RESUMO
Hamelia patens (Rubiaceae), known as firebush, is a source of bioactive monoterpenoid oxindole alkaloids (MOAs) derived from monoterpenoid indole alkaloids (MIAs). With the aim of understanding the regulation of the biosynthesis of these specialized metabolites, micropropagated plants were elicited with jasmonic acid (JA) and salicylic acid (SA). The MOA production and MIA biosynthetic-related gene expression were evaluated over time. The production of MOAs was increased compared to the control up to 2-fold (41.3 mg g DW-1) at 72 h in JA-elicited plants and 2.5-fold (42.4 mg g DW-1) at 120 h in plants elicited with SA. The increment concurs with the increase in the expression levels of the genes HpaLAMT, HpaTDC, HpaSTR, HpaNPF2.9, HpaTHAS1, and HpaTHAS2. Interestingly, it was found that HpaSGD was downregulated in both treatments after 24 h but in the SA treatment at 120 h only was upregulated to 8-fold compared to the control. In this work, we present the results of MOA production in H. patens and discuss how JA and SA might be regulating the central biosynthetic steps that involve HpaSGD and HpaTHAS genes.
RESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: The Tabernaemontana genus belongs to the Apocynaceae family of which 30 species are found in Brazil. Some Tabernaemontana species are used by Brazilian indigenous people and other communities, or are listed in the Yanomami Pharmacopeia. Ethnopharmacological data include use(s) for muscle problems, depressed sternum, back pain, abscess, indigestion, eye irritation, earache, itching, vaginal discharge, as an aid for older people who are slow and forgetful, mosquito and snake bites, infection by the human botfly larvae, calmative, and fever. Obviously, many of these uses are attributed to the alkaloids found in Tabernaemontana species. AIM OF THE REVIEW: The aim is to gather information on Tabernaemontana species occurring in Brazil, as sources of monoterpene indole alkaloids (MIAs). In addition, we aim to collect reported experimental demonstrations of their biological activity, which may provide the foundation for further studies, including phytochemistry, the development of medicinal agents, and validation of phytopreparations. MATERIAL AND METHODS: The Brazilian Flora 2020 database was used as source for Tabernamontana species occurring in Brazil. The literature review on these species was collected from Web of Science, Scopus, PubMed, and Scifinder. The keywords included names and synonyms of Tabernaemontana species found in Brazil, which were validated by the Word Flora Online Plant List. RESULTS: A literature survey covering the time frame from 1960 until June 2023 resulted in 121 MIAs, including 48 not yet reported in the last review published in 2016. Some alkaloid extracts, fractions, and isolated alkaloids present evidenced biological activity, such as anticancer, anti-inflammatory, antinociceptive, antimicrobial, antiparasitic, antiviral, and against snake venoms, among others. Notably, ethnopharmacological based information has been the basis of some reports on Tabernaemontana species. CONCLUSIONS: Our literature survey shows that Tabernaemontana species present bioactive MIAs, such as voacamine and affinisine, demonstrating significant cytotoxicity activity against several tumoral cell lines. Those compounds can be considered promising candidates in the search for new anticancer drugs. However, the Amazonian plant biome is increasingly damaged, which may lead to the extinction of biological diversity. This threat may also affect Tabernaemontana species, which have scarcely been investigated regarding the potential of their phytochemicals for the development of new drugs.
Assuntos
Antineoplásicos , Alcaloides de Triptamina e Secologanina , Tabernaemontana , Idoso , Animais , Antineoplásicos/farmacologia , Brasil , Alcaloides Indólicos/farmacologia , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Tabernaemontana/químicaRESUMO
The Tabernaemontana genus belongs to the family Apocynaceae comprising about 100 species spread throughout tropical and subtropical regions around the world including Brazil, which contains around 40 species spread all over its territory. Because of the territorial space and climate diversity, these species already identified in Brazil are the largest collection of Tabernaemontana, which are representative (about 30%) of worldwide distribution. The monoterpene indole alkaloids present as major secondary components in all parts of the plants of the genus Tabernaemontana, have attracted the attention of the scientific community for new alkaloids derivatives and bioactivities. This review covers relevant references about Tabernaemontana species found in Brazil, its geographical distribution, occurrence of monoterpene alkaloids and phytochemical activities. Additional information about the South American species activities are also reported in this review.
Assuntos
Alcaloides Indólicos/farmacologia , Monoterpenos/farmacologia , Compostos Fitoquímicos/farmacologia , Tabernaemontana/química , Brasil , Extratos Vegetais/farmacologia , Tabernaemontana/classificaçãoRESUMO
AbstractZ-Vallesiachotamine is a monoterpene indole alkaloid that has a β-N-acrylate group in its structure. This class of compounds has already been described in different Psychotriaspecies. Our research group observed that E/Z-vallesiachotamine exhibits a multifunctional feature, being able to inhibit targets related to neurodegeneration, such as monoamine oxidase A, sirtuins 1 and 2, and butyrylcholinesterase enzymes. Aiming at better characterizing the multifunctional profile of this compound, its effect on cathecol-O-methyltransferase activity was investigated. The cathecol-O-methyltransferase activity was evaluated in vitro by a fluorescence-based method, using S-(5′-adenosyl)-l-methionine as methyl donor and aesculetin as substrate. The assay optimization was performed varying the concentrations of methyl donor (S-(5′-adenosyl)-l-methionine) and enzyme. It was observed that the highest concentrations of both factors (2.25 U of the enzyme and 100 µM of S-(5′-adenosyl)-l-methionine) afforded the more reproducible results. The in vitro assay demonstrated that Z-vallesiachotamine was able to inhibit the cathecol-O-methyltransferase activity with an IC50 close to 200 µM. Molecular docking studies indicated that Z-vallesiachotamine can bind the catechol pocket of catechol-O-methyltransferase enzyme. The present work demonstrated for the first time the inhibitory properties of Z-vallesiachotamine on cathecol-O-methyltransferase enzyme, affording additional evidence regarding its multifunctional effects in targets related to neurodegenerative diseases.
RESUMO
During comparative analysis on Palicourea species from Costa Rica, two unusual loganin derived tryptamine-iridoid alkaloids were isolated from an accession of Palicourea crocea. Besides the already known brachycerine (2), palicroceaine (1) features a novel hexacyclic backbone. A second provenance, however, yielded strictosidinic acid (3), belonging to the more common secologanin derived tryptamine-iridoid alkaloids, such as those found in Palicourea padifolia. From this species, strictosidine (4), lyaloside (5) and its derivative (E)-O-(6')-(4â³-hydroxy-3â³,5â³-dimethoxy)-cinnamoyl lyaloside (6) could be isolated. A herbarium specimen-based screening was performed, indicating some degree of regional differentiation in alkaloid content and biosynthetic pathways within the widespread and variable Pal. crocea. It further shows its differentiation from the related strictosidine containing Palicourea croceoides. The occurrence of loganin derived tryptamine-iridoid alkaloids in Pal. crocea, Psychotria brachyceras and Psychotria brachypoda, all putatively unrelated members of the Palicourea s.l. clade, is a noteworthy exception within the genus, otherwise largely characterized by secologanin-derived tryptamine-iridoid alkaloids.