RESUMO
BACKGROUND: The diversity and population genetic structure of many species have been shaped by historical and contemporary climatic changes. For the species of the South American Altiplano, the historical climatic changes are mainly related to the wet events of great magnitude and regional influence that occurred during the Pleistocene climatic oscillations (PCOs). In contrast, contemporary climate changes are associated with events of lesser magnitude and local influence related to intensifications of the South American Summer Monsoon (SASM). Although multiple studies have analyzed the effect of PCOs on the genetic patterns of highland aquatic species, little is known about the impact of contemporary climate changes in recent evolutionary history. Therefore, in this study, we investigated the change in population structure and connectivity using nuclear and mitochondrial markers throughout the distribution range of Heleobia ascotanensis, a freshwater Cochliopidae endemic to the Ascotán Saltpan. In addition, using geometric morphometric analyses, we evaluated the concomitance of genetic divergence and morphological differentiation. RESULTS: The mitochondrial sequence analysis results revealed the presence of highly divergent co-distributed and geographically nested haplotypes. This pattern reflects an extension in the distribution of groups that previously would have differentiated allopatrically. These changes in distribution would have covered the entire saltpan and would be associated with the large-scale wet events of the PCOs. On the other hand, the microsatellite results defined five spatially isolated populations, separated primarily by geographic barriers. Contemporary gene flow analyses suggest that post-PCO, climatic events that would have connected all populations did not occur. The morphometric analyses results indicate that there is significant morphological differentiation in the populations that are more isolated and that present the greatest genetic divergence. CONCLUSIONS: The contemporary population structure and morphological variation of H. ascotanensis mainly reflect the post-PCO climatic influence. Although both markers exhibit high genetic structuring, the microsatellite and morphology results show the preponderant influence of fragmentation in recent evolutionary history. The contemporary genetic pattern shows that in species that have limited dispersal capabilities, genetic discontinuities can appear rapidly, erasing signs of historical connectivity.
Assuntos
Evolução Biológica , Mudança Climática , Animais , Chile , Água Doce , CaramujosRESUMO
Records of element ratios obtained from the Maldives Inner Sea sediments provide a detailed view on how the Indian Monsoon System has varied at high-resolution time scales. Here, we present records from International Ocean Discovery Program (IODP) Site U1471 based on a refined chronology through the past 550,000 years. The record's high resolution and a proper approach to set the chronology allowed us to reconstruct changes in the Indian Monsoon System on a scale of anomalies and to verify their relationships with established records from the East Asian Monsoon System. On the basis of Fe/sum and Fe/Si records, it can be demonstrated that the Asia continental aridity tracks sea-level changes, while the intensity of winter monsoon winds responds to changes in Northern Hemisphere summer insolation. Furthermore, the anomalies of continental aridity and intensity of winter monsoon winds at millennial-scale events exhibit power in the precession band, nearly in antiphase with Northern Hemisphere summer insolation. These observations indicate that the insolation drove the anomalies in the Indian Summer Monsoon. The good correspondence between our record and the East Asian monsoon anomaly records suggests the occurrence of anomalous widespread arid events in Asia.
RESUMO
The Altiplano-Puna Plateau holds several shallow lakes, which are very sensitive to climate changes. This work is focused on a high-altitude lake system called Lagunas de Vilama (LVS), located in a complex climatic transition area with scarcity of continuous and homogeneous instrumental records. The objective of this study is to determine the regional spatial-temporal variability of precipitation and evaluate the seasonal and interannual lake responses. We use a lake-surfaces record derived from Landsat images to investigate links with regional precipitations and different climatic forcings. The results reveal that austral summer and autumn precipitations control the variability of the annual lake-surfaces. Also, we found intra-annual and interannual lags in the lake responses to precipitations, and identified several wet and dry stages. Our results show negative trends in precipitations and lake-surfaces, whose were strengthened by a shift to a warm phase of the Atlantic Multidecadal Oscillation in the 1990s. The El Niño Southern Oscillation, Pacific Decadal Oscillation, and Southern Annular Mode also exert a strong influence in the region. This study demonstrates that the variability of LVS lakes is strongly related to the South American Monsoon System dynamics and large-scale climate forcings from the Pacific and Atlantic Oceans. This work provides novel indices which demonstrated to be good indicators of regional hydro-climatological variability for this region of South America.
RESUMO
Heinrich Stadials significantly affected tropical precipitation through changes in the interhemispheric temperature gradient as a result of abrupt cooling in the North Atlantic. Here, we focus on changes in South American monsoon precipitation during Heinrich Stadials using a suite of speleothem records covering the last 85 ky B.P. from eastern South America. We document the response of South American monsoon precipitation to episodes of extensive iceberg discharge, which is distinct from the response to the cooling episodes that precede the main phase of ice-rafted detritus deposition. Our results demonstrate that iceberg discharge in the western subtropical North Atlantic led to an abrupt increase in monsoon precipitation over eastern South America. Our findings of an enhanced Southern Hemisphere monsoon, coeval with the iceberg discharge into the North Atlantic, are consistent with the observed abrupt increase in atmospheric methane concentrations during Heinrich Stadials.
Assuntos
Tempestades Ciclônicas , Camada de Gelo/química , Clima , Isótopos de Oxigênio/análise , Água do Mar/química , América do Sul , TemperaturaRESUMO
Carotenoid-based plumage coloration plays a critical role for both inter- and intrasexual communication. Habitat and diet during molt can have important consequences for the development of the ornamental signals used in these contexts. When molt occurs away from the breeding grounds (e.g., pre-alternate molt on the wintering grounds, or stopover molt), discerning the influence of habitat and diet can be particularly important, as these effects may result in important carryover effects that influence territory acquisition or mate choice in subsequent seasons. Several species of songbirds in western North America, including the Bullock's oriole (Icterus bullockii), migrate from the breeding grounds to undergo a complete prebasic (post-breeding) molt at a stopover site in the region affected by the Mexican monsoon climate pattern. This strategy appears to have evolved several times independently in response to the harsh, food-limited late-summer conditions in the arid West, which contrast strongly with the high productivity driven by heavy rains that is characteristic of the Mexican monsoon region. Within this region, individuals may be able to optimize plumage coloration by molting in favourable areas characterized by high resource abundance. We used stable isotope analysis (δ13C, δ15N) to ask whether the diet and molt habitat/location of Bullock's orioles influenced their expression of carotenoid-based plumage coloration as well as plumage carotenoid content and composition. Bullock's orioles with lower feather δ15N values acquired more colorful plumage (orange-shifted hue) but had feathers with lower total carotenoid concentration, lower zeaxanthin concentration, and marginally lower canthaxanthin and lutein concentration. Examining factors occurring throughout the annual cycle are critical for understanding evolutionary and ecological processes. Here, we demonstrate that conditions experienced during a stopover molt, occurring hundreds to thousands of kilometers from the breeding grounds, influence the production of ornamental plumage coloration, which may carryover to influence inter- and intrasexual signaling in subsequent seasons.