Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 321
Filtrar
1.
Biology (Basel) ; 13(5)2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38785819

RESUMO

Understanding the interplay among organophosphorus flame retardants (OPFRs), microplastics, and freshwater organisms is crucial for unravelling the dynamics within freshwater environments and foreseeing the potential impacts of organic pollutants and plastic contamination. For that purpose, the present research assessed the exposure impact of 10 mg L-1 flame-retardant aluminium diethylphosphinate (ALPI), 10 µg mg-1liver microplastics polyurethane (PU), and the combination of ALPI and PU on the freshwater planarian Girardia tigrina. The exposure to both ALPI and PU revealed a sequential effect, i.e., a decrease in locomotor activity, while oxidative stress biomarkers (total glutathione, catalase, glutathione S-transferase, lipid peroxidation) and metabolic responses (cholinesterase activity, electron transport system, and lactate dehydrogenase) remained unaffected. Despite this fact, it was possible to observe that the range of physiological responses in exposed organisms varied, in particular in the cases of the electron transport system, cholinesterase activity, glutathione S-transferase, catalase, and levels of total glutathione and proteins, showing that the energetic costs for detoxification and antioxidant capacity might be causing a lesser amount of energy allocated for the planarian activity. By examining the physiological, behavioural, and ecological responses of planarians to these pollutants, insights can be gained into broader ecosystem-level effects and inform strategies for mitigating environmental risks associated with OPFRs and microplastic pollution in freshwater environments.

2.
Noncoding RNA ; 10(3)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38804361

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive neoplasia, characterized by early metastasis, low diagnostic rates at early stages, resistance to drugs, and poor prognosis. There is an urgent need to better characterize this disease in order to identify efficient diagnostic/prognostic biomarkers. Since microRNAs (miRNAs) contribute to oncogenesis and metastasis formation in PDAC, they are considered potential candidates for fulfilling this task. In this work, the levels of two miRNA subsets (involved in chemoresistance or with oncogenic/tumor suppressing functions) were investigated in a panel of PDAC cell lines and liquid biopsies of a small cohort of patients. We used RT-qPCR and droplet digital PCR (ddPCR) to measure the amounts of cellular- and vesicle-associated, and circulating miRNAs. We found that both PDAC cell lines, also after gemcitabine treatment, and patients showed low amounts of cellular-and vesicle-associated miR-155-5p, compared to controls. Interestingly, we did not find any differences when we analyzed circulating miR-155-5p. Furthermore, vesicle-related miR-27a-3p increased in cancer patients compared to the controls, while circulating let-7a-5p, miR-221-3p, miR-23b-3p and miR-193a-3p presented as dysregulated in patients compared to healthy individuals. Our results highlight the potential clinical significance of these analyzed miRNAs as non-invasive diagnostic molecular tools to characterize PDAC.

3.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732114

RESUMO

Extracellular vesicles (EVs) are tools for intercellular communication, mediating molecular transport processes. Emerging studies have revealed that EVs are significantly involved in immune processes, including sepsis. Sepsis, a dysregulated immune response to infection, triggers systemic inflammation and multi-organ dysfunction, posing a life-threatening condition. Although extensive research has been conducted on animals, the complex inflammatory mechanisms that cause sepsis-induced organ failure in humans are still not fully understood. Recent studies have focused on secreted exosomes, which are small extracellular vesicles from various body cells, and have shed light on their involvement in the pathophysiology of sepsis. During sepsis, exosomes undergo changes in content, concentration, and function, which significantly affect the metabolism of endothelia, cardiovascular functions, and coagulation. Investigating the role of exosome content in the pathogenesis of sepsis shows promise for understanding the molecular basis of human sepsis. This review explores the contributions of activated immune cells and diverse body cells' secreted exosomes to vital organ dysfunction in sepsis, providing insights into potential molecular biomarkers for predicting organ failure in septic shock.


Assuntos
Biomarcadores , Exossomos , Insuficiência de Múltiplos Órgãos , Sepse , Humanos , Exossomos/metabolismo , Sepse/metabolismo , Insuficiência de Múltiplos Órgãos/metabolismo , Insuficiência de Múltiplos Órgãos/imunologia , Insuficiência de Múltiplos Órgãos/etiologia , Animais
4.
Exp Gerontol ; 192: 112450, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38710456

RESUMO

Limited research exists regarding the effects of resistance exercise (RE) combined with whole body vibration (WBV), blood flow restriction (BFR), or both on the neuropsychological performance of working memory (WM) in late-middle-aged and older adults and regarding the physiological mechanisms underlying this effect. This study thus explored the acute molecular and neurophysiological mechanisms underlying WM performance following RE combined with WBV, BFR, or both. Sixty-six participants were randomly assigned into a WBV, BFR, or WBV + BFR group. Before and after the participants engaged in a single bout of isometric RE combined with WBV, BFR, or both, this study gathered data on several neurocognitive measures of WM performance, namely, accuracy rate (AR), reaction time (RT), and brain event-related potential (specifically P3 latency and amplitude), and data on biochemical indices, such as the levels of insulin-like growth factor-1 (IGF-1), norepinephrine (NE), and brain-derived neurotrophic factor (BDNF). Although none of the RE modalities significantly affected RTs and P3 latencies, ARs and P3 amplitudes significantly improved in the WBV and WBV + BFR groups. The WBV + BFR group exhibited greater improvements than the WBV group did. Following acute RE combined with WBV, BFR, or both, IGF-1 and NE levels significantly increased in all groups, whereas BDNF levels did not change. Crucially, only the changes in NE levels were significantly correlated with improvements in ARs in the WBV + BFR and WBV groups. The findings suggest that combining acute RE with WBV, BFR, or both could distinctively mitigate neurocognitive decline in late-middle-aged and older adults.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Fator de Crescimento Insulin-Like I , Memória de Curto Prazo , Tempo de Reação , Treinamento Resistido , Vibração , Humanos , Treinamento Resistido/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Vibração/uso terapêutico , Idoso , Fator Neurotrófico Derivado do Encéfalo/sangue , Memória de Curto Prazo/fisiologia , Fator de Crescimento Insulin-Like I/metabolismo , Cognição/fisiologia , Norepinefrina/sangue , Fluxo Sanguíneo Regional/fisiologia , Encéfalo/fisiologia
5.
Technol Cancer Res Treat ; 23: 15330338241254061, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38794896

RESUMO

Colorectal cancer (CRC) is the third most frequently found cancer in the world, and it is frequently discovered when it is already far along in its development. About 20% of cases of CRC are metastatic and incurable. There is more and more evidence that colorectal cancer stem cells (CCSCs), which are in charge of tumor growth, recurrence, and resistance to treatment, are what make CRC so different. Because we know more about stem cell biology, we quickly learned about the molecular processes and possible cross-talk between signaling pathways that affect the balance of cells in the gut and cancer. Wnt, Notch, TGF-ß, and Hedgehog are examples of signaling pathway members whose genes may change to produce CCSCs. These genes control self-renewal and pluripotency in SCs and then decide the function and phenotype of CCSCs. However, in terms of their ability to create tumors and susceptibility to chemotherapeutic drugs, CSCs differ from normal stem cells and the bulk of tumor cells. This may be the reason for the higher rate of cancer recurrence in patients who underwent both surgery and chemotherapy treatment. Scientists have found that a group of uncontrolled miRNAs related to CCSCs affect stemness properties. These miRNAs control CCSC functions like changing the expression of cell cycle genes, metastasis, and drug resistance mechanisms. CCSC-related miRNAs mostly control signal pathways that are known to be important for CCSC biology. The biomarkers (CD markers and miRNA) for CCSCs and their diagnostic roles are the main topics of this review study.


Assuntos
Biomarcadores Tumorais , Neoplasias Colorretais , Células-Tronco Neoplásicas , Transdução de Sinais , Humanos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , MicroRNAs/genética , Regulação Neoplásica da Expressão Gênica
6.
CNS Neurosci Ther ; 30(4): e14717, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38641945

RESUMO

BACKGROUND: Brain tumors are one of the leading causes of epilepsy, and brain tumor-related epilepsy (BTRE) is recognized as the major cause of intractable epilepsy, resulting in huge treatment cost and burden to patients, their families, and society. Although optimal treatment regimens are available, the majority of patients with BTRE show poor resolution of symptoms. BTRE has a very complex and multifactorial etiology, which includes several influencing factors such as genetic and molecular biomarkers. Advances in multi-omics technologies have enabled to elucidate the pathophysiological mechanisms and related biomarkers of BTRE. Here, we reviewed multi-omics technology-based research studies on BTRE published in the last few decades and discussed the present status, development, opportunities, challenges, and prospects in treating BTRE. METHODS: First, we provided a general review of epilepsy, BTRE, and multi-omics techniques. Next, we described the specific multi-omics (including genomics, transcriptomics, epigenomics, proteomics, and metabolomics) techniques and related molecular biomarkers for BTRE. We then presented the associated pathogenetic mechanisms of BTRE. Finally, we discussed the development and application of novel omics techniques for diagnosing and treating BTRE. RESULTS: Genomics studies have shown that the BRAF gene plays a role in BTRE development. Furthermore, the BRAF V600E variant was found to induce epileptogenesis in the neuronal cell lineage and tumorigenesis in the glial cell lineage. Several genomics studies have linked IDH variants with glioma-related epilepsy, and the overproduction of D2HG is considered to play a role in neuronal excitation that leads to seizure occurrence. The high expression level of Forkhead Box O4 (FOXO4) was associated with a reduced risk of epilepsy occurrence. In transcriptomics studies, VLGR1 was noted as a biomarker of epileptic onset in patients. Several miRNAs such as miR-128 and miRNA-196b participate in BTRE development. miR-128 might be negatively associated with the possibility of tumor-related epilepsy development. The lncRNA UBE2R2-AS1 inhibits the growth and invasion of glioma cells and promotes apoptosis. Quantitative proteomics has been used to determine dynamic changes of protein acetylation in epileptic and non-epileptic gliomas. In another proteomics study, a high expression of AQP-4 was detected in the brain of GBM patients with seizures. By using quantitative RT-PCR and immunohistochemistry assay, a study revealed that patients with astrocytomas and oligoastrocytomas showed high BCL2A1 expression and poor seizure control. By performing immunohistochemistry, several studies have reported the relationship between D2HG overproduction and seizure occurrence. Ki-67 overexpression in WHO grade II gliomas was found to be associated with poor postoperative seizure control. According to metabolomics research, the PI3K/AKT/mTOR pathway is associated with the development of glioma-related epileptogenesis. Another metabolomics study found that SV2A, P-gb, and CAD65/67 have the potential to function as biomarkers for BTRE. CONCLUSIONS: Based on the synthesized information, this review provided new research perspectives and insights into the early diagnosis, etiological factors, and personalized treatment of BTRE.


Assuntos
Neoplasias Encefálicas , Epilepsia , Glioma , MicroRNAs , Humanos , Multiômica , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas B-raf , Epilepsia/genética , Epilepsia/complicações , Neoplasias Encefálicas/complicações , Neoplasias Encefálicas/genética , Glioma/complicações , Glioma/genética , Convulsões/etiologia , Biomarcadores
7.
Mol Divers ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38622351

RESUMO

Alzheimer's disease (AD) and osteoarthritis (OA) are both senile degenerative diseases. Clinical studies have found that OA patients have a significantly increased risk of AD in their later life. This study hypothesized that chronic aseptic inflammation might lead to AD in KOA patients. However, current research has not yet clarified the potential mechanism between AD and KOA. Therefore, this study intends to use KOA transcriptional profiling and single-cell sequencing analysis technology to explore the molecular mechanism of KOA affecting AD development, and screen potential molecular biomarkers and drugs for the prediction, diagnosis, and prognosis of AD in KOA patients. It was found that the higher the expression of TXNIP, MMP3, and MMP13, the higher the risk coefficient of AD was. In addition, the AUC of TXNIP, MMP3, and MMP13 were all greater than 0.70, which had good diagnostic significance for AD. Finally, through the virtual screening of core proteins in FDA drugs and molecular dynamics simulation, it was found that compound Cobicistat could be targeted to TXNIP, Itc could be targeted to MMP3, and Isavuconazonium could be targeted to MMP13. To sum up, TXNIP, MMP3, and MMP13 are prospective molecular markers in KOA with AD, which could be used to predict, diagnose, and prognosis.

8.
Artigo em Inglês | MEDLINE | ID: mdl-38682316

RESUMO

California halibut (Paralichthys californicus) is a candidate species for aquaculture and stock enhancement. These applications rely on sex control, either to maximize the production of faster growing females or to match sex ratios in the wild. Other paralichthids exhibit temperature-dependent sex determination (TSD), but the presence and pattern of TSD is not well defined in California halibut. Juvenile California halibut were cultured at three distinct temperatures (15°C, 19°C, and 23°C) through the developmental period presumed to be thermosensitive based on findings from congeners. Sex ratios were quantified in each treatment using phenotypic sex identification techniques applied early (molecular biomarkers; 51-100 mm total length [TL]) and late (visual examination of the gonads; ≥100 mm TL) in the juvenile phase. Both techniques indicated similar sex determination trends at each temperature, with overall sex ratios assessed as 49.9% male at 15°C, 74.5% male at 19°C, and 98.2% male at 23°C. Growth rates were highest at 23°C and lowest at 15°C, with intrinsically fast- and slow-growing individuals at all temperatures. At 15°C and 19°C, females comprised a higher proportion among the fast growers than they did among the slow growers. These data show that California halibut exhibit TSD, with temperatures of 19°C and 23°C masculinizing fish while 15°C appears to produce a 1:1 sex ratio. This study will help optimize sex ratios and growth in hatcheries through thermal manipulation. Furthermore, the developed biomolecular tools and identified temperature thresholds will be important in future work to understand the influence of global warming on wild population demographics.

9.
Artigo em Inglês | MEDLINE | ID: mdl-38670231

RESUMO

Atopic dermatitis (AD) is a complex and heterogeneous skin disease for which achieving complete clinical clearance for most patients has proven challenging through single cytokine inhibition. Current studies integrate biomarkers and evaluate their role in AD, aiming to advance our understanding of the diverse molecular profiles implicated. Although traditionally characterized as a TH2-driven disease, extensive research has recently revealed the involvement of TH1, TH17, and TH22 immune pathways as well as the interplay of pivotal immune molecules, such as OX40, OX40 ligand (OX40L), thymic stromal lymphopoietin, and IL-33. This review explores the mechanistic effects of treatments for AD, focusing on mAbs and Janus kinase inhibitors. It describes how these treatments modulate immune pathways and examines their impact on key inflammatory and barrier biomarkers.

10.
Cancer Genet ; 284-285: 20-29, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38503134

RESUMO

INTRODUCTION: Search for new clinical biomarkers targets in prostate cancer (PC) is urgent. Telomeres might be one of these targets. Telomeres are the extremities of linear chromosomes, essential for genome stability and control of cell divisions. Telomere homeostasis relies on the proper functioning of shelterin and CST complexes. Telomeric dysfunction and abnormal expression of its components are reported in most cancers and are associated with PC. Despite this, there are only a few studies about the expression of the main telomere complexes and their relationship with PC progression. We aimed to evaluate the role of shelterin (POT1, TRF2, TPP1, TIN2, and RAP1) and CST (CTC1, STN1, and TEN1) genes and telomere length in the progression of PC. METHODS: We evaluated genetic alterations of shelterin and CST by bioinformatics in samples of localized (n = 499) and metastatic castration-resistant PC (n = 444). We also analyzed the expression of the genes using TCGA (localized PC n = 497 and control n = 152) and experimental approaches, with surgical specimens (localized PC n = 81 and BPH n = 10) and metastatic cell lines (LNCaP, DU145, PC3 and PNT2 as control) by real-time PCR. Real-time PCR also determined the telomere length in the same experimental samples. All acquired data were associated with clinical parameters. RESULTS: Genetic alterations are uncommon in PC, but POT1, TIN2, and TEN1 showed significantly more amplifications in the metastatic cancer. Except for CTC1 and TEN1, which are differentially expressed in localized PC samples, we did not detect an expression pattern relative to control and cell lines. Nevertheless, except for TEN1, the upregulation of all genes is associated with a worse prognosis in localized PC. We also found that increased telomere length is associated with disease aggressiveness in localized PC. CONCLUSION: The upregulation of shelterin and CST genes creates an environment that favors telomere elongation, giving selective advantages for localized PC cells to progress to more aggressive stages of the disease.


Assuntos
Neoplasias da Próstata , Complexo Shelterina , Proteínas de Ligação a Telômeros , Telômero , Regulação para Cima , Humanos , Masculino , Proteínas de Ligação a Telômeros/genética , Prognóstico , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Telômero/genética , Regulação Neoplásica da Expressão Gênica , Proteína 2 de Ligação a Repetições Teloméricas/genética , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Biomarcadores Tumorais/genética , Idoso , Homeostase do Telômero/genética , Tripeptidil-Peptidase 1
11.
World J Gastrointest Surg ; 16(2): 518-528, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38463354

RESUMO

BACKGROUND: Gastric cancer is a leading cause of cancer-related deaths worldwide. Prognostic assessments are typically based on the tumor-node-metastasis (TNM) staging system, which does not account for the molecular heterogeneity of this disease. LATS2, a tumor suppressor gene involved in the Hippo signaling pathway, has been identified as a potential prognostic biomarker in gastric cancer. AIM: To construct and validate a nomogram model that includes LATS2 expression to predict the survival prognosis of advanced gastric cancer patients following radical surgery, and compare its predictive performance with traditional TNM staging. METHODS: A retrospective analysis of 245 advanced gastric cancer patients from the Fourth Hospital of Hebei Medical University was conducted. The patients were divided into a training group (171 patients) and a validation group (74 patients) to develop and test our prognostic model. The performance of the model was determined using C-indices, receiver operating characteristic curves, calibration plots, and decision curves. RESULTS: The model demonstrated a high predictive accuracy with C-indices of 0.829 in the training set and 0.862 in the validation set. Area under the curve values for three-year and five-year survival prediction were significantly robust, suggesting an excellent discrimination ability. Calibration plots confirmed the high concordance between the predictions and actual survival outcomes. CONCLUSION: We developed a nomogram model incorporating LATS2 expression, which significantly outperformed conventional TNM staging in predicting the prognosis of advanced gastric cancer patients postsurgery. This model may serve as a valuable tool for individualized patient management, allowing for more accurate stratification and improved clinical outcomes. Further validation in larger patient cohorts will be necessary to establish its generalizability and clinical utility.

12.
Biomed Pharmacother ; 173: 116312, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417288

RESUMO

Bladder cancer (BC) is a common malignant tumor of urinary system, which can be divided into muscle-invasive BC (MIBC) and nonmuscle-invasive BC (NMIBC). The number of BC patients has been gradually increasing currently. At present, bladder tumours are diagnosed and followed-up using a combination of cystoscopic examination, cytology and histology. However, the detection of early grade tumors, which is much easier to treat effectively than advanced stage disease, is still insufficient. It frequently recurs and can progress when not expeditiously diagnosed and monitored following initial therapy for NMIBC. Treatment strategies are totally different for different stage diseases. Therefore, it is of great practical significance to study new biomarkers for diagnosis and prognosis. In this review, we summarize the current state of biomarker development in BC diagnosis and prognosis prediction. We retrospectively analyse eight diagnostic biomarkers and eight prognostic biomarkers, in which CK, P53, PPARγ, PTEN and ncRNA are emphasized for discussion. Eight molecular subtype systems are also identified. Clinical translation of biomarkers for diagnosis, prognosis, monitoring and treatment will hopefully improve outcomes for patients. These potential biomarkers provide an opportunity to diagnose tumors earlier and with greater accuracy, and help identify those patients most at risk of disease recurrence.


Assuntos
Neoplasias não Músculo Invasivas da Bexiga , Neoplasias da Bexiga Urinária , Humanos , Biomarcadores Tumorais/genética , Estudos Retrospectivos , Recidiva Local de Neoplasia , Neoplasias da Bexiga Urinária/patologia
13.
Pest Manag Sci ; 80(6): 2539-2551, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38375975

RESUMO

BACKGROUND: The evolution of non-target site resistance (NTSR) to herbicides leads to a significant reduction in herbicide control of agricultural weed species. Detecting NTSR in weed populations prior to herbicide treatment would provide valuable information for effective weed control. While not all NTSR mechanisms have been fully identified, enhanced metabolic resistance (EMR) is one of the better studied, conferring tolerance through increased herbicide detoxification. Confirming EMR towards specific herbicides conventionally involves detecting metabolites of the active herbicide molecule in planta, but this approach is time-consuming and requires access to well-equipped laboratories. RESULTS: In this study, we explored the potential of using molecular biomarkers to detect EMR before herbicide treatment in black-grass (Alopecurus myosuroides). We tested the reliability of selected biomarkers to predict EMR and survival after herbicide treatments in both reference and 27 field-derived black-grass populations collected from sites across the UK. The combined analysis of the constitutive expression of biomarkers and metabolism studies confirmed three proteins, namely, AmGSTF1, AmGSTU2 and AmOPR1, as differential biomarkers of EMR toward the herbicides fenoxaprop-ethyl and mesosulfuron in black-grass. CONCLUSION: Our findings demonstrate that there is potential to use molecular biomarkers to detect EMR toward specific herbicides in black-grass without reference to metabolism analysis. However, biomarker development must include testing at both transcript and protein levels in order to be reliable indicators of resistance. This work is a first step towards more robust resistance biomarker development, which could be expanded into other herbicide chemistries for on-farm testing and monitoring EMR in uncharacterised black-grass populations. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Biomarcadores , Resistência a Herbicidas , Herbicidas , Poaceae , Propionatos , Compostos de Sulfonilureia , Herbicidas/farmacologia , Poaceae/efeitos dos fármacos , Poaceae/metabolismo , Poaceae/genética , Resistência a Herbicidas/genética , Compostos de Sulfonilureia/farmacologia , Propionatos/farmacologia , Propionatos/metabolismo , Biomarcadores/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Oxazóis/farmacologia
14.
Adv Exp Med Biol ; 1443: 33-61, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38409415

RESUMO

Mass spectrometry (MS) is a powerful analytical technique that plays a central role in modern protein analysis and the study of proteostasis. In the field of advanced molecular technologies, MS-based proteomics has become a cornerstone that is making a significant impact in the post-genomic era and as precision medicine moves from the research laboratory to clinical practice. The global dissemination of COVID-19 has spurred collective efforts to develop effective diagnostics, vaccines, and therapeutic interventions. This chapter highlights how MS seamlessly integrates with established methods such as RT-PCR and ELISA to improve viral identification and disease progression assessment. In particular, matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) takes the center stage, unraveling intricate details of SARS-CoV-2 proteins, revealing modifications such as glycosylation, and providing insights critical to formulating therapies and assessing prognosis. However, high-throughput analysis of MALDI data presents challenges in manual interpretation, which has driven the development of programmatic pipelines and specialized packages such as MALDIquant. As we move forward, it becomes clear that integrating proteomic data with various omic findings is an effective strategy to gain a comprehensive understanding of the intricate biology of COVID-19 and ultimately develop targeted therapeutic paradigms.


Assuntos
COVID-19 , Proteômica , Humanos , Proteômica/métodos , COVID-19/diagnóstico , SARS-CoV-2 , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Proteínas , Teste para COVID-19
15.
Cancer Diagn Progn ; 4(1): 9-24, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38173664

RESUMO

Leukemias are hematological neoplasms characterized by dysregulations in several cellular signaling pathways, prominently including the PI3K/AKT/mTOR pathway. Since this pathway is associated with several important cellular mechanisms, such as proliferation, metabolism, survival, and cell death, its hyperactivation significantly contributes to the development of leukemias. In addition, it is a crucial prognostic factor, often correlated with therapeutic resistance. Changes in the PI3K/AKT/mTOR pathway are identified in more than 50% of cases of acute leukemia, especially in myeloid lineages. Furthermore, these changes are highly frequent in cases of chronic lymphocytic leukemia, especially those with a B cell phenotype, due to the correlation between the hyperactivation of B cell receptors and the abnormal activation of PI3Kδ. Thus, the search for new therapies that inhibit the activity of the PI3K/AKT/mTOR pathway has become the objective of several clinical studies that aim to replace conventional oncological treatments that have high rates of toxicities and low specificity with target-specific therapies offering improved patient quality of life. In this review we describe the PI3K/AKT/mTOR signal transduction pathway and its implications in leukemogenesis. Furthermore, we provide an overview of clinical trials that employed PI3K/AKT/mTOR inhibitors either as monotherapy or in combination with other cytotoxic agents for treating patients with various types of leukemias. The varying degrees of treatment efficacy are also reported.

16.
Expert Rev Mol Diagn ; 24(1-2): 39-47, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38183228

RESUMO

INTRODUCTION: Diffuse axonal injury (DAI), with high mortality and morbidity both in children and adults, is one of the most severe pathological consequences of traumatic brain injury. Currently, clinical diagnosis, disease assessment, disability identification, and postmortem diagnosis of DAI is mainly limited by the absent of specific molecular biomarkers. AREAS COVERED: In this review, we first introduce the pathophysiology of DAI, summarized the reported biomarkers in previous animal and human studies, and then the molecular biomarkers such as ß-Amyloid precursor protein, neurofilaments, S-100ß, myelin basic protein, tau protein, neuron-specific enolase, Peripherin and Hemopexin for DAI diagnosis is summarized. Finally, we put forward valuable views on the future research direction of diagnostic biomarkers of DAI. EXPERT OPINION: In recent years, the advanced technology has ultimately changed the research of DAI, and the numbers of potential molecular biomarkers was introduced in related studies. We summarized the latest updated information in such studies to provide references for future research and explore the potential pathophysiological mechanism on diffuse axonal injury.


Assuntos
Lesões Encefálicas Traumáticas , Lesão Axonal Difusa , Adulto , Animais , Criança , Humanos , Encéfalo/metabolismo , Lesão Axonal Difusa/diagnóstico , Lesão Axonal Difusa/metabolismo , Lesão Axonal Difusa/patologia , Lesões Encefálicas Traumáticas/metabolismo , Biomarcadores/metabolismo , Proteômica
17.
Mol Neurobiol ; 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066399

RESUMO

Wilson disease, a rare genetic disorder resulting from mutations in the ATP7B gene disrupts copper metabolism, leading to its harmful accumulation in hepatocytes, the brain, and other organs. It affects roughly 1 in 30,000 individuals, with 1 in 90 being gene carriers. Beyond gene mutations, the disease involves complex factors contributing to copper imbalance. Ongoing research seeks to unravel intricate molecular pathways, offering fresh insights into the disease's mechanisms. Simultaneously, there is a dedicated effort to develop effective therapeutic strategies. Nanotechnology-driven formulations are showing promise for both treatment and early diagnosis of Wilson disease. This comprehensive review covers the entire spectrum of the condition, encompassing pathophysiology, potential biomarkers, established and emerging therapies, ongoing clinical trials, and innovative nanotechnology applications. This multifaceted approach holds the potential to improve our understanding, diagnosis, and management of Wilson's disease, which remains a challenging and potentially life-threatening disorder.

18.
Artigo em Inglês | MEDLINE | ID: mdl-38133871

RESUMO

BACKGROUND: Gastroesophageal cancer is a major cause of cancer-related mortality worldwide. Treatment of both early stage and advanced disease remains highly reliant on cytotoxic chemotherapy. About 4-24% of gastroesophageal cancers are microsatellite instability high (MSI-H). The MSI-H subtype is associated with favorable prognosis, resistance to cytotoxic chemotherapy, and sensitivity to immune checkpoint inhibitors (ICI). Recent studies have demonstrated promising activity of ICIs in the MSI-H subtype, resulting in fundamental changes in the management of MSI-H gastroesophageal adenocarcinoma. PURPOSE: In this review, we discuss the prevalence, characteristics, prognosis, and management of MSI-H gastroesophageal adenocarcinoma, with a focus on recent and ongoing studies that have changed the landscape of treatment for the MSI-H subtype. We also discuss current challenges in the management of resectable and advanced MSI-H gastroesophageal cancer, including the need for more accurate biomarkers of response to ICI therapy.

20.
Acta Ophthalmol ; 101(8): 869-880, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37933607

RESUMO

Geographic atrophy (GA) is characterized by atrophy of the retina, retinal pigment epithelium and choriocapillaris, causing a gradual loss of vision over time. Treatment options to prevent initiation or progression of GA are limited; two recently FDA-approved inhibitors of the complement system (pegcetacoplan, avacincaptad pegol) showed a modest decrease in GA lesion growth in phase 3 clinical trials. Exploration of genetic and molecular biomarkers in GA plays a critical role in our battle against this blinding disease to improve early disease detection, to find more effective therapies, and to provide personalized care to patients. In this review, we provide a comprehensive overview of the current literature investigating genetic and molecular biomarkers for GA. Genetic studies identified multiple genes and variants that play a role in progression to GA and GA lesion growth, involving pathways such as complement activation, extracellular matrix interaction and lipid metabolism. The number of published studies assessing molecular biomarkers for GA initiation and progression in ocular matrices is limited. Several studies evaluated molecular biomarkers in the systemic circulation, showing higher levels of complement activation and a causal role of lipid subfractions in GA. Larger, well-powered studies are needed to identify novel and validate existing biomarkers, and to investigate the potential of combining genetic and molecular markers with imaging techniques for more accurate diagnosis and monitoring of GA. The development of personalized medicine approaches based on individual genetic and molecular profiles could hold promise for more effective and targeted treatments for this devastating disease.


Assuntos
Atrofia Geográfica , Humanos , Atrofia , Biomarcadores , Atrofia Geográfica/diagnóstico , Epitélio Pigmentado da Retina/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...