (Italy), Stilton (UK), Danablue (Denmark), and Cabrales (Spain), owe their distinct blue-green color and unique flavor to the fungal species Penicillium roqueforti. In Turkey, traditional cheeses similar to blue cheeses, namely mold-ripened Tulum and Civil, employ production techniques distinct from their European counterparts. Notably, mold-ripening in Turkish cheeses is spontaneous and does not involve starter cultures. Despite P. roqueforti being recognized for its distinct genetic populations sourced from various blue cheeses and non-cheese origins globally, the characteristics of the P. roqueforti population within Turkish cheeses remain unexplored. This study aimed to unravel the genetic characteristics and population structure of P. roqueforti from Turkish mold-ripened cheeses. Analysis of mold-ripened Civil (n = 22) and Tulum (n = 8) samples revealed 66 P. roqueforti isolates (76.6 % of total fungal isolates). Subsequently, these isolates (n = 66) and those from previous studies (Tulum n = 53, Golot n = 1) were used to assess genetic characteristics and mating genotypes. All 120 isolates harbored horizontal transfer regions (Wallaby and CheesyTer) and predominantly possessed the MAT1-2 mating genotype, similar to global blue cheese populations. However, most lacked the mpaC deletion associated with such populations. Analysis of the population with three polymorphic microsatellite markers revealed 36 haplotypes (HTs). Some cheeses contained isolates with different HTs or opposite mating genotypes, aligning with spontaneous fungal growth. Tulum and Civil isolates exhibited similar population diversity without forming distinct subgroups. Phylogenetic analysis of 20 selected isolates showed 75 % aligning with global blue cheese isolates, while 25 % formed unique clades. Overall, Turkish P. roqueforti isolates share genetic similarities with global populations but exhibit unique characteristics, suggesting potential new clades deserving further investigation. This research illuminates the characteristics of P. roqueforti isolates from Turkish cheeses, contributing to the knowledge of the global intraspecific diversity of the P. roqueforti species.


Assuntos
Queijo , Variação Genética , Penicillium , Queijo/microbiologia , Penicillium/genética , Penicillium/isolamento & purificação , Penicillium/classificação , Turquia , Microbiologia de Alimentos , Genótipo , Filogenia
11.
J Oleo Sci ; 73(7): 991-999, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38945927

RESUMO

In this study, we evaluated the cancer cell killing activity of koji mold-derived extracts using several solvents. The koji mold lipid extract (KML) exhibited potent cytotoxicity against a human leukemia cell line. Fractionation of the KML via silica gel chromatography revealed the presence of active components in fraction (Fr.) 6. Cytotoxic effects of Fr. 6 were inhibited by the ferroptosis inhibitors, ferrostatin-1 and SRS11-92, and the iron chelator, deferoxamine. Interestingly, ferroptosis inhibitors failed to prevent the KML-induced cell death. Fr. 6 decreased the expression of glutathione peroxidase 4 (GPx4) and increased the level of peroxidized plasma membrane lipids. Furthermore, Fr. 6 decreased the intracellular glutathione levels. Overall, our results suggest that Fr. 6 included in KML induces ferroptosis in HL-60 cells.


Assuntos
Ferroptose , Glutationa , Peroxidação de Lipídeos , Oxirredução , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Humanos , Células HL-60 , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Ferroptose/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Glutationa/metabolismo , Oxirredução/efeitos dos fármacos , Desferroxamina/farmacologia , Cicloexilaminas/farmacologia , Lipídeos , Fenilenodiaminas/farmacologia , Lipídeos de Membrana/metabolismo , Quelantes de Ferro/farmacologia
12.
Int J Mol Sci ; 25(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38928507

RESUMO

The necrotrophic plant pathogenic fungus Botrytis cinerea (Pers., 1794), the causative agent of gray mold disease, causes significant losses in agricultural production. Control of this fungal pathogen is quite difficult due to its wide host range and environmental persistence. Currently, the management of the disease is still mainly based on chemicals, which can have harmful effects not only on the environment and on human health but also because they favor the development of strains resistant to fungicides. The flexibility and plasticity of B. cinerea in challenging plant defense mechanisms and its ability to evolve strategies to escape chemicals require the development of new control strategies for successful disease management. In this review, some aspects of the host-pathogen interactions from which novel and sustainable control strategies could be developed (e.g., signaling pathways, molecules involved in plant immune mechanisms, hormones, post-transcriptional gene silencing) were analyzed. New biotechnological tools based on the use of RNA interference (RNAi) are emerging in the crop protection scenario as versatile, sustainable, effective, and environmentally friendly alternatives to the use of chemicals. RNAi-based fungicides are expected to be approved soon, although they will face several challenges before reaching the market.


Assuntos
Botrytis , Interações Hospedeiro-Patógeno , Doenças das Plantas , Interferência de RNA , Botrytis/patogenicidade , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Interações Hospedeiro-Patógeno/genética , Fungicidas Industriais/farmacologia
13.
J Clin Med ; 13(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38929969

RESUMO

Background: Patients with liver pathology benefit from image-guided interventions. Training for interventional procedures is recommended to be performed on liver phantoms until a basic proficiency is reached. In the last 40 years, several attempts have been made to develop materials to mimic the imaging characteristics of the human liver in order to create liver phantoms. There is still a lack of accessible, reproducible and cost-effective soft liver phantoms for image-guided procedure training. Methods: Starting from a CT-scan DICOM file, we created a 3D-printed liver mold using InVesalius (Centro de Tecnologia da informação Renato Archer CTI, InVesalius 3 open-source software, Campinas, Brazil) for segmentation, Autodesk Fusion 360 with Netfabb (Autodesk software company, Fusion 360 2.0.19426 with Autodesk Netfabb Premium 2023.0 64-Bit Edition, San Francisco, CA, USA) for 3D modeling and Stratasys Fortus 380 mc 3D printer (Stratasys 3D printing company, Fortus 380 mc 3D printer, Minneapolis, MN, USA). Using the 3D-printed mold, we created 14 gelatin-based liver phantoms with 14 different recipes, using water, cast sugar and dehydrated gelatin, 32% fat bovine milk cream with intravenous lipid solution and technical alcohol in different amounts. We tested all these phantoms as well as ex vivo pig liver and human normal, fatty and cirrhotic liver by measuring the elasticity, shear wave speed, ultrasound attenuation, CT-scan density, MRI signal intensity and fracture force. We assessed the results of the testing performed, as well as the optical appearance on ultrasound, CT and MRI, in order to find the best recipe for gelatin-based phantoms for image-guided procedure training. Results: After the assessment of all phantom recipes, we selected as the best recipe for transparent phantoms one with 14 g of gelatin/100 mL water and for opaque phantom, the recipes with 25% cream. Conclusions: These liver gelatin-based phantom recipes are an inexpensive, reproducible and accessible alternative for training in image-guided and diagnostic procedures and will meet most requirements for valuable training.

14.
Microorganisms ; 12(6)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38930607

RESUMO

The anti-fungal properties of the probiotic bacterium Bacillus subtilis have been studied extensively in agriculture and ecology, but their applications in the built environment remain to be determined. Our work aims to utilize this biological component to introduce new diverse anti-mold properties into paint. "Mold" refers to the ubiquitous fungal species that generate visible multicellular filaments commonly found in household dust. The development of mold leads to severe health problems for occupants, including allergic response, hypersensitivity pneumonitis, and asthma, which have significant economic and clinical outcomes. We here demonstrate the robust effect of a commercial paint enhanced with Bacillus subtilis cells against the common mold agent, Aspergillus niger, and identify three biosynthetic clusters essential for this effect. Our results lay the foundation for bio-convergence and synthetic biology approaches to introduce renewable and environmentally friendly bio-anti-fungal agents into the built environment.

15.
Micromachines (Basel) ; 15(6)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38930706

RESUMO

Adapting to the growing demand for personalized, small-batch manufacturing, this study explores the development of additively manufactured molds for electroforming personalized metal parts. The approach integrates novel multi-level mold design and fabrication techniques, along with the experimental procedures for the electroforming process. This work outlines design considerations and guidelines for effective electroforming in additively manufactured molds, successfully demonstrating the production of composite metal components with multi-level and free-form geometries. By emphasizing cost efficiency and part quality, particularly for limited-thickness metal components, the developed technique offers distinct advantages over existing metal additive manufacturing methods. This approach establishes itself as a flexible and durable method for metal additive manufacturing, expanding the scope of electroforming beyond traditional constraints such as thin-walled hollow structures, 2D components, and nanoscale applications.

16.
Insects ; 15(6)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38921094

RESUMO

The brown marmorated stink bug, Halyomorpha halys (Stål) (Hemiptera: Pentatomidae), is an invasive polyphagous pest often observed in vineyards. In Europe, a gap needs to be filled in the knowledge on H. halys seasonal dynamics and damage on grapes. With this study, we described the seasonal dynamics of H. halys and its distribution in multi-cultivar vineyards, and we evaluated the damage on grape clusters induced by different pest densities. In vineyards, the seasonal occurrence of H. halys varied across time and grape cultivars, and the pest was more abundant on Cabernet Franc, Merlot and, to a lesser extent, Pinot gris. Moreover, higher densities of H. halys were found on red berry cultivars than on white ones, and on cultivars ripening late in the season. An edge effect was also detected in pest distribution within vineyards, with more stink bugs observed in the borders. In the study on pest infestation density, H. halys caused damage on berries, showing differences in susceptibility among different cultivars and with regard to the time of infestation (i.e., plant phenological stages). Halyomorpha halys infestation induced an increase in Botrytis cinerea and sour rot incidence, which probably represents the main issue related to the impact of brown marmorated stink bug on grapevine.

17.
Pathogens ; 13(6)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38921802

RESUMO

Most previously studies had considered that plant fungal disease spread widely and quickly by airborne fungi spore. However, little is known about the release dynamics, aerodynamic diameter, and pathogenicity threshold of fungi spore in air of the greenhouse environment. Grape gray mold is caused by Botrytis cinerea; the disease spreads in greenhouses by spores in the air and the spore attaches to the leaf and infects plant through the orifice. In this study, 120 µmol/L propidium monoazide (PMA) were suitable for treatment and quantitation viable spore by quantitative real-time PCR, with a limit detection of 8 spores/mL in spore suspension. In total, 93 strains of B. cinerea with high pathogenicity were isolated and identified from the air samples of grapevines greenhouses by a portable sampler. The particle size of B. cinerea aerosol ranged predominately from 0.65-3.3 µm, accounting for 71.77% of the total amount. The B. cinerea spore aerosols were infective to healthy grape plants, with the lowest concentration that could cause disease being 42 spores/m3. Botrytis cinerea spores collected form six greenhouse in Shandong Province were quantified by PMA-qPCR, with a higher concentration (1182.89 spores/m3) in May and June and a lower concentration in July and August (6.30 spores/m3). This study suggested that spore dispersal in aerosol is an important route for the epidemiology of plant fungal disease, and these data will contribute to the development of new strategies for the effective alleviation and control of plant diseases.

18.
Nanomaterials (Basel) ; 14(12)2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38921874

RESUMO

Nanostructures with sufficiently large areas are necessary for the development of practical devices. Current efforts to fabricate large-area nanostructures using step-and-repeat nanoimprint lithography, however, result in either wide seams or low efficiency due to ultraviolet light leakage and the overflow of imprint resin. In this study, we propose an efficient method for large-area nanostructure fabrication using step-and-repeat nanoimprint lithography with a composite mold. The composite mold consists of a quartz support layer, a soft polydimethylsiloxane buffer layer, and multiple intermediate polymer stamps arranged in a cross pattern. The distance between the adjacent stamp pattern areas is equal to the width of the pattern area. This design combines the high imprinting precision of hard molds with the uniform large-area imprinting offered by soft molds. In this experiment, we utilized a composite mold consisting of three sub-molds combined with a cross-nanoimprint strategy to create large-area nanostructures measuring 5 mm × 30 mm on a silicon substrate, with the minimum linewidth of the structure being 100 nm. Compared with traditional step-and-flash nanoimprint lithography, the present method enhances manufacturing efficiency and generates large-area patterns with seam errors only at the micron level. This research could help advance micro-nano optics, flexible electronics, optical communication, and biomedicine studies.

19.
Biol Open ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38912557

RESUMO

Myxomycetes are multinucleate unicellular organisms. They form a plasmodium that moves by protoplasmic flow and prey on microorganisms. When encountering intraspecifics, the plasmodium has the capacity for 'fusion,' actively approaching and fusing its cells, or 'avoidance,' altering its direction to avoid the other individual. This is an allorecognition ability. However, it remains unclear whether the range of allorecognition extends to other species, and its ecological significance is also obscure. Here, we conducted a quantitative evaluation of contact responses from closely related species of plasmodium to clarify the range of allorecognition behaviors in Myxomycetes. Behavioral assays demonstrated that allorecognition behaviors are specifically observed within individuals of the same species, indicating that these behaviors are a phenomenon unique to intraspecies interactions. Myxomycetes allorecognition is an extremely narrow and inward-focused behavior, suggesting for a highly specialized mechanism.

20.
Artigo em Inglês | MEDLINE | ID: mdl-38908912

RESUMO

Colored rice is abundant in polyphenols, and koji molds have potential for biotransformation. This study aimed to produce Thai-colored rice koji to study its polyphenolic biotransformation. Four industrial koji mold strains: Aspergillus oryzae 6001, A. oryzae 6020, A. sojae 7009, and A. luchuensis 8035, were cultivated on unpolished Thai-colored rice (Riceberry and Sangyod), unpolished Thai white rice (RD43), and polished Japanese white rice (Koshihikari). We discovered that koji molds grew on all the rice varieties. Methanol extracts of all rice kojis exhibited an approximately 2-fold or greater increase in total phenolic content and DPPH antioxidant activity compared to those of steamed rice. Moreover, quercetin, quercetin-3-O-glucoside, isorhamnetin-3-O-glucoside, ferulic acid, caffeic acid, protocatechuic acid, vanillic acid, (+)-catechin, and (-)-epicatechin content increased in Riceberry and Sangyod koji samples. Consequently, Aspergillus solid-state cultivation on unpolished Thai-colored rice exhibited higher functionalization than the cultivation of unpolished Thai white rice and polished Japanese white rice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA