Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 12(24)2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38137300

RESUMO

Low fermentation temperatures are usually employed to obtain high-quality wines. This is especially interesting for white wine production since it prevents the loss of volatile compounds and a browning appearance; however, available fermentative yeasts do not usually tolerate low temperatures. Therefore, an interesting place to find new yeasts with cryotolerance is the Antarctic continent. From soil samples collected in Antarctica, 125 yeasts were isolated, of which 25 exhibited fermentative activity at 10 °C. After a fingerprinting assay, we classified the candidates into nine isotypes and sequenced internal transcribed spacer regions for their identification. These yeasts were identified as part of the Mrakia genus. Sugar and alcohol tolerance tests showed that some of these Antarctic soil yeasts were able to grow up to 9% alcohol, and 25% sugar was reached; however, they exhibited longer latency periods compared to the control Saccharomyces cerevisiae. The optimal growing temperature for the isolated Antarctic yeasts was between 10 °C and 15 °C. A comprehensive analysis of the results obtained showed that the isolates 10M3-1, 4M3-6, and 4B1-35 could be good candidates for fermentation purposes due to their alcohol, sugar tolerance, and growth features. Our results prove that it is possible to isolate fermentative yeasts from Antarctic soil with promising characteristics for their potential use in the wine production industry.

2.
Food Res Int ; 170: 113004, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37316073

RESUMO

The use of non-conventional brewing yeasts as alternative starters is a very promising approach which received increasing attention from worldwide scientists and brewers. Despite the feasible application of non-conventional yeasts in brewing processes, their regulations and safety assessment by the European Food Safety Authority still represent a bottlenecked hampering their commercial release, at least into EU market. Thus, research on yeast physiology, accurate taxonomic species identification and safety concerns associated with the use of non-conventional yeasts in food chains is needed to develop novel healthier and safer beers. Currently, most of the documented brewing applications catalysed by non-conventional yeasts are associated to ascomycetous yeasts, while little is known about analogous uses of basidiomycetous taxa. Therefore, in order to extend the phenotypic diversity of basidiomycetous brewing yeasts the aim of this investigation is to check the fermentation aptitudes of thirteen Mrakia species in relation to their taxonomic position within the genus Mrakia. The volatile profile, ethanol content and sugar consumption were compared with that produced by a commercial starter for low alcohol beers, namely Saccharomycodes ludwigii WSL 17. The phylogeny of Mrakia genus showed three clusters that clearly exhibited different fermentation aptitudes. Members of M. gelida cluster showed a superior aptitude to produce ethanol, higher alcohols, esters and sugars conversion compared to the members of M. cryoconiti and M. aquatica clusters. Among M. gelida cluster, the strain M. blollopis DBVPG 4974 exhibited a medium flocculation profile, a high tolerance to ethanol and to iso-α-acids, and a considerable production of lactic and acetic acids, and glycerol. In addition, an inverse relationship between fermentative performances and incubation temperature is also displayed by this strain. Possible speculations on the association between the cold adaptation exhibited by M. blollopis DBVPG 4974 and the release of ethanol in the intracellular matrix and in the bordering environment are presented.


Assuntos
Aptidão , Basidiomycota , Fermentação , Temperatura , Etanol
3.
Mycobiology ; 49(5): 469-475, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34803435

RESUMO

Three strains, YP416T, YP421T, and Y422, were isolated from soil samples in Pocheon City, Gyeonggi province, South Korea. The strains belong to two novel yeast species in the genus Mrakia. Molecular phylogenetic analysis showed that the strain YP416T was closely related to Mrakia niccombsii. Still, it differed by 9 nucleotide substitutions with no gap (1.51%) in the D1/D2 domain of the LSU rRNA gene and 14 nucleotide substitutions with 7 gaps (2.36%) in the ITS region. The strain YP421T differed from the type strain of the most closely related species, Mrakia aquatica, by 5 nucleotide substitutions with no gap (0.81%) in the D1/D2 domain of the LSU rRNA gene and 9 nucleotide substitutions with one gap (1.43%) in the ITS region. The names Mrakia terrae sp. nov. and Mrakia soli sp. nov. are proposed, with type strains YP416T (KCTC 27886T) and YP421T (KCTC 27890T), respectively. MycoBank numbers of the strains YP416T and YP421T are MB 836844 and MB 836847, respectively.

4.
Microbiol Res ; 232: 126394, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31865222

RESUMO

Extreme ecosystems are a possible source of new interesting microorganisms, in this study the isolation of psychrophilic and psychrotolerant plant growth promoting microorganisms was pursued in a cold habitat, with the aim of finding novel microbes that can protect crops from cold. Eight yeast and four bacterial strains were isolated from rhizospheric soil collected from the Xinantécatl volcano in Mexico, and characterized for plant growth promoting properties. Most of the yeasts produced indole acetic acid and hydrolytic enzymes (cellulases, xilanases and chitinases), but none of them produced siderophores, in contrast to their bacterial counterparts. Inorganic phosphate solubilization was detected for all the bacterial strains and for two yeast strains. Yeast and bacterial strains may inhibit growth of various pathogenic fungi, propounding a role in biological control. Microorganisms were identified up to genera level, by applying ribotyping techniques and phylogenetic analysis. Bacterial strains belonged to the genus Pseudomonas, whereas yeast strains consisted of Rhodotorula sp. (4), Mrakia sp. (3) and Naganishia sp. (1). New species belonging to the aforementioned genera seem to have been isolated from both bacteria and yeasts. Germination promoting activity on Solanum lycopersicum seeds was detected for all strains compared to a control, whereas tomato plantlets, grown at 15 °C in the presence of some of the strains, performed better than the non-inoculated plantlets. This study offers the possibility of using these strains as an additive to improve culture conditions of S. lycopersicum in a more environmentally compatible way. This is the first study to propose psychrophilic/psychrotolerant yeasts, as plant growth promoting microbes.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Fenômenos Fisiológicos Bacterianos , Filogenia , Desenvolvimento Vegetal , Leveduras/classificação , Leveduras/isolamento & purificação , Altitude , Temperatura Baixa , DNA/isolamento & purificação , Ecossistema , Fungos/patogenicidade , Germinação , Ácidos Indolacéticos/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , México , Doenças das Plantas , Rizosfera , Sementes/crescimento & desenvolvimento , Sideróforos/metabolismo , Microbiologia do Solo , Estresse Fisiológico , Erupções Vulcânicas , Leveduras/fisiologia
5.
Antonie Van Leeuwenhoek ; 113(4): 499-510, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31754948

RESUMO

Tree fluxes are sugar-rich, sometimes ephemeral, substrates occurring on sites where tree sap (xylem or phloem) is leaking through damages of tree bark. Tree sap infested with microorganisms has been the source of isolation of many species, including the biotechnologically relevant carotenoid yeast Phaffia rhodozyma. Tree fluxes recently sampled in Germany yielded 19 species, including several psychrophilic yeasts of the genus Mrakia. Four strains from tree fluxes represented a potential novel Mrakia species previously known from two isolates from superficial glacial melting water of Calderone Glacier (Italy). The Italian isolates, originally identified as Mrakia aquatica, and two strains from Germany did not show any sexual structures. But another culture collected in Germany produced clamped hyphae with teliospores. A detailed examination of the five isolates (three from Germany and two from Italy) proved them to be a novel yeast species, which is described in this manuscript as Mrakia fibulata sp. nov. (MB 830398), holotype DSM 103931 and isotype DBVPG 8059. In contrast to other sexually reproducing Mrakia species, M. fibulata produces true hyphae with clamp connections. Also, this is the first psychrotolerant Mrakia species which grows above 20 °C. Spring tree fluxes are widespread and can be recognized and sampled by amateurs in a Citizen Science project. This substrate is a prominent source of yeasts, and may harbor unknown species, as demonstrated in the present work. The description of Mrakia fibulata is dedicated to our volunteer helpers and amateurs, like Anna Yurkova (9-years-old daughter of Andrey Yurkov), who collected the sample which yielded the type strain of this species.


