RESUMO
The present study evaluated the fatigue behavior of monolithic translucent zirconia polycrystals (TZ) and lithium disilicate glass-ceramic (LD) bonded to different substrates. Disc-shaped specimens of ceramic materials TZ and LD were bonded to three substrates with different elastic modulus (E) (fiber-reinforced composite (FRC) - softest material, Eâ¯=â¯14.9â¯GPa; titanium alloy (Ti) - intermediary properties, Eâ¯=â¯115â¯GPa; and zirconia (Yz) - stiffest material, Eâ¯=â¯210â¯GPa). The surfaces were treated and bonded with resin cement (disc-disc set-up). Fatigue testing followed a step-stress approach (initial maximum loadâ¯=â¯200â¯N for 5000 cycles, incremental step loadâ¯=â¯200â¯N for 10,000 cycles/step). The fatigue failure load and number of cycles until failure were recorded and statistically analyzed. Fractographic and finite element (FEA) analyzes were conducted as well. TZ ceramic depicted higher fatigue failure load, number of cycles until failure, and survival probabilities than LD, irrespective of the substrate. Moreover, TZ and LD presented better fatigue behaviors when bonded to substrates Ti and Yz in comparison to FRC. FEA revealed lower tensile stresses at restorative material when bonded to stiffer substrates. Fractography showed that the fracture origin started at bottom surface of restorative material (except for TZ bonded to Yz, in which crack initiated at load contact point). Translucent zirconia polycrystals present superior mechanical behavior than lithium disilicate glass-ceramic. The substrate type influences the mechanical performance of monolithic dental ceramics (stiffer substrates lead to better fatigue behavior).
Assuntos
Cerâmica/química , Colagem Dentária , Porcelana Dentária/química , Teste de Materiais , Zircônio/química , Análise de Elementos Finitos , Estresse Mecânico , Suporte de CargaRESUMO
OBJECTIVE: To investigate the effect of intaglio surface adjustment of simplified lithium disilicate ceramic restorations adhesively cemented to a dentin-like material on its fatigue behavior. METHODS: Ceramic discs (IPS e.max CAD) were prepared and an in-Lab simulation of machining roughness was performed by grinding with SiC paper (#60). Ceramic discs were divided into 4 groups according to the internal adjustment of the cementation surface: no adjustments (CTRL); adjustment with a medium (M), fine (F), or extra fine (FF) diamond bur. Dentin-like material discs were also produced. Ceramic disc intaglio surfaces were etched (5% hydrofluoric acid; 20s) and received a silane coating. Dentin-like material discs were etched (10% hydrofluoric acid; 1min) and received a primer coating. Pairs of ceramic/dentin-like material were adhesively cemented (Multilink Automix), and fatigue failure load tests were performed using the Staircase approach (250,000 cycles; 20Hz). Roughness, topographic and fractographic analyses were performed. Statistical analyses were carried out through ANOVA tests. RESULTS: All ground groups (M=521.3 N; F=536.9 N; FF=676.2 N) presented lower fatigue failure load values than the control (1241.6 N). M diamond bur created a rougher surface than F (Ra and Rz parameters). However, FF was similar to F and M for Ra, and similar to F for Rz. SIGNIFICANCE: Bur adjustments on the intaglio surface of simplified lithium disilicate ceramic restorations greatly decreased the fatigue failure load even using an extra-fine diamond bur. Care should be taken when internal adjustments are needed.