Assuntos
Ecossistema , Leveduras/isolamento & purificação , Leveduras/fisiologia , Betula/microbiologia , Betulaceae/microbiologia , Temperatura Baixa , Cornus/microbiologia , Fagus/microbiologia , Filogenia , Especificidade da Espécie , Leveduras/classificação , Leveduras/genética
6.
Food Microbiol ; 76: 354-362, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30166161

RESUMO

Due to the increasing consumer demand, the production of low alcoholic and non alcoholic beer is the new goal of the present brewing producers. Although the beer with reduced alcohol content is currently obtained by physical methods, the use of non-Saccharomyces yeast, with low fermentations capacities, may represent an interesting biological approach. In this study the ethanol content and the volatile profile of a beer obtained using the basidiomycetous psychrophilic yeast strain Mrakia gelida DBVPG 5952 was compared with that produced by a commercial starter for low alcohol beers, Saccharomycodes ludwigii WSL17. The two beers were characterized by a low alcohol content (1.40% and 1.32% v/v) and by a low diacetyl production (5.04 and 5.20 µg/L). However, the organoleptic characteristics of the beer obtained using M. gelida are more appreciated by the panelists, in comparison to the analogous produced with the commercial strain of S. ludwigii.


Assuntos
Álcoois/análise , Basidiomycota/metabolismo , Cerveja/análise , Álcoois/metabolismo , Cerveja/microbiologia , Diacetil/análise , Diacetil/metabolismo , Fermentação , Microbiologia de Alimentos , Humanos , Hypericum/química , Hypericum/metabolismo , Odorantes/análise , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Paladar
7.
R Soc Open Sci ; 3(7): 160106, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27493768

RESUMO

Microbes growing at subzero temperatures encounter numerous growth constraints. However, fungi that inhabit cold environments can grow and decompose organic compounds under subzero temperatures. Thus, understanding the cold-adaptation strategies of fungi under extreme environments is critical for elucidating polar-region ecosystems. Here, I report that two strains of the Antarctic basidiomycetous yeast Mrakia blollopis exhibited distinct growth characteristics under subzero conditions: SK-4 grew efficiently, whereas TKG1-2 did not. I analysed the metabolite responses elicited by cold stress in these two M. blollopis strains by using capillary electrophoresis-time-of-flight mass spectrometry. M. blollopis SK-4, which grew well under subzero temperatures, accumulated high levels of TCA-cycle metabolites, lactic acid, aromatic amino acids and polyamines in response to cold shock. Polyamines are recognized to function in cell-growth and developmental processes, and aromatic amino acids are also known to improve cell growth at low temperatures. By contrast, in TKG1-2, which did not grow efficiently, cold stress strongly induced the metabolites of the TCA cycle, but other metabolites were not highly accumulated in the cell. Thus, these differences in metabolite responses could contribute to the distinct abilities of SK-4 and TKG1-2 cells to grow under subzero temperature conditions.

8.
Cryobiology ; 70(3): 293-6, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25862934

RESUMO

Milk fat curdle is difficult to remove from sewage. In an attempt to identify an appropriate agent for bio-remediation of milk fat curdle, Mrakia strains were collected from the Skarvsnes ice-free area of Antarctica. A total of 27 strains were isolated and tested for their ability to decompose milk fat at temperatures ranging from 4°C to 15°C. All strains could decompose milk fat at 4°C and 10°C. Phylogenetic analysis and comparison of the decomposition ability of milk fat (DAMF) revealed that the DAMF may be useful for predicting the outcome of phylogenetic analysis based on ITS sequences.


Assuntos
Basidiomycota/metabolismo , Temperatura Baixa , Metabolismo dos Lipídeos/fisiologia , Leite/metabolismo , Animais , Regiões Antárticas , Basidiomycota/classificação , Biodegradação Ambiental , Gelo , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA